(\(\alpha, \beta\))-fuzzy Lie algebras over an \((\alpha, \beta)\)-fuzzy field

P. L. ANTONY \(^a\) and P. L. LILLY \(^b\)

\(^a\)Department of Mathematics, St. Thomas College, Thrissur, Kerala, India
\(^b\)Department of Mathematics, St. Joseph’s College, Irinjalakuda, Kerala, India
E-mails: plantony937@gmail.com, sr.christy@gmail.com

Abstract

The concept of \((\alpha, \beta)\)-fuzzy Lie algebras over an \((\alpha, \beta)\)-fuzzy field is introduced. We provide characterizations of an \((\in, \in \lor q)\)-fuzzy Lie algebra over an \((\in, \in \lor q)\)-fuzzy field.

2000 MSC: 17B99, 08A72

1 Introduction

Zadeh [12] formulated the notion of fuzzy sets and after that many scholars developed fuzzy system of different algebraic structures. The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [10], has played a vital role in generating some different types of fuzzy subgroups. Using the belong-to relation \((\in)\) and quasi-coincidence with relation \((q)\) between fuzzy points and fuzzy sets, the concept of \((\alpha, \beta)\)-fuzzy subgroup was introduced by Bhakat and Das [4]. Akram [1] introduced \((\alpha, \beta)\)-fuzzy Lie subalgebras and investigated some of its properties. Nanda [9] introduced fuzzy algebra over fuzzy field. It is natural to investigate similar types of generalization of the existing fuzzy subsystem. In [3], we introduced fuzzy Lie algebra over a fuzzy field and some properties were discussed.

In this paper, we introduce the concept of \((\alpha, \beta)\)-fuzzy Lie algebra over an \((\alpha, \beta)\)-fuzzy field and investigate some of its properties.

2 Preliminaries

In this section, we present some definitions needed for our study. We denote a complete distributive lattice with the smallest element \(0\) and the largest element \(1\) by \(I\). By a fuzzy subset of a nonempty set \(X\), we mean a function from \(X\) to \(I\).

Definition 2.1 (see [5]). Let \(X\) be a field and let \(F\) be a fuzzy subset of \(X\). Then \(F\) is called a fuzzy field of \(X\) if

\[(i) \text{ for all } \lambda, \gamma \in X, F(\lambda - \gamma) \geq F(\lambda) \land F(\gamma),
(ii) \text{ for all } \lambda, \gamma \neq 0 \text{ in } X, F(\lambda\gamma^{-1}) \geq F(\lambda) \land F(\gamma).\]

Remark 2.2. It is seen that if \(F\) is a fuzzy field of \(X\), then

\[F(0) \geq F(1) \geq F(\lambda) = F(-\lambda) = F(\lambda^{-1}) \text{ for all } \lambda \neq 0 \text{ in } X.\]

Definition 2.3. Let \(A\) be a fuzzy subset of a Lie algebra \(L\). Then \(A\) is called a fuzzy Lie algebra of \(L\) over a fuzzy field \(F\), if for all \(x, y \in L, \lambda \in X\),
A \textcolor{red}{{(i)}} A(x - y) \geq A(x) \land A(y), \\
(ii) \ A(\lambda x) \geq F(\lambda) \land A(x), \\
(iii) \ A([x, y]) \geq A(x) \land A(y).

3 The relations \textit{belong to} and \textit{quasi-coincidence with}

Let \(L \) be a Lie algebra over a field \(X \), let \(A : L \rightarrow [0, 1] \) be a fuzzy set on \(L \), and let \(F : X \rightarrow [0, 1] \) be a fuzzy set on \(X \). The support of fuzzy set \(A \) is the crisp set that contains all elements of \(L \) that have nonzero membership grades in \(A \).

\textbf{Definition 3.1} (see [10]). A fuzzy set \(A : L \rightarrow [0, 1] \) of the form

\[A(y) = \begin{cases}
t \in (0, 1], & \text{if } y = x, \\
0, & \text{if } y \neq x
\end{cases} \]

is said to be a fuzzy point with support \(x \) and value \(t \) and is denoted by \(x_t \).

