(α, β) -fuzzy Lie algebras over an (α, β) -fuzzy field

P. L. ANTONY a and P. L. LILLY b

^aDepartment of Mathematics, St. Thomas College, Thrissur, Kerala, India ^bDepartment of Mathematics, St. Joseph's College, Irinjalakuda, Kerala, India E-mails: plantony937@gmail.com, sr.christy@gmail.com

Abstract

The concept of (α, β) -fuzzy Lie algebras over an (α, β) -fuzzy field is introduced. We provide characterizations of an $(\in, \in \lor q)$ -fuzzy Lie algebra over an $(\in, \in \lor q)$ -fuzzy field. **2000 MSC:** 17B99, 08A72

1 Introduction

Zadeh [12] formulated the notion of fuzzy sets and after that many scholars developed fuzzy system of different algebraic structures. The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [10], has played a vital role in generating some different types of fuzzy subgroups. Using the belong-to relation (\in) and quasi-coincidence with relation (q) between fuzzy points and fuzzy sets, the concept of (α, β) -fuzzy subgroup was introduced by Bhakat and Das [4]. Akram [1] introduced (α, β) -fuzzy Lie subalgebras and investigated some of its properties. Nanda [9] introduced fuzzy algebra over fuzzy field. It is natural to investigate similar types of generalization of the existing fuzzy subsystem. In [3], we introduced fuzzy Lie algebra over a fuzzy field and some properties were discussed.

In this paper, we introduce the concept of (α, β) -fuzzy Lie algebra over an (α, β) -fuzzy field and investigate some of its properties.

2 Preliminaries

In this section, we present some definitions needed for our study. We denote a complete distributive lattice with the smallest element 0 and the largest element 1 by I. By a fuzzy subset of a nonempty set X, we mean a function from X to I.

Definition 2.1 (see [5]). Let X be a field and let F be a fuzzy subset of X. Then F is called a fuzzy field of X if

- (i) for all λ , γ in X, $F(\lambda \gamma) \geq F(\lambda) \wedge F(\gamma)$,
- (ii) for all λ , $\gamma \neq 0$ in X, $F(\lambda \gamma^{-1}) \geq F(\lambda) \wedge F(\gamma)$.

Remark 2.2. It is seen that if F is a fuzzy field of X, then

$$F(0) \ge F(1) \ge F(\lambda) = F(-\lambda) = F(\lambda^{-1})$$
 for all $\lambda \ne 0$ in X .

Definition 2.3. Let A be a fuzzy subset of a Lie algebra L. Then A is called a fuzzy Lie algebra of L over a fuzzy field F, if for all $x, y \in L$, $\lambda \in X$,

- (i) $A(x-y) \ge A(x) \wedge A(y)$,
- (ii) $A(\lambda x) \ge F(\lambda) \wedge A(x)$,
- (iii) $A([x,y]) \ge A(x) \land A(y)$.

3 The relations belong to and quasi-coincidence with

Let L be a Lie algebra over a field X, let $A:L\to [0,1]$ be a fuzzy set on L, and let $F:X\to [0,1]$ be a fuzzy set on X. The support of fuzzy set A is the crisp set that contains all elements of L that have nonzero membership grades in A.

Definition 3.1 (see [10]). A fuzzy set $A: L \to [0,1]$ of the form

$$A(y) = \begin{cases} t \in (0,1], & \text{if } y = x, \\ 0, & \text{if } y \neq x \end{cases}$$

is said to be a fuzzy point with support x and value t and is denoted by x_t .

For a fuzzy point x_t and a fuzzy set A in a set L, Pu and Liu [10] gave meaning to the symbol $x_t \alpha A$ where $\alpha \in \{\in, q, \in \lor q\}$.

A fuzzy point x_t is said to belong to a fuzzy set A, written as $x_t \in A$, if $A(x) \ge t$. A fuzzy point x_t is said to be quasi-coincident with a fuzzy set A, denoted by $x_t q A$, if A(x) + t > 1.

For a fuzzy set $A: L \to [0,1]$ and $t \in (0,1]$, we denote $A_t = \{x \in L : x_t \in A\}$.

The following notations are used in this paper.

- 1. $\in \forall q$ means that either belong to or quasi-coincident with,
- 2. $\overline{\alpha}$ means that α does not hold.

Let $\min\{t,s\}$ be denoted by m(t,s) and let $\max\{t,s\}$ be denoted by M(t,s). Take I=[0,1] and $\wedge=\min, \vee=\max$ with respect to the usual order in Definitions 2.1 and 2.3.

