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Introduction
Following the publication of the classical work by Birkhoff and 

von Neumann [1], the correspondence between the logic of quantum 
mechanics and non-Boolean logics has attracted significant theoretical 
and practical interest [2]. During the last decades, such an interest 
was enhanced with the development of quantum information and 
computation theory [3] and several approaches for the implementation 
of quantum logic by the use of fuzzy methods were presented[4-8]. The 
main goal of these studies is to construct a fuzzy model of quantum 
mechanical operators such that it can be implemented by fuzzy 
controllers [9]. In some cases, such models are complementary to 
the implementation of fuzzy control models by the use of quantum 
computations [10].

Recently, Hannachi et al. [5,6] suggested a direct fuzzy model of 
quantum computations over the qubits with real amplitudes. In their 
model, termed here as the H3-model, qubits are represented by pairs of 
membership functions, and main quantum gates are implemented by 
corresponding fuzzy operators on the unit square. Rybalov et al. [11] 
supplement the H3-model with reverse fuzzy Hadamard operator and 
implemented the resulting model in a mobile robot control system. The 
resulting model is indicated henceforth as the extended H3-model. 

Although the extended H3-model provides basic representations 
of quantum information concepts by fuzzy logic methods and, in the 
completed form, can be used in certain applications, no general and 
minimal two-dimensional fuzzy model have been reported so far.

The objective of the paper is to present a minimal fuzzy model on 
a unit square that generalises the extended H3-model and, similar to 
quantum-mechanical models, preserves smoothness of membership 
functions and operators. The suggested model applies a parametric 
system of the fuzzy not and phase operators, such that their compositions 
provide a complete system of fuzzy operators and implement operators 
of quantum information theory for real amplitudes. The fuzzy not and 
phase operators are based on the uninorms [12].

The actions of the suggested minimal fuzzy model are illustrated 
by the use of a real mobile robot control system. In addition, numerical 
simulations and comparison with the control method based on the 
extended H3-model [11] are provided.

The obtained results can support a development of fuzzy logic 
tools for the models of quantum information theory and their 
implementation.

The paper is organized as follows. The background includes a brief 
presentation of the main fuzzy operators, which are included in the 
H3-model and extended H3-model. In Phaseα and notα operators for 
H3-model, we defined the suggested parametric fuzzy not and phase 
operators and consider their actions. Uninorm for Phaseα and Notα 
Operators and Projector section deals with the uninorm and the 
metrics for the suggested operators. In implementation of the suggested 
model and numerical analysis, an example, which illustrates an 
implementation of the suggested model for the mobile robot’s control, 
is presented. In addition, the section includes results of numerical 
simulations and statistical comparison of the suggested model with the 
extended H3-model applied for the mobile robot’s control. 

Background
The states s of quantum-mechanical system [3] are defined by the 

use of qubits that are two elements column-vectors 

( ) ( ) ( ), 0 1 1, 0 0, 1T T Ts a b a b a b= = + = +

where vectors ( )0 1, 0 T=  and ( )1 0, 1 T=  are the basic qubits and 
2 2 1a b+ = . The basic states 0  and 1  of the system are usually 

denoted by " "↑  (“spin up”) and " "↓  (“spin down”):

( )1" " 1, 0 Ts↑ = = ,	 ( )2" " 0, 1 Ts↓ = = ,

while the states " "←  and " "→  are defined as follows:

3
1 1" " ,
2 2

T

s  
→ = =  

 
,

4
1 1" " ,
2 2

T

s  
← = = − 

 
.

The states 1 2 3, ,s s s and 4s  form a complete system in such a 
sense that each state can be obtained by the use of the other states [11], 
i.e.:

1 3 4
1 1
2 2

s s s= + ,    
2 3 4

1 1
2 2

s s s= − ,
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3 1 2
1 1
2 2

s s s= + ,      
4 1 2

1 1
2 2

s s s= − ,

and, as it is usual in quantum mechanics, the states s  and ( )1 s− ⋅  
are not distinguished.