For a fuzzy point \(x_t \) and a fuzzy set \(A \) in a set \(L \), Pu and Liu [10] gave meaning to the symbol \(x_t \in A_{\alpha} \) where \(\alpha \in \{\in, \in q, \in \lor q\} \).

A fuzzy point \(x_t \) is said to \textit{belong to} a fuzzy set \(A \), written as \(x_t \in A \), if \(A(x) \geq t \). A fuzzy point \(x_t \) is said to be \textit{quasi-coincident with} a fuzzy set \(A \), denoted by \(x_t \in q A \), if \(A(x) + t > 1 \).

The following notations are used in this paper.

1. \(\in \lor q \) means that either \textit{belong to} or \textit{quasi-coincident with},
2. \(\in \) means that \(\alpha \) does not hold.

Let \(\min\{t, s\} \) be denoted by \(m(t, s) \) and let \(\max\{t, s\} \) be denoted by \(M(t, s) \). Take \(I = [0, 1] \) and \(\land = \min, \lor = \max \) with respect to the usual order in Definitions 2.1 and 2.3.

\textbf{Lemma 3.2.} A fuzzy subset \(F \) of a field \(X \) is a fuzzy field if and only if it satisfies the following conditions:

(i) for all \(\lambda, \gamma \) in \(X \), \(\lambda_t, \gamma_s \in F \Rightarrow (\lambda - \gamma)_{m(t, s)} \in F \), \\
(ii) for all \(\lambda, \gamma \neq 0 \) in \(X \), \(\lambda_t, \gamma_s \in F \Rightarrow (\lambda \gamma^{-1})_{m(t, s)} \in F \),

for all \(t, s \in (0, 1] \).

\textbf{Lemma 3.3.} Let \(L \) be a Lie algebra over a field \(X \). Then a fuzzy subset \(A \) of Lie algebra \(L \) is a fuzzy Lie algebra over a fuzzy field \(F \) of \(X \) if and only if it satisfies the following conditions:

(i) \(x_t, y_s \in A \Rightarrow (x - y)_{m(t, s)} \in A \), \\
(ii) \(x_t \in A, \ \lambda_r \in F \Rightarrow (\lambda x)_{m(t, r)} \in A \), \\
(iii) \(x_t, y_s \in A \Rightarrow ([x, y])_{m(t, s)} \in A \),

for all \(x, y \in L \), for all \(\lambda \in X \), for all \(t, s, r \in (0, 1] \).
4 \((\alpha, \beta)\)-fuzzy Lie algebras over an \((\alpha, \beta)\)-fuzzy field

Let \(\alpha\) and \(\beta\) denote any one of \(\varepsilon, q, \in \vee q\) unless otherwise specified.

Definition 4.1. Let \(X\) be a field and let \(F : X \rightarrow [0, 1]\) be a fuzzy subset of \(X\). Then \(F\) is called an \((\alpha, \beta)\)-fuzzy field of \(X\), if it satisfies the following conditions:

(i) for all \(\lambda, \gamma \in X\), \(\lambda \alpha F, \gamma \alpha F \Rightarrow (\lambda - \gamma)_{m(t,s)} \beta F\),

(ii) for all \(\lambda, \gamma \neq 0\) in \(X\), \(\lambda t \alpha F, \gamma s \alpha F \Rightarrow (\lambda \gamma - 1)_{m(t,s)} \beta F\),

for all \(t, s \in (0, 1]\).

Definition 4.2. Let \(L\) be a Lie algebra over a field \(X\), and let \(F : X \rightarrow [0, 1]\) be an \((\alpha, \beta)\)-fuzzy field of \(X\). Then a fuzzy subset \(A : L \rightarrow [0, 1]\) is called an \((\alpha, \beta)\)-fuzzy Lie algebra of \(L\) over an \((\alpha, \beta)\)-fuzzy field \(F\) of \(X\), if it satisfies the following conditions:

(i) \(x t \alpha A, y s \alpha A \Rightarrow (x - y)_{m(t,s)} \beta A\),

(ii) \(x t \alpha A, \lambda \alpha F \Rightarrow (\lambda x)_{m(t,s)} \beta A\),

(iii) \(x t \alpha A, y s \alpha A \Rightarrow ([x, y])_{m(t,s)} \beta A\),

for all \(x, y \in L\), for all \(\lambda \in X\), for all \(t, s, r \in (0, 1]\).

