Future Prospects of 3D Human Chromosome Imaging by Serial Block Face Scanning Electron Microscopy

Mohammed Yusuf1**, Bo Chen12 and Ian Robinson12

1London Centre for Nanotechnology, University College London, London, London, UK
2Research Complex at Harwell, Rutherford Appleton Laboratory, Oxon, UK

Abstract

The higher order structure of human chromosomes remains to be elucidated with the 30 nm mystery still remaining. For internal structure determination, transmission electron microscopy (TEM) cannot be used as the chromosomes are too thick (approx. 1.4 microns) and scanning electron microscopy (SEM) is a surface imaging technique. For this purpose, the three-dimensional (3D) serial block face scanning electron microscopy (SBFSEM) was used on imaging mitotic human chromosome for the first time [1].

The SBFSEM technique [2] uses a diamond knife to cut thin slices of samples embedded into resin after preparing the samples using standard electron microscopy preparation techniques. The serial images by the SBFSEM do not need to be aligned because the system has automated image acquisition [2]. No published protocols were available for chromosome sample preparation for SBFSEM but rather for tissue samples [3] including rat liver to investigate chromatin in interphase nuclei [4]. This study used multiple fixation steps with complex long-time sample preparation procedures [4]. The chromosome sample preparation procedure for SBFSEM by Yusuf et al. [1] is much simpler and shorter. This study used centrifugation after each preparation step causing sample loss therefore the study successfully optimised the sample preparation procedures by starting with large scale cell cultures, synchronization and pooling samples together to get a concentrated starting yield. Further improvements were made after cleaning the chromosome sample by filtration, staining using platinum blue (a DNA specific heavy metal stain); [5] and embedding in a small amount of resin. Full 3D was obtained using the images taken and the typical X shaped chromosome was obtained with no internal structure. Further sample preparation changes from polyamine to methanol acetic acid showed internal pores [1].

SBFSEM has been used down to 20 nm sections showing clear signs of internal structure [1]. Even though porous features or cavities were seen on the chromosome arms, the resolution was limited to 11 × 11 × 20 nm. Charging effects and radiation damage were believed to give the current resolution. Despite the 11 nm nominal lateral resolution, no 30 nm structures were seen. New images with 8.3 × 8.3 nm pixel size show consistent staining in each slice (Figure 1a) and in slices further down in the series (Figure 1b) of the same chromosome (150 nm apart), also having porous information. Complementary methods such as focused ion beam scanning electron microscopy (FIBSEM) have provided 3D information on plant chromosomes (not human) due to sample preparation difficulties [6]. 3D X-ray coherent diffraction imaging (CDI) provided 120 nm resolution with little internal fine structure on a human chromosome [7]. Therefore there is no doubt that the SBFSEM method will be further used in the future for exploring higher order structure of the human genome, hopefully providing higher resolution as the techniques are improving.

Keywords: Chromosome; Serial block-face scanning electron microscopy; Three-dimensional imaging

Commentary

For this purpose, the three-dimensional (3D) serial block face scanning electron microscopy (SBFSEM) was used on imaging mitotic human chromosome for the first time [1].

The SBFSEM technique [2] uses a diamond knife to cut thin slices of samples embedded into resin after preparing the samples using standard electron microscopy preparation techniques. The serial images by the SBFSEM do not need to be aligned because the system has automated image acquisition [2]. No published protocols were available for chromosome sample preparation for SBFSEM but rather for tissue samples [3] including rat liver to investigate chromatin in interphase nuclei [4]. This study used multiple fixation steps with complex long-time sample preparation procedures [4]. The chromosome sample preparation procedure for SBFSEM by Yusuf et al. [1] is much simpler and shorter. This study used centrifugation after each preparation step causing sample loss therefore the study successfully optimised the sample preparation procedures by starting with large scale cell cultures, synchronization and pooling samples together to get a concentrated starting yield. Further improvements were made after cleaning the chromosome sample by filtration, staining using platinum blue (a DNA specific heavy metal stain); [5] and embedding in a small amount of resin. Full 3D was obtained using the images taken and the typical X shaped chromosome was obtained with no internal structure. Further sample preparation changes from polyamine to methanol acetic acid showed internal pores [1].

SBFSEM has been used down to 20 nm sections showing clear signs of internal structure [1]. Even though porous features or cavities were seen on the chromosome arms, the resolution was limited to 11 × 11 × 20 nm. Charging effects and radiation damage were believed to give the current resolution. Despite the 11 nm nominal lateral resolution, no 30 nm structures were seen. New images with 8.3 × 8.3 nm pixel size show consistent staining in each slice (Figure 1a) and in slices further down in the series (Figure 1b) of the same chromosome (150 nm apart), also having porous information. Complementary methods such as focused ion beam scanning electron microscopy (FIBSEM) have provided 3D information on plant chromosomes (not human) due to sample preparation difficulties [6]. 3D X-ray coherent diffraction imaging (CDI) provided 120 nm resolution with little internal fine structure on a human chromosome [7]. Therefore there is no doubt that the SBFSEM method will be further used in the future for exploring higher order structure of the human genome, hopefully providing higher resolution as the techniques are improving.

References

Acknowledgment

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC), grant BB/H022597/1. Also we would like to thank Professor George Thompson and Mr Teruo Hashimoto for preparing the resin sample and use of the SBFSEM microscope. This was done at the Corrosion & Protection Centre, School of Materials, The University of Manchester, UK. Therefore the Engineering and Physical Sciences Research Council (EPSRC) is also acknowledged for support of the LATEST2 Programme Grant and the associated imaging facilities.

Copyright: © 2016 Yusuf M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Corresponding author: Mohammed Yusuf, London Centre for Nanotechnology, University College London, London, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxon, UK, Tel: +44 20 7679 2000; E-mail: yusuf.mohammed@ucl.ac.uk

Received March 14, 2016; Accepted April 05, 2016; Published April 07, 2016