According to the Hannachi et al. [5,6], in the direct fuzzy model 
of quantum computations to each quantum state ( ), Ts a b=  with real 
amplitudes fuzzy state ( ),a bs µ µ= , in which the membership functions 

[ ] [ ]: 0, 1 0, 1aµ →  and [ ] [ ]: 0, 1 0, 1bµ →  are defined as follows:

( ) ( )( )2 22 1arcsin 1
2a sign a a sign b bµ

π
= − + , ( ) ( )( )2 22 1arcsin 1

2b sign a a sign b bµ
π

= + + .

Inversely, given values of membership functions aµ and bµ , the 
amplitudes [ ] [ ]1,01,0: →a  and [ ] [ ]1,01,0: →b  are obtained by the 
following equations [5,6]:

( ) 1
2

sin
2

sin1 22 −+−+= babasigna µπµπµµ ,

( ) ababsignb µπµπµµ
2

sin
2

sin 22 −−= .

The Hannachi and the H3-model [5,6]  include fuzzy representations 
of the main qubit operators (Pauli operators I, X, Z, Hadamard H 
operator and negative unitary operator -I ) that are used in quantum 
information theory [8]. The correspondence between quantum and 
fuzzy operators is the following. Let us denote fuzzy operators by I~ , 

I~- , X~ , Z~  and H~  in correspondence to the quantum operators. Then 
an application of the fuzzy operators to a fuzzy state ( )bas µµ ,~ =  results 
in the following states [5,6]:









=









b

a

b

a

µ
µ

µ
µ

I~ , 







−
−

=








b

a

b

a

µ
µ

µ
µ

1
1

I~- ,   






 −
=









b

a

b

a

µ
µ

µ
µ 1

X~ ,	









=









a

b

b

a

µ
µ

µ
µ

Z~ ,

































 −+















 +−

=







Η

2
1,0max,1min

2
1,1min,0max

~

ba

ba

b

a

µµ

µµ

µ
µ

.

Since the fuzzy state s~  is not a vector, its row and column 
representation are used here interchangeably.

To complete the correspondence between quantum and fuzzy 
models, Rybalov et al. [11] suggested the reverse fuzzy Hadamard 
operator RΗ~  that corresponds to the quantum reverse Hadamard 
operator. For a fuzzy state ( )bas µµ ,~ =  this operator is defined as 
follows:
































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 +−















 −−

=







Η

ba

ba

b

aR

µµ

µµ

µ
µ

2
1,1min,0max

2
3,0max,1min

~
.

The H3-model with the reverse Hadamard operator RΗ~  is called 
extended H3-model.

Phaseα and notα operators for H3-model
Both the original and the extended H3-models are rather complex. 

Below we suggest a simpler fuzzy model that includes two operators, to 
which the transformations that are provided by the extended H3-model 
can be reduced.

Let ( )bas µµ ,~ =  be a fuzzy state and assume that the values 
of membership functions aµ  and bµ  are obtained according to the 
H3-model. However, the fuzzy states ( )bas µµ ,~ =  are not restricted 
and the suggested operators can be applied for any pair of membership 
functions ( )ba µµ , .

Let α be a real number such that 10 ≤≤α . For fuzzy state 
( )bas µµ ,~ =  and the numberα, we define two operators αphase  and 
αnot  as follows:

( ) ( )
( ) ( ) ( )






−⋅−+−⋅

−⋅+⋅−
=









ba

ba

b

aphase
µαµα

µαµα
µ
µ

α 111
11 ,	  

( ) ( )
( ) 








⋅−+⋅

⋅+−⋅−
=









ba

ba

b

anot
µαµα

µαµα
µ
µ

α 1
11

.

It is easy to verify that the operators αphase  and αnot  have the 
following properties:





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
−

=



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=

b
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µ
µ

α 10
,	 
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=
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

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
=

b

a

b

anot
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µ
µ
µ

α

1
0 ,





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
−
−

=



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
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b
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µ

α 1
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1
,	 








=








=

a

b

b

anot
µ
µ

µ
µ

α 1 .