Example 4.3. In the real vector space \(\mathbb{R}^3\), define \([x, y] = x \times y\), where ‘\(\times\)’ is cross product of vectors for all \(x, y \in \mathbb{R}^3\). Then \(\mathbb{R}^3\) is a Lie algebra over the field \(\mathbb{R}\).

Define \(A : \mathbb{R}^3 \rightarrow [0, 1]\) for all \(x = (a, b, c) \in \mathbb{R}^3\) by

\[
A(a, b, c) = \begin{cases}
1 & \text{if } a = b = c = 0, \\
0.5 & \text{if } a \neq 0, b = 0, c = 0, \\
0 & \text{otherwise},
\end{cases}
\]

and define \(F : \mathbb{R} \rightarrow [0, 1]\) for all \(\lambda \in \mathbb{R}\), by

\[
F(\lambda) = \begin{cases}
1 & \text{if } \lambda \in \mathbb{Q}, \\
0.5 & \text{if } \lambda \in \mathbb{Q}(\sqrt{2}) - \mathbb{Q}, \\
0 & \text{if } \lambda \in \mathbb{R} - \mathbb{Q}(\sqrt{2}).
\end{cases}
\]

(i) Then by actual computation, it follows that \(F\) is an \((\varepsilon, \varepsilon)\)-fuzzy field of \(\mathbb{R}\) and \(A\) is an \((\varepsilon, \varepsilon)\)-fuzzy Lie algebra of \(\mathbb{R}^3\) over the \((\varepsilon, \varepsilon)\)-fuzzy field \(F\) of \(\mathbb{R}\). Also it can be verified that \(A\) is an \((\varepsilon, \varepsilon \vee q)\)-fuzzy Lie algebra of \(\mathbb{R}^3\) over an \((\varepsilon, \varepsilon \vee q)\)-fuzzy field \(F\) of \(\mathbb{R}\).

(ii) Let \(x = (1, 0, 0), y = (2, 0, 0), t = 0.4, s = 0.3\). Then \(A(x - y) = 0.5\) and \(m(t, s) = 0.3\). \(A(x - y) + m(t, s) < 1\). So \((x - y)_{m(t,s)} \gamma A\). Hence \(A\) is not an \((\varepsilon, q)\)-fuzzy Lie algebra.

(iii) Let \(x = (0, 0, 0), y = (2, 0, 0)\) be elements in \(\mathbb{R}^3\) and \(t = 0.4, s = 0.6\). Then \(x t q A\) and \(y s q A\). But \(A(x - y) + m(t, s) = 0.5 + 0.4 < 1\). This shows that \((x - y)_{m(t,s)} \gamma A\). Hence \(A\) is not a \((q, q)\)-fuzzy Lie algebra.

Theorem 4.4. Let \(X\) be a field. Then a fuzzy subset \(F : X \rightarrow [0, 1]\) is a fuzzy field if and only if \(F\) is an \((\varepsilon, \varepsilon)\)-fuzzy field of \(X\).

Proof. The result follows immediately from Lemma 3.2. \(\square\)

Theorem 4.5. Let \(L\) be a Lie algebra over a field \(X\). Then a fuzzy subset \(A\) of \(L\) is a fuzzy Lie algebra over a fuzzy field \(F\) of \(X\) if and only if \(A\) is an \((\varepsilon, \varepsilon)\)-fuzzy Lie algebra of \(L\) over an \((\varepsilon, \varepsilon)\)-fuzzy field \(F\) of \(X\).
Proof. The result follows immediately from Lemmas 3.2 and 3.3.\qed

Theorem 4.6. Let X be a field and let $F : X \rightarrow [0, 1]$ be a fuzzy subset of X. Then F is an $(\varepsilon, \in \vee q)$-fuzzy field of X if and only if

1. for all λ, γ in X, $F(\lambda - \gamma) \geq m(F(\lambda), F(\gamma), 0.5)$,
2. for all $\lambda, \gamma \neq 0$ in X, $F(\lambda \gamma^{-1}) \geq m(F(\lambda), F(\gamma), 0.5)$.