Lemma 3.2. A fuzzy subset F of a field X is a fuzzy field if and only if it satisfies the following conditions:

- (i) for all λ , γ in X, $\lambda_t, \gamma_s \in F \Rightarrow (\lambda \gamma)_{m(t,s)} \in F$,
- (ii) for all $\lambda, \gamma \neq 0$ in $X, \lambda_t, \gamma_s \in F \Rightarrow (\lambda \gamma^{-1})_{m(t,s)} \in F$,

for all $t, s \in (0, 1]$.

Lemma 3.3. Let L be a Lie algebra over a field X. Then a fuzzy subset A of Lie algebra L is a fuzzy Lie algebra over a fuzzy field F of X if and only if it satisfies the following conditions:

- (i) $x_t, y_s \in A \Rightarrow (x y)_{m(t,s)} \in A$,
- (ii) $x_t \in A, \ \lambda_r \in F \Rightarrow (\lambda x)_{m(r,t)} \in A,$
- (iii) $x_t, y_s \in A \Rightarrow ([x, y])_{m(t,s)} \in A$,

for all $x, y \in L$, for all $\lambda \in X$, for all $t, s, r \in (0, 1]$.

4 (α, β) -fuzzy Lie algebras over an (α, β) -fuzzy field

Let α and β denote any one of \in , q, $\in \vee q$ unless otherwise specified.

Definition 4.1. Let X be a field and let $F: X \to [0,1]$ be a fuzzy subset of X. Then F is called an (α, β) -fuzzy field of X, if it satisfies the following conditions:

- (i) for all λ, γ in X, $\lambda_t \alpha F$, $\gamma_s \alpha F \Rightarrow (\lambda \gamma)_{m(t,s)} \beta F$,
- (ii) for all $\lambda, \gamma \neq 0$ in X, $\lambda_t \alpha F$, $\gamma_s \alpha F \Rightarrow (\lambda \gamma^{-1})_{m(t,s)} \beta F$,

for all $t, s \in (0, 1]$.

Definition 4.2. Let L be a Lie algebra over a field X, and let $F: X \to [0,1]$ be an (α, β) -fuzzy field of X. Then a fuzzy subset $A: L \to [0,1]$ is called an (α, β) -fuzzy Lie algebra of L over an (α, β) -fuzzy field F of X, if it satisfies the following conditions:

- (i) $x_t \alpha A, y_s \alpha A \Rightarrow (x y)_{m(t,s)} \beta A,$
- (ii) $x_t \alpha A, \lambda_r \alpha F \Rightarrow (\lambda x)_{m(r,t)} \beta A,$
- (iii) $x_t \alpha A, y_s \alpha A \Rightarrow ([x, y])_{m(t,s)} \beta A,$

for all $x, y \in L$, for all $\lambda \in X$, for all $t, s, r \in (0, 1]$.

Example 4.3. In the real vector space \mathbb{R}^3 , define $[x,y] = x \times y$, where ' \times ' is cross product of vectors for all $x,y \in \mathbb{R}^3$. Then \mathbb{R}^3 is a Lie algebra over the field \mathbb{R} .

Define
$$A: \mathbb{R}^3 \to [0,1]$$
 for all $x = (a,b,c) \in \mathbb{R}^3$ by

$$A(a,b,c) = \begin{cases} 1 & \text{if } a = b = c = 0, \\ 0.5 & \text{if } a \neq 0, b = 0, c = 0, \\ 0 & \text{otherwise,} \end{cases}$$

and define $F: \mathbb{R} \to [0,1]$ for all $\lambda \in \mathbb{R}$, by

$$F(\lambda) = \begin{cases} 1 & \text{if } \lambda \in \mathbb{Q}, \\ 0.5 & \text{if } \lambda \in \mathbb{Q}(\sqrt{2}) - \mathbb{Q}, \\ 0 & \text{if } \lambda \in \mathbb{R} - \mathbb{Q}(\sqrt{2}). \end{cases}$$