In addition, for the compositions of the operators αphase  and 
αnot with any [ ]1,0∈α , one obtains:

( ) ( )
( ) ( )

,
1122
1122

2

2
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In particular, for 0=α  and 1=α , the compositions of the 
operators result in the following states:
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Let us apply the defined operators αphase  and αnot  and their 
compositions with 0=α  and 1=α  to the fuzzy states ( )1,1~

1 =s , 
( )0,0~

1 =− s , ( )1,0~
2 =s  and ( )0,1~

2 =− s , in which the values of membership 
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and a center of the square ( )21,21 . The strict meaning of the projector 
is considered in the next section. The actions of the operators αphase  
and αnot  with 21=α  (composed with the projector P~ , i.e. under the 
assumption that P~αα phasephase ≡  and P~αα notnot ≡ ) are shown 
in Figure 3.

For convenience, the correspondence between quantum and H3-
model operators and their representation by the use of αphase  and 

αnot  operators is summarized in Table 1.

The above-presented consideration demonstrates that the 
suggested αphase  and αnot  operators completely implement the 
transformations, which are provided by the extended H3-model that 
includes fuzzy reverse Hadamard operator RΗ~ .

Uninorm for Phaseα and notα Operators and Projector 
P~

Let us clarify the meaning of the above-introduced projecting 
operator P~ . Below we show that this operator provides a monotony 

functions are integer (including zero). The implementation of 
the presented formulas results in the states with integer values of 
membership functions, as it is shown in Figure 1.

Now, let us present the actions of the operators αphase  and 

αnot  over the states ( )1,21~
3 =s , ( )0,21~

3 =− s , ( )21,1~
4 =s  and 

( )21,0~
4 =− s . For 0=α  and 1=α , these operators act as it is 

shown in Figure 2.

Finally, let us consider the actions of the operators αphase  and 
αnot  with 21=α . Direct calculations show that for the fuzzy states
( )1,1~

1 =s , ( )0,0~
1 =− s , ( )1,0~

2 =s  and ( )0,1~
2 =− s  with integer 

values of membership functions the operators 21=αphase  and 21=αnot  
result in the states that lie on the perimemter of the unit square.

However, an application of the operators 21=αphase  and 21=αnot  
to the resulting states ( )1,21~

3 =s , ( )0,21~
3 =− s , ( )21,1~

4 =s  and 
( )21,0~

4 =− s  with non-integer values of membership functions 
does not give the original states. The states that correspond to these 
values are located in the internal part of the unit square instead of its 
perimeter. To project such states to the perimeter let us define the 
unique projector P~  such that for any fuzzy state ( )ba µµ ′′ ,  it results in 
the state ( ) ( )baba µµµµ ′′= ,P~, , which lies on the closest intersection 
point of the perimeter, and a line that follows via the point ( )ba µµ ′′ ,  

Figure 1: Actions of αphase and αnot operators over the fuzzy states with 
integer values of membership functions.
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Figure 2: Actions of αphase and αnot operators over the fuzzy states with 
non-integer values of membership functions.

 

notα = 0 

notα = 0 

notα = 0 

          
 

  
 
     
 
 
 
    

( )1,0  ( )1,1  

( )0,0  ( )0,1  







 1,

2
1  







 0,

2
1  









2
1,0

 








2
1,1

 

phaseα = 1 notα = 1 

phaseα = 0 

phaseα = 0 ph
as

e α
 =

 0
 notα = 1 phaseα = 1 

Figure 3: Actions of αphase  and αnot  operators with 21=α .
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In the table, 2
αphase  and 2

αnot  stand for a composition of the operators 

ααα phasephasephase =2  and ααα notnotnot =2 , correspondently.

Table 1: Correspondence between quantum, H3and phaseα-notαmodels.
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property of the uninorms that are defined by compositions of the 
operators αphase  and αnot .