Proof. Suppose that F is an $(\varepsilon, \in \vee q)$-fuzzy field of X. It is clear that

$$m(F(\lambda), F(\gamma), 0.5) = m(m(F(\lambda), F(\gamma), 0.5)).$$

We consider two possibilities.

Case 1. Let $m(F(\lambda), F(\gamma)) < 0.5$. Then, $m(F(\lambda), F(\gamma), 0.5) = m(F(\lambda), F(\gamma))$. If possible, let $F(\lambda - \gamma) < m(F(\lambda), F(\gamma), 0.5) = m(F(\lambda), F(\gamma))$. Let $r, s \in (0, 1)$ be such that $F(\lambda - \gamma) < r < s < m(F(\lambda), F(\gamma))$. Then $F(\lambda) > r$, $F(\gamma) > s$ and so $\lambda r, \gamma s \in F$ and $F(\lambda - \gamma) < m(r, s)$ shows that $(\lambda - \gamma)m(r, s) \in F$ and $F(\lambda - \gamma) + m(r, s) < m(r, s) + m(r, s) < 1$ shows that $m(\lambda - \gamma)m(r, s) \notin qF$. Therefore, $(\lambda - \gamma)m(r, s) \notin qF$, a contradiction.

Case 2. Let $m(F(\lambda), F(\gamma)) \geq 0.5$. Then, $m(F(\lambda), F(\gamma), 0.5) = 0.5$. If possible, let $F(\lambda - \gamma) < 0.5$. Then $\lambda 0.5 \in F$, $\gamma 0.5 \in F$, but $(\lambda - \gamma)0.5 \notin qF$, a contradiction. Therefore, it follows that $F(\lambda - \gamma) \geq m(F(\lambda), F(\gamma), 0.5)$. Similarly, (ii) is proved.

Conversely, suppose that conditions (i) and (ii) are satisfied by a fuzzy set F of X. Let $\lambda \in F$, $\gamma \in F$, for $\lambda, \gamma \in X$ and $r, s \in (0, 1]$. Then $F(\lambda) \geq r$, $F(\gamma) \geq s$ and so $m(F(\lambda), F(\gamma)) \geq m(r, s)$. Since F satisfies condition (i),

$$F(\lambda - \gamma) \geq m(F(\lambda), F(\gamma), 0.5) \geq m(r, s, 0.5).$$

Now consider the possibilities $m(r, s) \leq 0.5$ or $m(r, s) > 0.5$. If $m(r, s) \leq 0.5$, then $m(r, s, 0.5) = m(r, s)$ and $F(\lambda - \gamma) \geq m(r, s)$ and so $(\lambda - \gamma)m(r, s) \in F$. If $m(r, s) > 0.5$, then $m(r, s, 0.5) = 0.5$ and $F(\lambda - \gamma) \geq 0.5$. So, $F(\lambda - \gamma) + m(r, s) \geq 0.5 + m(r, s) > 0.5 + 0.5 = 1$ and hence $(\lambda - \gamma)m(r, s) \notin qF$. Therefore, it follows that if $\lambda r \in F$, $\gamma s \in F$, then $(\lambda - \gamma)m(r, s) \notin qF$. Similarly, if $\lambda r \in F$, $\gamma s \in F$ for all $\lambda, \gamma \neq 0$ in X, then $(\lambda - \gamma)m(r, s) \notin qF$. Hence F is an $(\varepsilon, \in \vee q)$-fuzzy field of X. \qed

Theorem 4.7. Let L be a Lie algebra over a field X. Then a fuzzy subset A of L is an $(\varepsilon, \in \vee q)$-fuzzy Lie algebra of L over an $(\varepsilon, \in \vee q)$-fuzzy field F of X if and only if

1. for all $x, y \in L$, $A(x - y) \geq m(A(x), A(y), 0.5)$,
2. for all $x \in L$, $A(\lambda x) \geq m(F(\lambda), A(x), 0.5)$,
3. for all $x, y \in L$, $A([x, y]) \geq m(A(x), A(y), 0.5)$.

