(α, β)-fuzzy Lie algebras over an (α, β)-fuzzy field

P. L. ANTONY ${ }^{a}$ and P. L. LILLY ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, St. Thomas College, Thrissur, Kerala, India
${ }^{b}$ Department of Mathematics, St. Joseph's College, Irinjalakuda, Kerala, India
E-mails: plantony937@gmail.com, sr.christy@gmail.com

Abstract

The concept of (α, β)-fuzzy Lie algebras over an (α, β)-fuzzy field is introduced. We provide characterizations of an $(\in, \in \vee q)$-fuzzy Lie algebra over an $(\epsilon, \in \vee q)$-fuzzy field.

2000 MSC: 17B99, 08A72

1 Introduction

Zadeh [12] formulated the notion of fuzzy sets and after that many scholars developed fuzzy system of different algebraic structures. The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [10], has played a vital role in generating some different types of fuzzy subgroups. Using the belong-to relation (ϵ) and quasi-coincidence with relation (q) between fuzzy points and fuzzy sets, the concept of (α, β)-fuzzy subgroup was introduced by Bhakat and Das [4]. Akram [1] introduced (α, β)-fuzzy Lie subalgebras and investigated some of its properties. Nanda [9] introduced fuzzy algebra over fuzzy field. It is natural to investigate similar types of generalization of the existing fuzzy subsystem. In [3], we introduced fuzzy Lie algebra over a fuzzy field and some properties were discussed.

In this paper, we introduce the concept of (α, β)-fuzzy Lie algebra over an (α, β)-fuzzy field and investigate some of its properties.

2 Preliminaries

In this section, we present some definitions needed for our study. We denote a complete distributive lattice with the smallest element 0 and the largest element 1 by I. By a fuzzy subset of a nonempty set X, we mean a function from X to I.

Definition 2.1 (see [5]). Let X be a field and let F be a fuzzy subset of X. Then F is called a fuzzy field of X if
(i) for all λ, γ in $X, F(\lambda-\gamma) \geq F(\lambda) \wedge F(\gamma)$,
(ii) for all $\lambda, \gamma \neq 0$ in $X, F\left(\lambda \gamma^{-1}\right) \geq F(\lambda) \wedge F(\gamma)$.

Remark 2.2. It is seen that if F is a fuzzy field of X, then

$$
F(0) \geq F(1) \geq F(\lambda)=F(-\lambda)=F\left(\lambda^{-1}\right) \quad \text { for all } \lambda \neq 0 \text { in } X .
$$

Definition 2.3. Let A be a fuzzy subset of a Lie algebra L. Then A is called a fuzzy Lie algebra of L over a fuzzy field F, if for all $x, y \in L, \lambda \in X$,
(i) $A(x-y) \geq A(x) \wedge A(y)$,
(ii) $A(\lambda x) \geq F(\lambda) \wedge A(x)$,
(iii) $A([x, y]) \geq A(x) \wedge A(y)$.

3 The relations belong to and quasi-coincidence with

Let L be a Lie algebra over a field X, let $A: L \rightarrow[0,1]$ be a fuzzy set on L, and let $F: X \rightarrow[0,1]$ be a fuzzy set on X. The support of fuzzy set A is the crisp set that contains all elements of L that have nonzero membership grades in A.

Definition 3.1 (see [10]). A fuzzy set $A: L \rightarrow[0,1]$ of the form

$$
A(y)= \begin{cases}t \in(0,1], & \text { if } y=x \\ 0, & \text { if } y \neq x\end{cases}
$$

is said to be a fuzzy point with support x and value t and is denoted by x_{t}.
For a fuzzy point x_{t} and a fuzzy set A in a set L, Pu and Liu [10] gave meaning to the symbol $x_{t} \alpha A$ where $\alpha \in\{\in, q, \in \vee q\}$.

A fuzzy point x_{t} is said to belong to a fuzzy set A, written as $x_{t} \in A$, if $A(x) \geq t$. A fuzzy point x_{t} is said to be quasi-coincident with a fuzzy set A, denoted by $x_{t} q A$, if $A(x)+t>1$.

For a fuzzy set $A: L \rightarrow[0,1]$ and $t \in(0,1]$, we denote $A_{t}=\left\{x \in L: x_{t} \in A\right\}$.
The following notations are used in this paper.

1. $\in \vee q$ means that either belong to or quasi-coincident with,
2. $\bar{\alpha}$ means that α does not hold.

Let $\min \{t, s\}$ be denoted by $m(t, s)$ and let $\max \{t, s\}$ be denoted by $M(t, s)$. Take $I=[0,1]$ and $\wedge=\min , \vee=\max$ with respect to the usual order in Definitions 2.1 and 2.3.