Let us start with the uninorm that is defined over the 
membership functions. The uninorm R is defined as a mapping 

[ ] [ ] [ ]1,01,01,0: →×R  such that for any values of membership 

functions [ ]1,0,,, ∈dcba µµµµ , the following properties hold [12]:

commutativity:	 ( ) ( )abba RR µµµµ ,, = ;

monotonicity: ( ) ( )dcba RR µµµµ ,, ≥  if ca µµ ≥  and db µµ ≥ ;

associativity: ( )( ) ( )( )cbacba RRRR µµµµµµ ,,,, = ;

existence of identity: for any [ ]1,0∈µ  there exists [ ]1,0∈ε  such 
that ( ) µεµ =,R .

Let us define a similar uninorm U that is applicable to αphase  and 
αnot  operators, which act on the pairs ( )ba µµ ,  and result in the pairs

( )ba µµ ′′ , , [ ]1,0,,, ∈′′ baba µµµµ . Below we denote these operators by 
A, B, C and D.

Assume that the uninorm ( )BAU ,  is an operator over 
the fuzzy states, which is defined as a composition of the 
operators A, B, i.e. ( ) ABBAU =, . Since, as indicated above, 

it holds true that αααα phasenotnotphase  = , and 
( ) ( ) ( )bababa notphase µµµµµµ αα ,,, 22 == , and acting of such uninorm 

U on the αphase and αnot  operators meets the commutativity and 
associativity requirements, and an identity αα phasephaseE =  (or 

αα notnotE = ) exists.

The consideration of the monotonicity of the uninorm U requires 
definition of the relations “<” and “>” between the operators. At first, 
notice that the uninorm U for the operators acts on the pairs of pairs of 
membership functions and results in the pair of membership functions, 
i.e.,

( ) ( )( ) ( )srdcbaU µµµµµµ ,,,,  , [ ]1,0, ∈sr µµ .

In addition, notice, that the pair ( )21,21  represents a fixed point 
for the operators αphase  and αnot  with any value of parameter α. 
Hence, this point can be considered as a rapper or null-point.

By the use of the point ( )21,21~
=θ , the relations “<” 

and “>” between the operators can be defined as follows. Let 
( ) [ )∞∈→′′′ ,0~,~: mssd  be a metric defined on the unit square, where

( )bas µµ ′′=′ ,~ , ( )bas µµ ′′′′=′′ ,~  and [ ]1,0,,, ∈′′′′′′ baba µµµµ . Then, for 
any fuzzy state ( )bas µµ ,~ =  the distance from this state to the null-

point ( )21,21~
=θ  is given by the formula:

( ) ( ) ( ) 













==

2
1,

2
1,,~,~, baba dsdm µµθµµ ,

The relations “<” and “>” between the states ( )bas µµ ′′=′ ,~  and 
( )bas µµ ′′′′=′′ ,~  are specified by the use of the distances as follows. We 

say that the state ( )bas µµ ′′=′ ,~  is greater than the state ( )bas µµ ′′′′=′′ ,~  
and write ss ~~ ′′>′  if in the defined metric d it holds true that

( ) ( ) ( ) ( )θµµθµµ ~,~,~,~, sdmsdm baba ′′=′′′′>′=′′ ,

and, similarly, we say that s~′  is less the state s~′′  and write ss ~~ ′′<′  if 
it holds true that

( ) ( ) ( ) ( )θµµθµµ ~,~,~,~, sdmsdm baba ′′=′′′′<′=′′ .

If both ss ~~ ′′>′  and ss ~~ ′′<′  are satisfied, then we say that the 
states are equal in the sense of distance from the null-point θ and write 

ss ~~ ′′=′ .

The relations between the operators A and B that act over the fuzzy states, 
and, correspondently, between the results of the applications of uninorm 

U are defined by the relations between the resulting states as follows. Let 

( ) ( )babaA µµµµ ′′= ,,  and ( ) ( )babaB µµµµ ′′′′= ,, . Then, we say that 

BA >  if ( ) ( )baba µµµµ ′′′′>′′ ,,  and BA <  if ( ) ( )baba µµµµ ′′′′<′′ ,, .