Proof. Suppose that A is an $(\varepsilon, \in \vee q)$-fuzzy Lie algebra over an $(\varepsilon, \in \vee q)$-fuzzy field F of X. It is clear that $m(F(\lambda), A(x), 0.5) = m(F(\lambda), A(x), 0.5)$. We consider two possibilities.

Case 1. Let $m(F(\lambda), A(x)) < 0.5$. Then, $m(F(\lambda), A(x), 0.5) = m(F(\lambda), A(x))$. If possible, let $A(\lambda x) < m(F(\lambda), A(x), 0.5) = m(F(\lambda), A(x))$. Let $t \in (0, 1]$ be such that $A(\lambda x) < t < m(F(\lambda), A(x))$. Then, $F(\lambda) > t$ and $A(x) > t$. So, $\lambda t \in F$ and $x t \in A$. But $A(\lambda x) < t$ and $A(\lambda x) + t < t + t < 2m(F(\lambda), A(x)) < 1$. This shows that $(\lambda x)t \notin qA$, a contradiction.

Case 2. Let $m(F(\lambda), A(x)) \geq 0.5$. If possible, let $A(\lambda x) < m(F(\lambda), A(x), 0.5) = 0.5$. Then we have $\lambda 0.5 \in F$ and $x 0.5 \in A$, but $(\lambda x)0.5 \notin qA$, a contradiction. Therefore, it follows that $A(\lambda x) \geq m(F(\lambda), A(x), 0.5)$. Thus, (ii) is proved. Similarly, (i) and (iii) are proved.
Conversely, suppose that the conditions (i), (ii), and (iii) are satisfied by a fuzzy set \(A \) of \(L \). Let \(x_t \in A, y_s \in A \), for \(x, y \in L \) and \(t, s \in (0, 1] \). Then, \(A(x) \geq t, A(y) \geq s \) and so \(m(A(x), A(y)) \geq m(t, s) \). Since \(A \) satisfies condition (iii),

\[
A([x, y]) \geq m(A(x), A(y), 0.5) \geq m(t, s, 0.5).
\]

Now consider the possibilities \(m(t, s, 0.5) \leq 0.5 \) or \(m(t, s) > 0.5 \). If \(m(t, s) \leq 0.5 \), then \(m(t, s, 0.5) = m(t, s) \) and \(A([x, y]) \geq m(t, s) \), and so \(([x, y])_{m(t, s)} \in A \). If \(m(t, s) > 0.5 \), then \(m(t, s, 0.5) = 0.5 \) and \(A([x, y]) \geq 0.5 \). So \(A([x, y]) + m(t, s) \geq 0.5 + m(t, s) > 0.5 + 0.5 = 1 \) and hence \(([x, y])_{m(t, s)} \in \mathcal{Q}A \). Therefore, it follows that if \(x_t \in A, y_s \in A \), then \(([x, y])_{m(t, s)} \in \mathcal{Q}A \). Similarly, if \(x_t \in A, y_s \in A \), then \((x - y)_{m(t, s)} \in \mathcal{Q}A \) and if \(\lambda_r \in F, x_t \in A \), then \((\lambda x)_{m(r, t)} \in \mathcal{Q}A \). Hence, \(A \) is an \((\varepsilon, \in \mathcal{Q})\)-fuzzy Lie algebra of \(L \) over an \((\varepsilon, \in \mathcal{Q})\)-fuzzy field \(F \) of \(X \).

Proposition 4.8. Let \(L \) be a Lie algebra over a field \(X \). Then every \((\varepsilon, \in)\)-fuzzy Lie algebra of \(L \) over an \((\varepsilon, \in \mathcal{Q})\)-fuzzy field of \(X \) is an \((\varepsilon, \in \mathcal{Q})\)-fuzzy Lie algebra of \(L \) over an \((\varepsilon, \in \mathcal{Q})\)-fuzzy field of \(X \).