Lemma 3.2. A fuzzy subset F of a field X is a fuzzy field if and only if it satisfies the following conditions:
(i) for all λ, γ in $X, \lambda_{t}, \gamma_{s} \in F \Rightarrow(\lambda-\gamma)_{m(t, s)} \in F$,
(ii) for all $\lambda, \gamma \neq 0$ in $X, \lambda_{t}, \gamma_{s} \in F \Rightarrow\left(\lambda \gamma^{-1}\right)_{m(t, s)} \in F$,
for all $t, s \in(0,1]$.
Lemma 3.3. Let L be a Lie algebra over a field X. Then a fuzzy subset A of Lie algebra L is a fuzzy Lie algebra over a fuzzy field F of X if and only if it satisfies the following conditions:
(i) $x_{t}, y_{s} \in A \Rightarrow(x-y)_{m(t, s)} \in A$,
(ii) $x_{t} \in A, \lambda_{r} \in F \Rightarrow(\lambda x)_{m(r, t)} \in A$,
(iii) $x_{t}, y_{s} \in A \Rightarrow([x, y])_{m(t, s)} \in A$,
for all $x, y \in L$, for all $\lambda \in X$, for all $t, s, r \in(0,1]$.

4 (α, β)-fuzzy Lie algebras over an (α, β)-fuzzy field

Let α and β denote any one of $\in, q, \in \vee q$ unless otherwise specified.
Definition 4.1. Let X be a field and let $F: X \rightarrow[0,1]$ be a fuzzy subset of X. Then F is called an (α, β)-fuzzy field of X, if it satisfies the following conditions:
(i) for all λ, γ in $X, \lambda_{t} \alpha F, \gamma_{s} \alpha F \Rightarrow(\lambda-\gamma)_{m(t, s)} \beta F$,
(ii) for all $\lambda, \gamma \neq 0$ in $X, \lambda_{t} \alpha F, \gamma_{s} \alpha F \Rightarrow\left(\lambda \gamma^{-1}\right)_{m(t, s)} \beta F$,
for all $t, s \in(0,1]$.
Definition 4.2. Let L be a Lie algebra over a field X, and let $F: X \rightarrow[0,1]$ be an (α, β) fuzzy field of X. Then a fuzzy subset $A: L \rightarrow[0,1]$ is called an (α, β)-fuzzy Lie algebra of L over an (α, β)-fuzzy field F of X, if it satisfies the following conditions:
(i) $x_{t} \alpha A, y_{s} \alpha A \Rightarrow(x-y)_{m(t, s)} \beta A$,
(ii) $x_{t} \alpha A, \lambda_{r} \alpha F \Rightarrow(\lambda x)_{m(r, t)} \beta A$,
(iii) $x_{t} \alpha A, y_{s} \alpha A \Rightarrow([x, y])_{m(t, s)} \beta A$,
for all $x, y \in L$, for all $\lambda \in X$, for all $t, s, r \in(0,1]$.
Example 4.3. In the real vector space \mathbb{R}^{3}, define $[x, y]=x \times y$, where ' \times ' is cross product of vectors for all $x, y \in \mathbb{R}^{3}$. Then \mathbb{R}^{3} is a Lie algebra over the field \mathbb{R}.

Define $A: \mathbb{R}^{3} \rightarrow[0,1]$ for all $x=(a, b, c) \in \mathbb{R}^{3}$ by

$$
A(a, b, c)= \begin{cases}1 & \text { if } a=b=c=0 \\ 0.5 & \text { if } a \neq 0, b=0, c=0 \\ 0 & \text { otherwise }\end{cases}
$$

and define $F: \mathbb{R} \rightarrow[0,1]$ for all $\lambda \in \mathbb{R}$, by

$$
F(\lambda)= \begin{cases}1 & \text { if } \lambda \in \mathbb{Q}, \\ 0.5 & \text { if } \lambda \in \mathbb{Q}(\sqrt{2})-\mathbb{Q}, \\ 0 & \text { if } \lambda \in \mathbb{R}-\mathbb{Q}(\sqrt{2}) .\end{cases}
$$