- (i) Then by actual computation, it follows that F is an (\in, \in) -fuzzy field of \mathbb{R} and A is an (\in, \in) -fuzzy Lie algebra of \mathbb{R}^3 over the (\in, \in) -fuzzy field F of \mathbb{R} . Also it can be verified that A is an $(\in, \in \lor q)$ -fuzzy Lie algebra of \mathbb{R}^3 over an $(\in, \in \lor q)$ -fuzzy field F of \mathbb{R} .
- (ii) Let x = (1,0,0), y = (2,0,0), t = 0.4, s = 0.3. Then A(x-y) = 0.5 and m(t,s) = 0.3. A(x-y) + m(t,s) < 1. So $(x-y)_{m(t,s)}\overline{q}A$. Hence A is not an (\in,q) -fuzzy Lie algebra.
- (iii) Let x = (0,0,0), y = (2,0,0) be elements in \mathbb{R}^3 and t = 0.4, s = 0.6. Then $x_t q A$ and $y_s q A$. But A(x-y) + m(t,s) = 0.5 + 0.4 < 1. This shows that $(x-y)_{m(t,s)} \overline{q} A$. Hence A is not a (q,q)-fuzzy Lie algebra.

Theorem 4.4. Let X be a field. Then a fuzzy subset $F: X \to [0,1]$ is a fuzzy field if and only if F is an (\in, \in) -fuzzy field of X.

Proof. The result follows immediately from Lemma 3.2.

Theorem 4.5. Let L be a Lie algebra over a field X. Then a fuzzy subset A of L is a fuzzy Lie algebra over a fuzzy field F of X if and only if A is an (\in, \in) -fuzzy Lie algebra of L over an (\in, \in) -fuzzy field F of X.

Proof. The result follows immediately from Lemmas 3.2 and 3.3.

Theorem 4.6. Let X be a field and let $F: X \to [0,1]$ be a fuzzy subset of X. Then F is an $(\in, \in \lor q)$ -fuzzy field of X if and only if

- (i) for all λ, γ in X, $F(\lambda \gamma) \ge m(F(\lambda), F(\gamma), 0.5)$,
- (ii) for all $\lambda, \gamma \neq 0$ in X, $F(\lambda \gamma^{-1}) \geq m(F(\lambda), F(\gamma), 0.5)$.

Proof. Suppose that F is an $(\in, \in \lor q)$ -fuzzy field of X. It is clear that

$$m(F(\lambda), F(\gamma), 0.5) = m(m(F(\lambda), F(\gamma)), 0.5).$$

We consider two possibilities.

Case 1. Let $m(F(\lambda), F(\gamma)) < 0.5$. Then, $m(F(\lambda), F(\gamma), 0.5) = m(F(\lambda), F(\gamma))$. If possible, let $F(\lambda - \gamma) < m(F(\lambda), F(\gamma), 0.5) = m(F(\lambda), F(\gamma))$. Let $r, s \in (0, 1]$ be such that $F(\lambda - \gamma) < r < s < m(F(\lambda), F(\gamma))$. Then $F(\lambda) > r$, $F(\gamma) > s$ and so $\lambda_r \in F$ and $\gamma_s \in F$. Also $F(\lambda - \gamma) < m(r, s)$ shows that $(\lambda - \gamma)_{m(r,s)} \overline{\in} F$ and $F(\lambda - \gamma) + m(r, s) < m(r, s) + m(r, s) < 1$ shows that $(\lambda - \gamma)_{m(r,s)} \overline{q} F$. Therefore, $(\lambda - \gamma)_{m(r,s)} \overline{\in} \forall q F$, a contradiction.

Case 2. Let $m(F(\lambda), F(\gamma)) \geq 0.5$. Then, $m(F(\lambda), F(\gamma), 0.5) = 0.5$. If possible, let $F(\lambda - \gamma) < 0.5$. Then $\lambda_{0.5} \in F$, $\gamma_{0.5} \in F$, but $(\lambda - \gamma)_{0.5} \in \nabla q F$, a contradiction. Therefore, it follows that $F(\lambda - \gamma) \geq m(F(\lambda), F(\gamma), 0.5)$. Similarly, (ii) is proved.