Finally, let A, B, C and D be fuzzy operators, and let 
( ) ( )baABBAU µµ ,, ==   and ( ) ( )dcCDDCU µµ ,, == 

. 
Then, we say that

	 ( ) ( )DCUBAU ,, >  if ( ) ( )dcba µµµµ ,, > , and

	 ( ) ( )DCUBAU ,, <  if ( ) ( )dcba µµµµ ,, < .

Now, let us consider the role of the projecting operator P~ . Assume 
that the metric d is a Manhattan metric, i.e.

( ) ( )
2
1

2
1~,~, −+−== baba sdm µµθµµ .

Let ( )ba µµ ,  be a state, and assume that fuzzy operators A, B, C 
and D without projector P~  act as follows:

( ) 





=

8
7,

8
1, baA µµ , ( ) 






=

8
7,

8
7, baB µµ , ( ) 






=

2
1,0, baC µµ , 

( ) 





=

2
1,1, baD µµ .

Then, by the use of the projector P~ , i.e., under an assumption that
P~AA ≡ , P~BB ≡ , P~CC ≡  and P~DD ≡ , one obtains:

( ) ( )1,0, =baA µµ ,	 ( ) ( )1,1, =baB µµ ,

while the results of the operators C and D are still the same. Hence the 
inequalities CA >  and DB >  hold both for original results and for 
the states, which are obtained by the use of the projector P~ .

Direct calculations show that for the operators A, B, C and D 
without projector P~  it follows that

( )( )
4
3

8
7,

8
7, ≤














= AmBAUm   and  ( )( ) 1

2
1,1, ≤














= CmDCUm .

Thus, for the operators without projector P~  in spite of the 
inequalities CA >  and DB > , the relation ( ) ( )DCUBAU ,, >  that is 
required by monotonicity, in general, is not satisfied.

However, similar considerations that include the projector P~  
result in the following inequalities ( )( ) 1, ≤BAUm  and ( )( ) 1, ≤DCUm . 
Notice that both ( ) ( )1,0, =baA µµ  and ( ) ( )1,1, =baB µµ  lie on the 
perimeter of the unit square, i.e. they are boundary states. Moreover, 
the results of the compositions ( ) ABBAU =,  and ( ) CDDCU =,  
are also boundary states. Then, according to definitions of the operators 

αphase  and αnot , the transformations of the states over the boundary 
of the unit square are continuous. Hence, from the inequalities CA >  
and DB >  it follows that ( ) ( )DCUBAU ,, > , as it is required by the 
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monotonicity property of the uninorm. This property of the suggested 
operators allows their consideration in the framework of general fuzzy 
operators.

Implementation of the Suggested Model and Numerical 
Analysis

The suggested model that is based on αphase  and αnot  operators, 
as well as extended H3-model, were implemented in a mobile robot 
controller, and for both models comparative numerical simulations 
and field experiments were carried out. As indicated above, the detailed 
consideration of the experiments and simulation results is presented in 
our work [11].

The correspondence between the robot’s states and its orientation 
has been specified according to the quantum “spin orientations” as 
follows:

north,  00 3600 ≡ : ( )1,1~
1 =s ,  ( )0,0~

1 =− s , south,  0180 : ( )1,0~
2 =s ,	

( )0,1~
2 =− s ,

east, 0270 : 





= 1,

2
1~

3s , 





=− 0,

2
1~

3s ,  west, 090 : 





=

2
1,1~

4s , 







=−

2
1,0~

4s .

The implemented sequence of actions, in the terms of extended H3-
model, has the following form:

.~~~~~~~~~~~~state Initial Η→Η→Η→Η→Η→Η→Η→Η→Η→Η→Η→Η→ RRRRRR

According to this sequence, the robot conducts the following 
actions:

-	 moving one step forward;

-	 turning to the right (direct Hadamard operator);

-	 moving one step forward;

-	 turning to the left (application of the direct Hadamard operator 
over eastern orientation of the robot turns the robot to the left 
returning it to the initial orientation;

-	 moving one step forward;

-	 turning to the right (in contrast to the direct Hadamard 
operator, reverse Hadamard operator turns the robot left from 
its initial orientation);

-	 moving one step forward,

and so on up to the last step when the robot returns to its initial state. 
The obtained trajectory is simple enough for analysis, and, at the same 
time, represents all possible turns of the robot, so that all transitions 
between the states can be tested.