(i) Then by actual computation, it follows that F is an (\in, \in)-fuzzy field of \mathbb{R} and A is an (ϵ, \in)-fuzzy Lie algebra of \mathbb{R}^{3} over the ($\left.\epsilon, \epsilon\right)$-fuzzy field F of \mathbb{R}. Also it can be verified that A is an $(\epsilon, \in \vee q)$-fuzzy Lie algebra of \mathbb{R}^{3} over an $(\epsilon, \in \vee q)$-fuzzy field F of \mathbb{R}.
(ii) Let $x=(1,0,0), y=(2,0,0), t=0.4, s=0.3$. Then $A(x-y)=0.5$ and $m(t, s)=0.3$. $A(x-y)+m(t, s)<1$. So $(x-y)_{m(t, s)} \bar{q} A$. Hence A is not an (ϵ, q)-fuzzy Lie algebra.
(iii) Let $x=(0,0,0), y=(2,0,0)$ be elements in \mathbb{R}^{3} and $t=0.4, s=0.6$. Then $x_{t} q A$ and $y_{s} q A$. But $A(x-y)+m(t, s)=0.5+0.4<1$. This shows that $(x-y)_{m(t, s)} \bar{q} A$. Hence A is not a (q, q)-fuzzy Lie algebra.

Theorem 4.4. Let X be a field. Then a fuzzy subset $F: X \rightarrow[0,1]$ is a fuzzy field if and only if F is an (ϵ, \in)-fuzzy field of X.

Proof. The result follows immediately from Lemma 3.2.
Theorem 4.5. Let L be a Lie algebra over a field X. Then a fuzzy subset A of L is a fuzzy Lie algebra over a fuzzy field F of X if and only if A is an (ϵ, \in)-fuzzy Lie algebra of L over an (\in, \in)-fuzzy field F of X.

Proof. The result follows immediately from Lemmas 3.2 and 3.3.
Theorem 4.6. Let X be a field and let $F: X \rightarrow[0,1]$ be a fuzzy subset of X. Then F is an $(\in, \in \vee q)$-fuzzy field of X if and only if
(i) for all λ, γ in $X, F(\lambda-\gamma) \geq m(F(\lambda), F(\gamma), 0.5)$,
(ii) for all $\lambda, \gamma \neq 0$ in $X, F\left(\lambda \gamma^{-1}\right) \geq m(F(\lambda), F(\gamma), 0.5)$.

Proof. Suppose that F is an $(\epsilon, \in \vee q)$-fuzzy field of X. It is clear that

$$
m(F(\lambda), F(\gamma), 0.5)=m(m(F(\lambda), F(\gamma)), 0.5)
$$

We consider two possibilities.
Case 1. Let $m(F(\lambda), F(\gamma))<0.5$. Then, $m(F(\lambda), F(\gamma), 0.5)=m(F(\lambda), F(\gamma))$. If possible, let $F(\lambda-\gamma)<m(F(\lambda), F(\gamma), 0.5)=m(F(\lambda), F(\gamma))$. Let $r, s \in(0,1]$ be such that $F(\lambda-\gamma)<r<s<m(F(\lambda), F(\gamma))$. Then $F(\lambda)>r, F(\gamma)>s$ and so $\lambda_{r} \in F$ and $\gamma_{s} \in F$. Also $F(\lambda-\gamma)<m(r, s)$ shows that $(\lambda-\gamma)_{m(r, s)} \bar{\in} F$ and $F(\lambda-\gamma)+m(r, s)<m(r, s)+m(r, s)<1$ shows that $(\lambda-\gamma)_{m(r, s)} \bar{q} F$. Therefore, $(\lambda-\gamma)_{m(r, s)} \overline{\in \vee q} F$, a contradiction.
Case 2. Let $m(F(\lambda), F(\gamma)) \geq 0.5$. Then, $m(F(\lambda), F(\gamma), 0.5)=0.5$. If possible, let $F(\lambda-\gamma)<0.5$. Then $\lambda_{0.5} \in F, \gamma_{0.5} \in F$, but $(\lambda-\gamma)_{0.5} \overline{\in \vee} F$, a contradiction. Therefore, it follows that $F(\lambda-\gamma) \geq m(F(\lambda), F(\gamma), 0.5)$. Similarly, (ii) is proved.