Conversely, suppose that conditions (i) and (ii) are satisfied by a fuzzy set F of X. Let $\lambda_r \in F$, $\gamma_s \in F$, for $\lambda, \gamma \in X$ and $r, s \in (0, 1]$. Then $F(\lambda) \geq r$, $F(\gamma) \geq s$ and so $m(F(\lambda), F(\gamma)) \geq m(r, s)$. Since F satisfies condition (i),

$$F(\lambda - \gamma) \ge m(F(\lambda), F(\gamma), 0.5) \ge m(r, s, 0.5).$$

Now consider the possibilities $m(r,s) \leq 0.5$ or m(r,s) > 0.5. If $m(r,s) \leq 0.5$, then m(r,s,0.5) = m(r,s) and $F(\lambda - \gamma) \geq m(r,s)$ and so $(\lambda - \gamma)_{m(r,s)} \in F$. If m(r,s) > 0.5, then m(r,s,0.5) = 0.5 and $F(\lambda - \gamma) \geq 0.5$. So, $F(\lambda - \gamma) + m(r,s) \geq 0.5 + m(r,s) > 0.5 + 0.5 = 1$ and hence $(\lambda - \gamma)_{m(r,s)} qF$. Therefore, it follows that if $\lambda_r \in F$, $\gamma_s \in F$, then $(\lambda - \gamma)_{m(r,s)} \in \forall qF$. Similarly, if $\lambda_r \in F$, $\gamma_s \in F$ for all $\lambda, \gamma \neq 0$ in X, then $(\lambda \gamma^{-1})_{m(r,s)} \in \forall qF$. Hence F is an $(\in, \in \forall q)$ -fuzzy field of X.

Theorem 4.7. Let L be a Lie algebra over a field X. Then a fuzzy subset A of L is an $(\in, \in \lor q)$ -fuzzy Lie algebra of L over an $(\in, \in \lor q)$ -fuzzy field F of X if and only if

- (i) for all $x, y \in L$, $A(x y) \ge m(A(x), A(y), 0.5)$,
- (ii) for all $x \in L$, $\lambda \in X$, $A(\lambda x) \ge m(F(\lambda), A(x), 0.5)$,
- (iii) for all $x, y \in L$, $A([x, y]) \ge m(A(x), A(y), 0.5)$.

Proof. Suppose that A is an $(\in, \in \lor q)$ -fuzzy Lie algebra over an $(\in, \in \lor q)$ -fuzzy field F of X. It is clear that $m(F(\lambda), A(x), 0.5) = m(m(F(\lambda), A(x)), 0.5)$. We consider two possibilities. Case 1. Let $m(F(\lambda), A(x)) < 0.5$. Then, $m(F(\lambda), A(x), 0.5) = m(F(\lambda), A(x))$. If possible, let $A(\lambda x) < m(F(\lambda), A(x), 0.5) = m(F(\lambda), A(x))$. Let $t \in (0, 1]$ be such that $A(\lambda x) < t < m(F(\lambda), A(x))$. Then, $F(\lambda) > t$ and A(x) > t. So, $\lambda_t \in F$ and $x_t \in A$. But $A(\lambda x) < t$ and $A(\lambda x) + t < t + t < 2m(F(\lambda), A(x)) < 1$. This shows that $(\lambda x)_t \in \overline{\lor q}A$, a contradiction.

Case 2. Let $m(F(\lambda), A(x)) \ge 0.5$. If possible, let $A(\lambda x) < m(F(\lambda), A(x), 0.5) = 0.5$. Then we have $\lambda_{0.5} \in F$ and $x_{0.5} \in A$, but $(\lambda x)_{0.5} \in \nabla q A$, a contradiction. Therefore, it follows that $A(\lambda x) \ge m(F(\lambda), A(x), 0.5)$. Thus, (ii) is proved. Similarly, (i) and (iii) are proved.

Conversely, suppose that the conditions (i), (ii), and (iii) are satisfied by a fuzzy set A of L. Let $x_t \in A$, $y_s \in A$, for $x, y \in L$ and $t, s \in (0,1]$. Then, $A(x) \geq t$, $A(y) \geq s$ and so $m(A(x), A(y)) \geq m(t, s)$. Since A satisfies condition (iii),

$$A([x,y]) \ge m(A(x), A(y), 0.5) \ge m(t, s, 0.5).$$

Now consider the possibilities $m(t,s) \leq 0.5$ or m(t,s) > 0.5. If $m(t,s) \leq 0.5$, then, m(t,s,0.5) = m(t,s) and $A([x,y]) \geq m(t,s)$, and so $([x,y])_{m(t,s)} \in A$. If m(t,s) > 0.5, then, m(t,s,0.5) = 0.5 and $A([x,y]) \geq 0.5$. So $A([x,y]) + m(t,s) \geq 0.5 + m(t,s) > 0.5 + 0.5 = 1$ and hence $([x,y])_{m(t,s)}qA$. Therefore, it follows that if $x_t \in A$, $y_s \in A$, then $([x,y])_{m(t,s)} \in \forall qA$. Similarly, if $x_t \in A$, $y_s \in A$, then $(x-y)_{m(t,s)} \in \forall qA$ and if $\lambda_r \in F$, $x_t \in A$, then $(\lambda x)_{m(r,t)} \in \forall qA$. Hence, A is an $(\in, \in \forall q)$ -fuzzy Lie algebra of L over an $(\in, \in \forall q)$ -fuzzy field F of X. \square