Proof. Suppose \(A \) is an \((\varepsilon, \in)\)-fuzzy Lie algebra of \(L \) over an \((\varepsilon, \in)\)-fuzzy field \(F \) of \(X \). Let \(\lambda, \gamma \in X, r, s \in (0, 1] \). Since \(F \) is an \((\varepsilon, \in)\)-fuzzy field of \(X \), \(\gamma_s \in F \Rightarrow (\lambda - \gamma)_{m(r, s)} \in F \), then \(F(\lambda - \gamma) \geq m(r, s) \) shows that \((\lambda - \gamma)_{m(r, s)} \in \mathcal{Q}F \). Similarly, \((\varepsilon, \in \mathcal{Q})\)-fuzzy Lie algebra, for \(x, y \in L, t, s \in (0, 1] \), \(x_t \in A, y_s \in A \Rightarrow ([x, y])_{m(t, s)} \in A \). Thus, \(A([x, y]) \geq m(t, s) \). Then by definition \(([x, y])_{m(t, s)} \in \mathcal{Q}A \). Similarly, \(x_t \in A, y_s \in A \Rightarrow (x - y)_{m(t, s)} \in \mathcal{Q}A \) and \(x_t \in A, \lambda_s \in F \Rightarrow (\lambda x)_{m(t, s)} \in \mathcal{Q}A \). Hence \(A \) is an \((\varepsilon, \in \mathcal{Q})\)-fuzzy Lie algebra of \(L \) over an \((\varepsilon, \in \mathcal{Q})\)-fuzzy field \(F \) of \(X \).

Remark 4.9. The converse of this proposition may not be true as seen in the following example.

Example 4.10. Let \(L = \mathbb{R}^3 \) and \([x, y] = x \times y\), where ‘\(\times \)’ is cross product for all \(x, y \in L \). Then \(L \) is a Lie algebra over the field \(\mathbb{R} \). Define \(A : \mathbb{R}^3 \rightarrow [0, 1] \) for all \(x = (a, b, c) \in \mathbb{R}^3 \) by

\[
A(a, b, c) = \begin{cases}
0.6 & \text{if } a = b = c = 0, \\
0.8 & \text{if } a \neq 0, b = 0, c = 0, \\
0.5 & \text{otherwise},
\end{cases}
\]

and define \(F : \mathbb{R} \rightarrow [0, 1] \) for all \(\lambda \in \mathbb{R} \) by

\[
F(\lambda) = \begin{cases}
0.6 & \text{if } \lambda \in \mathbb{Q}, \\
0.8 & \text{if } \lambda \in \mathbb{Q}(\sqrt{2}) - \mathbb{Q}, \\
0.5 & \text{if } \lambda \in \mathbb{R} - \mathbb{Q}(\sqrt{2}).
\end{cases}
\]

Then by Theorem 4.7, it follows that \(A \) is an \((\varepsilon, \in \mathcal{Q})\)-fuzzy Lie algebra of \(\mathbb{R}^3 \) over an \((\varepsilon, \in \mathcal{Q})\)-fuzzy field \(F \) of \(\mathbb{R} \).

But this is not an \((\varepsilon, \in)\)-fuzzy Lie algebra of \(\mathbb{R}^3 \) over an \((\varepsilon, \in)\)-fuzzy field of \(\mathbb{R} \). Let \(x = (1, 0, 0) \). Then \(A(1, 0, 0) = 0.8 > 0.65 > 0.62 \). So \(x_{0.65} \in A \) and \(x_{0.62} \in A \). But \((x - x)_{m(0.65, 0.62)} = (0)_{0.62}^+ \mathcal{A} \). It is clear that \(A(0) + 0.62 = 0.6 + 0.62 > 1 \) and so \((0)_{0.62} \in \mathcal{Q}A \). Therefore \(A \) is not an \((\varepsilon, \in)\)-fuzzy Lie algebra of \(\mathbb{R}^3 \) over an \((\varepsilon, \in)\)-fuzzy field \(F \) of \(\mathbb{R} \).
\textbf{Theorem 4.11.} Let A be an $(\varepsilon, \varepsilon \lor q)$-fuzzy Lie algebra of L over an $(\varepsilon, \varepsilon \lor q)$-fuzzy field F of X such that $M(A(x), F(\lambda)) < 0.5$ for all $x \in L$ and for all $\lambda \in X$. Then A is an $(\varepsilon, \varepsilon)$-fuzzy Lie algebra of L over an $(\varepsilon, \varepsilon)$-fuzzy field F of X.