Conversely, suppose that conditions (i) and (ii) are satisfied by a fuzzy set F of X. Let $\lambda_{r} \in F, \gamma_{s} \in F$, for $\lambda, \gamma \in X$ and $r, s \in(0,1]$. Then $F(\lambda) \geq r, F(\gamma) \geq s$ and so $m(F(\lambda), F(\gamma)) \geq m(r, s)$. Since F satisfies condition (i),

$$
F(\lambda-\gamma) \geq m(F(\lambda), F(\gamma), 0.5) \geq m(r, s, 0.5)
$$

Now consider the possibilities $m(r, s) \leq 0.5$ or $m(r, s)>0.5$. If $m(r, s) \leq 0.5$, then $m(r, s, 0.5)=m(r, s)$ and $F(\lambda-\gamma) \geq m(r, s)$ and so $(\lambda-\gamma)_{m(r, s)} \in F$. If $m(r, s)>0.5$, then $m(r, s, 0.5)=0.5$ and $F(\lambda-\gamma) \geq 0.5$. So, $F(\lambda-\gamma)+m(r, s) \geq 0.5+m(r, s)>0.5+0.5=1$ and hence $(\lambda-\gamma)_{m(r, s)} q F$. Therefore, it follows that if $\lambda_{r} \in F, \gamma_{s} \in F$, then $(\lambda-\gamma)_{m(r, s)} \in \vee q F$. Similarly, if $\lambda_{r} \in F, \gamma_{s} \in F$ for all $\lambda, \gamma \neq 0$ in X, then $\left(\lambda \gamma^{-1}\right)_{m(r, s)} \in \vee q F$. Hence F is an $(\in, \in \vee q)$-fuzzy field of X.

Theorem 4.7. Let L be a Lie algebra over a field X. Then a fuzzy subset A of L is an $(\in, \in \vee q)$-fuzzy Lie algebra of L over an $(\in, \in \vee q)$-fuzzy field F of X if and only if
(i) for all $x, y \in L, A(x-y) \geq m(A(x), A(y), 0.5)$,
(ii) for all $x \in L, \lambda \in X, A(\lambda x) \geq m(F(\lambda), A(x), 0.5)$,
(iii) for all $x, y \in L, A([x, y]) \geq m(A(x), A(y), 0.5)$.

Proof. Suppose that A is an $(\in, \in \vee q)$-fuzzy Lie algebra over an $(\in, \in \vee q)$-fuzzy field F of X. It is clear that $m(F(\lambda), A(x), 0.5)=m(m(F(\lambda), A(x)), 0.5)$. We consider two possibilities. Case 1. Let $m(F(\lambda), A(x))<0.5$. Then, $m(F(\lambda), A(x), 0.5)=m(F(\lambda), A(x))$. If possible, let $A(\lambda x)<m(F(\lambda), A(x), 0.5)=m(F(\lambda), A(x))$. Let $t \in(0,1]$ be such that $A(\lambda x)<t<m(F(\lambda), A(x))$. Then, $F(\lambda)>t$ and $A(x)>t$. So, $\lambda_{t} \in F$ and $x_{t} \in A$. But $A(\lambda x)<t$ and $A(\lambda x)+t<t+t<2 m(F(\lambda), A(x))<1$. This shows that $(\lambda x)_{t} \overline{\in \vee q} A$, a contradiction.
Case 2. Let $m(F(\lambda), A(x)) \geq 0.5$. If possible, let $A(\lambda x)<m(F(\lambda), A(x), 0.5)=0.5$. Then we have $\lambda_{0.5} \in F$ and $x_{0.5} \in A$, but $(\lambda x)_{0.5} \overline{\in \vee q} A$, a contradiction. Therefore, it follows that $A(\lambda x) \geq m(F(\lambda), A(x), 0.5)$. Thus, (ii) is proved. Similarly, (i) and (iii) are proved.

Conversely, suppose that the conditions (i), (ii), and (iii) are satisfied by a fuzzy set A of L. Let $x_{t} \in A, y_{s} \in A$, for $x, y \in L$ and $t, s \in(0,1]$. Then, $A(x) \geq t, A(y) \geq s$ and so $m(A(x), A(y)) \geq m(t, s)$. Since A satisfies condition (iii),

$$
A([x, y]) \geq m(A(x), A(y), 0.5) \geq m(t, s, 0.5)
$$

Now consider the possibilities $m(t, s) \leq 0.5$ or $m(t, s)>0.5$. If $m(t, s) \leq 0.5$, then, $m(t, s, 0.5)=m(t, s)$ and $A([x, y]) \geq m(t, s)$, and so $([x, y])_{m(t, s)} \in A$. If $m(t, s)>0.5$, then, $m(t, s, 0.5)=0.5$ and $A([x, y]) \geq 0.5$. So $A([x, y])+m(t, s) \geq 0.5+m(t, s)>0.5+0.5=1$ and hence $([x, y])_{m(t, s)} q A$. Therefore, it follows that if $x_{t} \in A, y_{s} \in A$, then $([x, y])_{m(t, s)} \in \vee q A$. Similarly, if $x_{t} \in A, y_{s} \in A$, then $(x-y)_{m(t, s)} \in \vee q A$ and if $\lambda_{r} \in F, x_{t} \in A$, then $(\lambda x)_{m(r, t)} \in$ $\vee q A$. Hence, A is an $(\in, \in \vee q)$-fuzzy Lie algebra of L over an $(\in, \in \vee q)$-fuzzy field F of X.