Proposition 4.8. Let L be a Lie algebra over a field X. Then every (\in, \in) -fuzzy Lie algebra of L over an (\in, \in) -fuzzy field of X is an (\in, \in) -fuzzy Lie algebra of L over an (\in, \in) -fuzzy field of X.

Proof. Suppose A is an (\in, \in) -fuzzy Lie algebra of L over an (\in, \in) -fuzzy field F of X. Let $\lambda, \gamma \in X, r, s \in (0, 1]$. Since F is an (\in, \in) -fuzzy field of $X, \lambda_r \in F, \gamma_s \in F \Rightarrow (\lambda - \gamma)_{m(r,s)} \in F$, then $F(\lambda - \gamma) \geq m(r, s)$ shows that $(\lambda - \gamma)_{m(r,s)} \in \vee qF$. Similarly, $(\lambda \gamma^{-1})_{m(r,s)} \in \vee qF$ for all $\lambda, \gamma \neq 0$ in X. So F is an (\in, \in) -fuzzy field of X. Since A is an (\in, \in) -fuzzy Lie algebra, for $x, y \in L$, $t, s \in (0, 1], x_t \in A, y_s \in A \Rightarrow ([x, y])_{m(t,s)} \in A$. Thus, $A([x, y]) \geq m(t, s)$. Then by definition $([x, y])_{m(t,s)} \in \vee qA$. Similarly, $x_t \in A, y_s \in A \Rightarrow (x - y)_{m(t,s)} \in \vee qA$ and $x_t \in A, \lambda_s \in F \Rightarrow (\lambda x)_{m(t,s)} \in \vee qA$. Hence A is an (\in, \in) -fuzzy Lie algebra of L over an (\in, \in) -fuzzy field F of X.

Remark 4.9. The converse of this proposition may not be true as seen in the following example.

Example 4.10. Let $L = \mathbb{R}^3$ and $[x, y] = x \times y$, where 'x' is cross product for all $x, y \in L$. Then L is a Lie algebra over the field \mathbb{R} . Define $A : \mathbb{R}^3 \to [0, 1]$ for all $x = (a, b, c) \in \mathbb{R}^3$ by

$$A(a,b,c) = \begin{cases} 0.6 & \text{if } a = b = c = 0, \\ 0.8 & \text{if } a \neq 0, \ b = 0, \ c = 0, \\ 0.5 & \text{otherwise,} \end{cases}$$

and define $F: \mathbb{R} \to [0,1]$ for all $\lambda \in \mathbb{R}$ by

$$F(\lambda) = \begin{cases} 0.6 & \text{if } \lambda \in \mathbb{Q}, \\ 0.8 & \text{if } \lambda \in \mathbb{Q}(\sqrt{2}) - \mathbb{Q}, \\ 0.5 & \text{if } \lambda \in \mathbb{R} - \mathbb{Q}(\sqrt{2}). \end{cases}$$

Then by Theorem 4.7, it follows that A is an $(\in, \in \lor q)$ -fuzzy Lie algebra of \mathbb{R}^3 over an $(\in, \in \lor q)$ -fuzzy field F of \mathbb{R} .

But this is not an (\in, \in) -fuzzy Lie algebra of \mathbb{R}^3 over an (\in, \in) -fuzzy field of \mathbb{R} . Let x = (1,0,0). Then A(1,0,0) = 0.8 > 0.65 > 0.62. So $x_{0.65} \in A$ and $x_{0.62} \in A$. But $(x-x)_{m(0.65,0.62)} = (0)_{0.62} \overline{\in} A$. It is clear that A(0) + 0.62 = 0.6 + 0.62 > 1 and so $(0)_{0.62} \in \vee qA$. Therefore A is not an (\in, \in) -fuzzy Lie algebra of \mathbb{R}^3 over an (\in, \in) -fuzzy field F of \mathbb{R} .