In the field experiments, the mobile robot was programmed so that 
it implemented the presented sequence of actions according to either 
the extended H3-model or the suggested model based on αphase  and 

αnot  operators. An example of the obtained trajectories of the robot, 
while at the initial state it was oriented to the north, are shown in 
Figure 4.

The Figure demonstrates the difference between turns that are 
governed by the extended H3-model and the suggested model based 
on αphase  and αnot  operators. Notice that the turns of the robot 
controlled by αphase  and αnot  model differ from the turns that were 

previously obtained for the model of quantum control [11], so the 
topology of the states space for the αphase  and αnot  model differs 
from both the extended H3 and the quantum models.

Numerical analysis was focused on the errors of the final angle 
that reflect the turns’ errors. The above-indicated sequence of direct 
and reverse Hadamard operators was implemented numerically, while 
after each application of the operator a random error to the resulting 
state was added. There were implemented three values of errors: 
1% error, 5% error and 10% error. The 1% error corresponds to the 
adding to the robot’s orientation a randomly chosen angle from the 
interval ( )00 6.3,6.3− , the 5% error means adding a randomly chosen 

Figure 4: Trajectories of the robot movements controlled by the extended 
H3-model and by the model based on of phaseα  and αnot  operators. White 
arrow denotes a starting position and orientation of the robot, and a black 
arrow denotes its final position and orientation.
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Figure 5: Histograms of the final angle errors with different percentage 
of turn’s errors.
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angle form the interval ( )0 018 ,18− , and 10% error corresponds to the
addition of the angle randomly chosen from the interval ( )0 036 , 36− . For 
each interval, the simulation was trialed 1000 times and the differences 
between the obtained and expected final orientations, i.e., the errors in 
final orientation angles were logged.

Histograms of the orientation errors in the final angle of the robots 
are shown in Figure 5. The histograms in Figure 5a correspond to the 
1% errors in the robot’s turns; the histograms in Figure 5b–to 5% turns’ 
errors; and the histograms in Figure 5c–to a 10% turns’ errors.

By the use of the Jarque-Bera test with significance level 0.01, it 
was found that in the case of 1% errors, the distributions of errors for 
both models of control are approximately normal, while in cases of 
5% and 10% errors the distributions of errors can not be considered as 
normal. A series of t-tests with a significance level of 0.01 showed that 
the difference between the resulting errors is insignificant. Following 
the Kolmogorov-Smirnov test with a significance level 0.01, in all three 
cases of errors the obtained samples correspond to different continuous 
distributions.

The obtained results confirm our expectation that the model that is 
based on αphase  and αnot  operators acts differently in comparison 
to the extended H3-model, while the results of application of the 
suggested operators are equivalent. As indicated above, the difference 
between the actions of the extended H3-model and the model based on 

αphase  and αnot  operators is provided by different topologies of the 
states space.

Conclusion
In the paper, we suggested a system of fuzzy operators that 

implements the operations over qubits. The system includes two 
parameterized αphase  and αnot  operators that act on the states 
obtained by the extended H3-model. The transformations of the 
states that correspond to the operators of the extended H3-model 
are determined by compositions of the defined αphase  and αnot
operators. For the suggested operators, the operational uninorm was 
defined and analyzed, what introduces the suggested operators into 
general fuzzy logic approach to quantum computations.

The suggested system was illustrated by implementation for a mobile 
robot control and was analyzed by numerical simulations. Comparison 
of the control based on the suggested control demonstrated that the 
results of the actions of the suggested minimal fuzzy system (that 
includes two operators) are equivalent to the corresponding results 
obtained by the extended H3-model (that includes six operators).

The obtained results can support a development of fuzzy logic tools 
for the models of quantum information theory.
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