Proposition 4.8. Let L be a Lie algebra over a field X. Then every (\in, \in)-fuzzy Lie algebra of L over an (\in, \in)-fuzzy field of X is an $(\in, \in \vee q)$-fuzzy Lie algebra of L over an $(\in, \in \vee q)$ fuzzy field of X.

Proof. Suppose A is an (ϵ, \in)-fuzzy Lie algebra of L over an (ϵ, \in)-fuzzy field F of X. Let $\lambda, \gamma \in X, r, s \in(0,1]$. Since F is an (\in, \in)-fuzzy field of $X, \lambda_{r} \in F, \gamma_{s} \in F \Rightarrow(\lambda-\gamma)_{m(r, s)} \in F$, then $F(\lambda-\gamma) \geq m(r, s)$ shows that $(\lambda-\gamma)_{m(r, s)} \in \vee q F$. Similarly, $\left(\lambda \gamma^{-1}\right)_{m(r, s)} \in \vee q F$ for all $\lambda, \gamma \neq 0$ in X. So F is an $(\epsilon, \in \vee q)$-fuzzy field of X. Since A is an (ϵ, \in)-fuzzy Lie algebra, for $x, y \in L, t, s \in(0,1], x_{t} \in A, y_{s} \in A \Rightarrow([x, y])_{m(t, s)} \in A$. Thus, $A([x, y]) \geq m(t, s)$. Then by definition $([x, y])_{m(t, s)} \in \vee q A$. Similarly, $x_{t} \in A, y_{s} \in A \Rightarrow(x-y)_{m(t, s)} \in \vee q A$ and $x_{t} \in A, \lambda_{s} \in F \Rightarrow(\lambda x)_{m(t, s)} \in \vee q A$. Hence A is an $(\epsilon, \in \vee q)$-fuzzy Lie algebra of L over an $(\in, \in \vee q)$-fuzzy field F of X.

Remark 4.9. The converse of this proposition may not be true as seen in the following example.

Example 4.10. Let $L=\mathbb{R}^{3}$ and $[x, y]=x \times y$, where ' \times ' is cross product for all $x, y \in L$. Then L is a Lie algebra over the field \mathbb{R}. Define $A: \mathbb{R}^{3} \rightarrow[0,1]$ for all $x=(a, b, c) \in \mathbb{R}^{3}$ by

$$
A(a, b, c)= \begin{cases}0.6 & \text { if } a=b=c=0 \\ 0.8 & \text { if } a \neq 0, b=0, c=0 \\ 0.5 & \text { otherwise }\end{cases}
$$

and define $F: \mathbb{R} \rightarrow[0,1]$ for all $\lambda \in \mathbb{R}$ by

$$
F(\lambda)= \begin{cases}0.6 & \text { if } \lambda \in \mathbb{Q} \\ 0.8 & \text { if } \lambda \in \mathbb{Q}(\sqrt{2})-\mathbb{Q} \\ 0.5 & \text { if } \lambda \in \mathbb{R}-\mathbb{Q}(\sqrt{2})\end{cases}
$$

Then by Theorem 4.7, it follows that A is an $(\in, \in \vee q)$-fuzzy Lie algebra of \mathbb{R}^{3} over an $(\in, \in \vee q)$-fuzzy field F of \mathbb{R}.

But this is not an (\in, \in)-fuzzy Lie algebra of \mathbb{R}^{3} over an (\in, \in)-fuzzy field of \mathbb{R}. Let $x=(1,0,0)$. Then $A(1,0,0)=0.8>0.65>0.62$. So $x_{0.65} \in A$ and $x_{0.62} \in A$. But $(x-x)_{m(0.65,0.62)}=(0)_{0.62} \bar{\in}$. It is clear that $A(0)+0.62=0.6+0.62>1$ and so $(0)_{0.62} \in \vee q A$. Therefore A is not an (\in, \in)-fuzzy Lie algebra of \mathbb{R}^{3} over an (\in, \in)-fuzzy field F of \mathbb{R}.

Theorem 4.11. Let A be an $(\in, \in \vee q)$-fuzzy Lie algebra of L over an $(\in, \in \vee q)$-fuzzy field F of X such that $M(A(x), F(\lambda))<0.5$ for all $x \in L$ and for all $\lambda \in X$. Then A is an (\in, \in)-fuzzy Lie algebra of L over an (\in, \in)-fuzzy field F of X.