Theorem 4.11. Let A be an $(\in, \in \lor q)$ -fuzzy Lie algebra of L over an $(\in, \in \lor q)$ -fuzzy field F of X such that $M(A(x), F(\lambda)) < 0.5$ for all $x \in L$ and for all $\lambda \in X$. Then A is an (\in, \in) -fuzzy Lie algebra of L over an (\in, \in) -fuzzy field F of X.

Proof. Suppose that A is an $(\in, \in \lor q)$ -fuzzy Lie algebra of L over an $(\in, \in \lor q)$ -fuzzy field F of X. Let $\lambda, \gamma \in X$ and $t, s \in (0, 1]$ be such that $\lambda_t \in F$, $\gamma_s \in F$. Then, $F(\lambda) \ge t$, $F(\gamma) \ge s$ and so $m(F(\lambda), F(\gamma)) \ge m(t, s)$. It follows from Theorem 4.6 that $F(\lambda - \gamma) \ge m(F(\lambda), F(\gamma), 0.5)$. Given that $M(A(x), F(\lambda)) < 0.5$ for all $x \in L$, for all $x \in X$,

then, we have $m(F(\lambda), F(\gamma)) < 0.5$.

So $F(\lambda - \gamma) \ge m(F(\lambda), F(\gamma)) \ge m(t, s)$.

Therefore, $(\lambda - \gamma)_{m(t,s)} \in F$.

Similarly, $(\lambda \gamma^{-1})_{m(t,s)} \in F$ for all $\lambda, \gamma \neq 0$ in X.

Therefore, F is an (\in, \in) -fuzzy field of X.

Let $x, y \in L$ and $t_1, t_2 \in (0, 1]$ be such that $x_{t_1} \in A$, $y_{t_2} \in A$. Then, $A(x) \ge t_1, A(y) \ge t_2$ and so $m(A(x), A(y)) \ge m(t_1, t_2)$. From Theorem 4.7, $A(x - y) \ge m(A(x), A(y), 0.5)$ and from the given condition we get m(A(x), A(y)) < 0.5. Therefore, $A(x - y) \ge m(t_1, t_2)$ and so, $(x - y)_{m(t_1, t_2)} \in A$. Let $x \in L$, $\lambda \in X$, $s, t \in (0, 1]$ be such that $\lambda_s \in F$, $x_t \in A$. Then $F(\lambda) \ge s$, $A(x) \ge t$ and so $m(F(\lambda), A(x)) \ge m(s, t)$. By Theorem 4.7,

$$A(\lambda x) \ge m(A(x), F(\lambda), 0.5) = m(A(x), F(\lambda)) \ge m(s, t).$$

So $(\lambda x)_{m(s,t)} \in A$. Similarly, $x_{t_1} \in A$, $y_{t_2} \in A \Rightarrow ([x,y])_{m(t_1,t_2)} \in A$. Therefore, A is an (\in,\in) -fuzzy Lie algebra of L over an (\in,\in) -fuzzy field F of X.

Proposition 4.12. If A is an $(\in, \in \lor q)$ -fuzzy Lie algebra of L over an $(\in, \in \lor q)$ -fuzzy field F, then

- (1) $A(0) \ge m(A(x), 0.5),$
- (2) $A(-x) \ge m(A(x), 0.5),$
- (3) $A(x+y) \ge m(A(x), A(y), 0.5)$.

Proof. Let $x \in L, y \in L$. Then, from Theorem 4.7, the following hold.

- (1) $A(0) = A([x, x]) \ge m(A(x), 0.5)$. So, $A(0) \ge m(A(x), 0.5)$.
- (2) $A(-x) = A(0-x) \ge m(A(0), A(x), 0.5) = m(m(A(x), 0.5), A(0)) = m(A(x), 0.5)$. Therefore, $A(-x) \ge m(A(x), 0.5)$.
- (3) $A(x + y) = A(x (-y)) \ge m(A(x), A(-y), 0.5) \ge m(A(x), m(A(y), 0.5), 0.5) = m(A(x), A(y), 0.5)$. Therefore, $A(x + y) \ge m(A(x), A(y), 0.5)$.

Theorem 4.13. Let A be an $(\in, \in \lor q)$ -fuzzy Lie algebra of L over an $(\in, \in \lor q)$ -fuzzy field F of X. Then, for $t \in (0, 0.5]$, A_t is a Lie subalgebra over F_t when F_t contains at least two elements.

Proof. For $t \in (0, 0.5]$, suppose F_t contains at least two elements.

Let $\lambda, \gamma \in F_t$. Then $\lambda_t \in F$, $\gamma_t \in F$ and so $F(\lambda) \geq t$, $F(\gamma) \geq t$. This shows that $m(F(\lambda), F(\gamma)) \geq t$ and so $m(F(\lambda), F(\gamma), 0.5) \geq m(t, 0.5)$. Therefore,

$$F(\lambda - \gamma) \ge m(F(\lambda), F(\gamma), 0.5) \ge m(t, 0.5) = t$$

and hence $(\lambda - \gamma)_t \in F$. Thus, $\lambda - \gamma \in F_t$. Similarly, $\lambda \gamma^{-1} \in F_t$ for all $\lambda, \gamma \neq 0$ in F_t . Therefore, F_t is a subfield of X.

Suppose $x, y \in A_t$. Then $A(x) \geq t$, $A(y) \geq t$ and $m(A(x), A(y), 0.5) \geq m(t, 0.5) = t$. So $A(x + y) \geq m(A(x), A(y), 0.5) \geq t$ and hence $(x + y) \in A_t$. Let $\lambda \in F_t$, $x \in A_t$. Then $F(\lambda) \geq t$, $A(x) \geq t$ and $m(F(\lambda), A(x)) \geq t$. Thus, $m(F(\lambda), A(x), 0.5) \geq t$ and so $A(\lambda x) \geq m(F(\lambda), A(x), 0.5) \geq t$. Hence, $\lambda x \in A_t$.

Similarly, for $x, y \in A_t$, $[x, y] \in A_t$. Therefore, A_t is a Lie subalgebra over the field F_t . \square

Let $f: L \to L'$ be a function. If A and B are fuzzy subsets of L and L', respectively, then f(A) and $f^{-1}(B)$ are defined using Zadeh's extension principle [6]. If α is one of $\{\in, q, \in \lor q\}$, it follows that $x_t \alpha f^{-1}(B)$ if and only if $(f(x))_t \alpha B$ for all $x \in L$ and for all $t \in (0,1]$.

Theorem 4.14. Let L and L' be Lie algebras over a field X and let $f: L \to L'$ be a homomorphism. If B is an $(\in, \in \lor q)$ -fuzzy Lie algebra of L' over an $(\in, \in \lor q)$ -fuzzy field F of X, then $f^{-1}(B)$ is an $(\in, \in \lor q)$ -fuzzy Lie algebra of L over the $(\in, \in \lor q)$ -fuzzy field F of X.

Proof. Let $x, y \in L$ and $t, s \in (0,1]$ be such that $x_t \in f^{-1}(B)$ and $y_s \in f^{-1}(B)$. Then $(f(x))_t \in B$, $(f(y))_s \in B$. Since B is an $(\in, \in \lor q)$ -fuzzy Lie algebra of L' over an $(\in, \in \lor q)$ -fuzzy field F of X,

$$(f(x-y))_{m(t,s)} = (f(x) - f(y))_{m(t,s)} \in \forall qB.$$

So we have $(x-y)_{m(t,s)} \in \forall qf^{-1}(B)$. Similarly, $([x,y])_{m(t,s)} \in \forall qf^{-1}(B)$.

Let $\lambda \in X$, $x \in L$ and $r, t \in (0, 1]$ be such that $\lambda_r \in F$ and $x_t \in f^{-1}(B)$. Then $(f(x))_t \in B$ and so

$$\left(f(\lambda x)\right)_{m(r,t)} = \left(\lambda f(x)\right)_{m(r,t)} \in \vee qB$$

and hence $(\lambda x)_{m(r,t)} \in \forall q f^{-1}(B)$.

Therefore, $f^{-1}(B)$ is an $(\in, \in \lor q)$ -fuzzy Lie algebra of L over the $(\in, \in \lor q)$ -fuzzy field F of X.

Definition 4.15. A fuzzy set μ of a set Y is said to possess *sup property* if for every nonempty subset S of Y, there exists $x_0 \in S$ such that

$$\mu(x_0) = \operatorname{Sup} \{ \mu(x) \mid x \in S \}.$$

Theorem 4.16. Let L and L' be Lie algebras over a field X and let $f: L \to L'$ be an onto homomorphism. Let A be an $(\in, \in \lor q)$ -fuzzy Lie algebra of L over an $(\in, \in \lor q)$ -fuzzy field F of X, which satisfies the sup property. Then f(A) is an $(\in, \in \lor q)$ -fuzzy Lie algebra of L' over the $(\in, \in \lor q)$ -fuzzy field F of X.