Proof. Suppose that A is an $(\epsilon, \in \vee q)$-fuzzy Lie algebra of L over an $(\epsilon, \in \vee q)$-fuzzy field F of X. Let $\lambda, \gamma \in X$ and $t, s \in(0,1]$ be such that $\lambda_{t} \in F, \gamma_{s} \in F$. Then, $F(\lambda) \geq t, F(\gamma) \geq s$ and so $m(F(\lambda), F(\gamma)) \geq m(t, s)$. It follows from Theorem 4.6 that $F(\lambda-\gamma) \geq m(F(\lambda), F(\gamma), 0.5)$. Given that $M(A(x), F(\lambda))<0.5$ for all $x \in L$, for all $\lambda \in X$,
then, we have $m(F(\lambda), F(\gamma))<0.5$.
So $F(\lambda-\gamma) \geq m(F(\lambda), F(\gamma)) \geq m(t, s)$.
Therefore, $(\lambda-\gamma)_{m(t, s)} \in F$.
Similarly, $\left(\lambda \gamma^{-1}\right)_{m(t, s)} \in F$ for all $\lambda, \gamma \neq 0$ in X.
Therefore, F is an (\in, \in)-fuzzy field of X.
Let $x, y \in L$ and $t_{1}, t_{2} \in(0,1]$ be such that $x_{t_{1}} \in A, y_{t_{2}} \in A$. Then, $A(x) \geq t_{1}, A(y) \geq t_{2}$ and so $m(A(x), A(y)) \geq m\left(t_{1}, t_{2}\right)$. From Theorem 4.7, $A(x-y) \geq m(A(x), A(y), 0.5)$ and from the given condition we get $m(A(x), A(y))<0.5$. Therefore, $A(x-y) \geq m\left(t_{1}, t_{2}\right)$ and so, $(x-y)_{m\left(t_{1}, t_{2}\right)} \in A$. Let $x \in L, \lambda \in X, s, t \in(0,1]$ be such that $\lambda_{s} \in F, x_{t} \in A$. Then $F(\lambda) \geq s, A(x) \geq t$ and so $m(F(\lambda), A(x)) \geq m(s, t)$. By Theorem 4.7,

$$
A(\lambda x) \geq m(A(x), F(\lambda), 0.5)=m(A(x), F(\lambda)) \geq m(s, t)
$$

So $(\lambda x)_{m(s, t)} \in A$. Similarly, $x_{t_{1}} \in A, y_{t_{2}} \in A \Rightarrow([x, y])_{m\left(t_{1}, t_{2}\right)} \in A$. Therefore, A is an (\in, \in)-fuzzy Lie algebra of L over an (\in, \in)-fuzzy field F of X.

Proposition 4.12. If A is an $(\in, \in \vee q)$-fuzzy Lie algebra of L over an $(\in, \in \vee q)$-fuzzy field F, then
(1) $A(0) \geq m(A(x), 0.5)$,
(2) $A(-x) \geq m(A(x), 0.5)$,
(3) $A(x+y) \geq m(A(x), A(y), 0.5)$.

Proof. Let $x \in L, y \in L$. Then, from Theorem 4.7, the following hold.
(1) $A(0)=A([x, x]) \geq m(A(x), 0.5)$. So, $A(0) \geq m(A(x), 0.5)$.
(2) $A(-x)=A(0-x) \geq m(A(0), A(x), 0.5)=m(m(A(x), 0.5), A(0))=m(A(x), 0.5)$. Therefore, $A(-x) \geq m(A(x), 0.5)$.
(3) $A(x+y)=A(x-(-y)) \geq m(A(x), A(-y), 0.5) \geq m(A(x), m(A(y), 0.5), 0.5)=$ $m(A(x), A(y), 0.5)$. Therefore, $A(x+y) \geq m(A(x), A(y), 0.5)$.

Theorem 4.13. Let A be an $(\in, \in \vee q)$-fuzzy Lie algebra of L over an $(\in, \in \vee q)$-fuzzy field F of X. Then, for $t \in(0,0.5], A_{t}$ is a Lie subalgebra over F_{t} when F_{t} contains at least two elements.