Proof. Let $a, b \in L'$ and $t, s \in (0, 1]$ be such that $a_t \in f(A)$ and $b_s \in f(A)$. Then $f(A)(a) \ge t$ and $f(A)(b) \ge s$ and so

$$\sup \{A(z) \mid z \in f^{-1}(a)\} \ge t$$
 and $\sup \{A(w) \mid w \in f^{-1}(b)\} \ge s$.

Since f is onto, $f^{-1}(a)$ and $f^{-1}(b)$ are nonempty subsets of L and by the *sup property* of A, there exists $x \in f^{-1}(a)$ and $y \in f^{-1}(b)$ such that

$$A(x) = \sup \{A(z) \mid z \in f^{-1}(a)\}$$
 and $A(y) = \sup \{A(w) \mid w \in f^{-1}(b)\},$

then $x_t \in A$ and $y_s \in A$. Since A is an $(\in, \in \lor q)$ -fuzzy Lie algebra of L over an $(\in, \in \lor q)$ -fuzzy field F of X, we have $([x,y])_{m(t,s)} \in \lor qA$ and so $A([x,y]) \geq m(t,s)$ or A([x,y]) + m(t,s) > 1. Now f(x) = a, f(y) = b and so $[x,y] \in f^{-1}([a,b])$. Therefore,

$$f(A)([a,b]) = \sup \{A(z) \mid z \in f^{-1}([a,b])\} \ge A([x,y])$$

and so $f(A)([a,b]) \ge m(t,s)$ or f(A)([a,b]) + m(t,s) > 1. Thus, $([a,b])_{m(t,s)} \in \forall q f(A)$. Also $(x-y)_{m(t,s)} \in \forall q A$ shows that $(a-b)_{m(t,s)} \in \forall q f(A)$.

Let $\lambda \in X$, $b \in L'$ and $r, s \in (0,1]$ be such that $\lambda_r \in F$ and $b_s \in f(A)$. Then it follows that $\lambda_r \in F$ and $y_s \in A$. So $(\lambda y)_{m(r,s)} \in \forall qA$. Thus, $A(\lambda y) \geq m(r,s)$ or $A(\lambda y) + m(r,s) > 1$. But $f(A)(\lambda b) = \sup\{A(w) \mid w \in f^{-1}(\lambda b)\} \geq A(\lambda y)$. This shows that $(\lambda b)_{m(r,s)} \in \forall qf(A)$.

Therefore, f(A) is an $(\in, \in \lor q)$ -fuzzy Lie algebra of L' over the $(\in, \in \lor q)$ -fuzzy field F of X.

References

- [1] M. Akram. Generalized fuzzy Lie subalgebra. J. Gen. Lie Theory Appl., 2 (2008), 261–268.
- [2] M. Akram and W. A. Dudek. Generalized fuzzy subquasigroups. *Quasigroups Related Systems*, **16** (2008), 133–146.
- [3] P. L. Antony and P. L. Lilly. Some properties of fuzzy Lie algebra over fuzzy field. Accepted for Publication in Proceedings of the International Seminar on Topology and Applications, 19-21 March 2009, CRMS, St. Joseph's College, Irinjalakuda, India.
- [4] S. K. Bhakat and P. Das. Fuzzy subrings and ideals redefined. Fuzzy Sets and Systems, 81 (1996), 383–393.
- [5] L. Guangwen and G. Enrui. Fuzzy algebras and fuzzy quotient algebras over fuzzy fields. *Electronic Busefal*, **85** (2001), 1–4.
- [6] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall PTR, New Jersey, 2006.
- [7] J. E. Humphreys. Introduction to Lie Algebra and Representation Theory. Springer-Verlag, New York, 1972.
- [8] D. S. Malik and J. N. Mordeson. Fuzzy vector spaces. Inform. Sci., 55 (1991), 271–281.
- [9] S. Nanda. Fuzzy algebras over fuzzy fields. Fuzzy Sets and Systems, 37 (1990), 99–103.
- [10] B. M. Pu and Y. M. Liu. Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence. J. Math. Anal. Appl., **76** (1980), 571–599.
- [11] S. E. Yehia. Fuzzy ideals and fuzzy subalgebras of Lie algebras. Fuzzy Sets and Systems, 80 (1996), 237–244.
- [12] L. A. Zadeh. Fuzzy sets. Information and Control, 8 (1965), 338–353.

Received July 14, 2009 Revised September 15, 2009