Proof. For $t \in(0,0.5]$, suppose F_{t} contains at least two elements.
Let $\lambda, \gamma \in F_{t}$. Then $\lambda_{t} \in F, \gamma_{t} \in F$ and so $F(\lambda) \geq t, F(\gamma) \geq t$. This shows that $m(F(\lambda), F(\gamma)) \geq t$ and so $m(F(\lambda), F(\gamma), 0.5) \geq m(t, 0.5)$. Therefore,

$$
F(\lambda-\gamma) \geq m(F(\lambda), F(\gamma), 0.5) \geq m(t, 0.5)=t
$$

and hence $(\lambda-\gamma)_{t} \in F$. Thus, $\lambda-\gamma \in F_{t}$. Similarly, $\lambda \gamma^{-1} \in F_{t}$ for all $\lambda, \gamma \neq 0$ in F_{t}. Therefore, F_{t} is a subfield of X.

Suppose $x, y \in A_{t}$. Then $A(x) \geq t, A(y) \geq t$ and $m(A(x), A(y), 0.5) \geq m(t, 0.5)=t$. So $A(x+y) \geq m(A(x), A(y), 0.5) \geq t$ and hence $(x+y) \in A_{t}$. Let $\lambda \in F_{t}, x \in A_{t}$. Then $F(\lambda) \geq t, A(x) \geq t$ and $m(F(\lambda), A(x)) \geq t$. Thus, $m(F(\lambda), A(x), 0.5) \geq t$ and so $A(\lambda x) \geq m(F(\lambda), A(x), 0.5) \geq t$. Hence, $\lambda x \in A_{t}$.

Similarly, for $x, y \in A_{t},[x, y] \in A_{t}$. Therefore, A_{t} is a Lie subalgebra over the field F_{t}.
Let $f: L \rightarrow L^{\prime}$ be a function. If A and B are fuzzy subsets of L and L^{\prime}, respectively, then $f(A)$ and $f^{-1}(B)$ are defined using Zadeh's extension principle [6]. If α is one of $\{\in, q, \in \vee q\}$, it follows that $x_{t} \alpha f^{-1}(B)$ if and only if $(f(x))_{t} \alpha B$ for all $x \in L$ and for all $t \in(0,1]$.

Theorem 4.14. Let L and L^{\prime} be Lie algebras over a field X and let $f: L \rightarrow L^{\prime}$ be a homomorphism. If B is an $(\in, \in \vee q)$-fuzzy Lie algebra of L^{\prime} over an $(\in, \in \vee q)$-fuzzy field F of X, then $f^{-1}(B)$ is an $(\in, \in \vee q)$-fuzzy Lie algebra of L over the $(\in, \in \vee q)$-fuzzy field F of X.

Proof. Let $x, y \in L$ and $t, s \in(0,1]$ be such that $x_{t} \in f^{-1}(B)$ and $y_{s} \in f^{-1}(B)$. Then $(f(x))_{t} \in B,(f(y))_{s} \in B$. Since B is an $(\epsilon, \in \vee q)$-fuzzy Lie algebra of L^{\prime} over an $(\in, \in \vee q)$ fuzzy field F of X,

$$
(f(x-y))_{m(t, s)}=(f(x)-f(y))_{m(t, s)} \in \vee q B
$$

So we have $(x-y)_{m(t, s)} \in \vee q f^{-1}(B)$. Similarly, $([x, y])_{m(t, s)} \in \vee q f^{-1}(B)$.
Let $\lambda \in X, x \in L$ and $r, t \in(0,1]$ be such that $\lambda_{r} \in F$ and $x_{t} \in f^{-1}(B)$. Then $(f(x))_{t} \in B$ and so

$$
(f(\lambda x))_{m(r, t)}=(\lambda f(x))_{m(r, t)} \in \vee q B
$$

and hence $(\lambda x)_{m(r, t)} \in \vee q f^{-1}(B)$.
Therefore, $f^{-1}(B)$ is an $(\in, \in \vee q)$-fuzzy Lie algebra of L over the $(\in, \in \vee q)$-fuzzy field F of X.

Definition 4.15. A fuzzy set μ of a set Y is said to possess sup property if for every nonempty subset S of Y, there exists $x_{0} \in S$ such that

$$
\mu\left(x_{0}\right)=\operatorname{Sup}\{\mu(x) \mid x \in S\}
$$

Theorem 4.16. Let L and L^{\prime} be Lie algebras over a field X and let $f: L \rightarrow L^{\prime}$ be an onto homomorphism. Let A be an $(\in, \in \vee q)$-fuzzy Lie algebra of L over an $(\in, \in \vee q)$-fuzzy field F of X, which satisfies the sup property. Then $f(A)$ is an $(\in, \in \vee q)$-fuzzy Lie algebra of L^{\prime} over the $(\in, \in \vee q)$-fuzzy field F of X.

Proof. Let $a, b \in L^{\prime}$ and $t, s \in(0,1]$ be such that $a_{t} \in f(A)$ and $b_{s} \in f(A)$. Then $f(A)(a) \geq t$ and $f(A)(b) \geq s$ and so

$$
\operatorname{Sup}\left\{A(z) \mid z \in f^{-1}(a)\right\} \geq t \quad \text { and } \quad \operatorname{Sup}\left\{A(w) \mid w \in f^{-1}(b)\right\} \geq s
$$

Since f is onto, $f^{-1}(a)$ and $f^{-1}(b)$ are nonempty subsets of L and by the sup property of A, there exists $x \in f^{-1}(a)$ and $y \in f^{-1}(b)$ such that

$$
A(x)=\operatorname{Sup}\left\{A(z) \mid z \in f^{-1}(a)\right\} \quad \text { and } \quad A(y)=\operatorname{Sup}\left\{A(w) \mid w \in f^{-1}(b)\right\}
$$

then $x_{t} \in A$ and $y_{s} \in A$. Since A is an $(\in, \in \vee q)$-fuzzy Lie algebra of L over an $(\in, \in \vee q)$-fuzzy field F of X, we have $([x, y])_{m(t, s)} \in \vee q A$ and so $A([x, y]) \geq m(t, s)$ or $A([x, y])+m(t, s)>1$. Now $f(x)=a, f(y)=b$ and so $[x, y] \in f^{-1}([a, b])$. Therefore,

$$
f(A)([a, b])=\operatorname{Sup}\left\{A(z) \mid z \in f^{-1}([a, b])\right\} \geq A([x, y])
$$

and so $f(A)([a, b]) \geq m(t, s)$ or $f(A)([a, b])+m(t, s)>1$. Thus, $([a, b])_{m(t, s)} \in \vee q f(A)$. Also $(x-y)_{m(t, s)} \in \vee q A$ shows that $(a-b)_{m(t, s)} \in \vee q f(A)$.

Let $\lambda \in X, b \in L^{\prime}$ and $r, s \in(0,1]$ be such that $\lambda_{r} \in F$ and $b_{s} \in f(A)$. Then it follows that $\lambda_{r} \in F$ and $y_{s} \in A$. So $(\lambda y)_{m(r, s)} \in \vee q A$. Thus, $A(\lambda y) \geq m(r, s)$ or $A(\lambda y)+m(r, s)>1$. But $f(A)(\lambda b)=\operatorname{Sup}\left\{A(w) \mid w \in f^{-1}(\lambda b)\right\} \geq A(\lambda y)$. This shows that $(\lambda b)_{m(r, s)} \in \vee q f(A)$.

Therefore, $f(A)$ is an $(\in, \in \vee q)$-fuzzy Lie algebra of L^{\prime} over the $(\in, \in \vee q)$-fuzzy field F of X.

References

[1] M. Akram. Generalized fuzzy Lie subalgebra. J. Gen. Lie Theory Appl., 2 (2008), 261-268.
[2] M. Akram and W. A. Dudek. Generalized fuzzy subquasigroups. Quasigroups Related Systems, 16 (2008), 133-146.
[3] P. L. Antony and P. L. Lilly. Some properties of fuzzy Lie algebra over fuzzy field. Accepted for Publication in Proceedings of the International Seminar on Topology and Applications, 19-21 March 2009, CRMS, St.Joseph's College, Irinjalakuda, India.
[4] S. K. Bhakat and P. Das. Fuzzy subrings and ideals redefined. Fuzzy Sets and Systems, 81 (1996), 383-393.
[5] L. Guangwen and G. Enrui. Fuzzy algebras and fuzzy quotient algebras over fuzzy fields. Electronic Busefal, 85 (2001), 1-4.
[6] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall PTR, New Jersey, 2006.
[7] J. E. Humphreys. Introduction to Lie Algebra and Representation Theory. Springer-Verlag, New York, 1972.
[8] D. S. Malik and J. N. Mordeson. Fuzzy vector spaces. Inform. Sci., 55 (1991), 271-281.
[9] S. Nanda. Fuzzy algebras over fuzzy fields. Fuzzy Sets and Systems, 37 (1990), 99-103.
[10] B. M. Pu and Y. M. Liu. Fuzzy topology. I. Neighborhood structure of a fuzzy point and MooreSmith convergence. J. Math. Anal. Appl., 76 (1980), 571-599.
[11] S. E. Yehia. Fuzzy ideals and fuzzy subalgebras of Lie algebras. Fuzzy Sets and Systems, 80 (1996), 237-244.
[12] L. A. Zadeh. Fuzzy sets. Information and Control, 8 (1965), 338-353.
Received July 14, 2009
Revised September 15, 2009