\textbf{Proof.} Suppose that A is an $(\varepsilon, \varepsilon \lor q)$-fuzzy Lie algebra of L over an $(\varepsilon, \varepsilon \lor q)$-fuzzy field F of X. Let $\lambda, \gamma \in X$ and $t, s \in [0, 1]$ be such that $\lambda t \in F$, $\gamma s \in F$. Then, $F(\lambda) \geq t, F(\gamma) \geq s$ and so $m(F(\lambda), F(\gamma)) \geq m(t, s)$. It follows from Theorem 4.6 that $F(\lambda - \gamma) \geq m(F(\lambda), F(\gamma), 0.5)$.

Given that $M(A(x), F(\lambda)) < 0.5$ for all $x \in L$, for all $\lambda \in X$,

then, we have $m(F(\lambda), F(\gamma)) < 0.5$.

\textbf{Proof.} Suppose that A is an $(\varepsilon, \varepsilon \lor q)$-fuzzy Lie algebra of L over an $(\varepsilon, \varepsilon \lor q)$-fuzzy field F of X. Let $\lambda, \gamma \in X$ and $t, s \in [0, 1]$ be such that $\lambda t \in F$, $\gamma s \in F$. Then, $F(\lambda) \geq t, F(\gamma) \geq s$ and so $m(F(\lambda), F(\gamma)) \geq m(t, s)$. It follows from Theorem 4.6 that $F(\lambda - \gamma) \geq m(F(\lambda), F(\gamma), 0.5)$.

Given that $M(A(x), F(\lambda)) < 0.5$ for all $x \in L$, for all $\lambda \in X$,

\textbf{Proposition 4.12.} If A is an $(\varepsilon, \varepsilon \lor q)$-fuzzy Lie algebra of L over an $(\varepsilon, \varepsilon \lor q)$-fuzzy field F, then

\begin{enumerate}
 \item $A(0) \geq m(A(x), 0.5)$,
 \item $A(-x) \geq m(A(x), 0.5)$,
 \item $A(x + y) \geq m(A(x), A(y), 0.5)$.
\end{enumerate}

\textbf{Proof.} Let $x \in L$, $y \in L$. Then, from Theorem 4.7, the following hold.

\begin{enumerate}
 \item $A(0) = A([x, x]) \geq m(A(x), 0.5)$. So, $A(0) \geq m(A(x), 0.5)$.
 \item $A(-x) = A(0 - x) \geq m(A(0), A(x), 0.5) = m(m(A(x), 0.5), A(0)) = m(A(x), 0.5)$.
 \item $A(x + y) = A(x - (-y)) \geq m(A(x), A(-y), 0.5) \geq m(A(x), m(A(y), 0.5), 0.5) = m(A(x), A(y), 0.5)$.
\end{enumerate}

\textbf{Theorem 4.13.} Let A be an $(\varepsilon, \varepsilon \lor q)$-fuzzy Lie algebra of L over an $(\varepsilon, \varepsilon \lor q)$-fuzzy field F of X. Then, for $t \in (0, 0.5]$, A_t is a Lie subalgebra over F_t when F_t contains at least two elements.

\textbf{Proof.} For $t \in (0, 0.5]$, suppose F_t contains at least two elements.

Let $\lambda, \gamma \in F_t$. Then $\lambda t \in F$, $\gamma s \in F$ and so $F(\lambda) \geq t, F(\gamma) \geq t$. This shows that $m(F(\lambda), F(\gamma)) \geq t$ and so $m(F(\lambda), F(\gamma), 0.5) \geq m(t, 0.5)$. Therefore,

$F(\lambda - \gamma) \geq m(F(\lambda), F(\gamma), 0.5) \geq m(t, 0.5) = t$
and hence \((\lambda - \gamma)I_1 = F\). Thus, \(\lambda - \gamma \in F_1\). Similarly, \(\lambda\gamma^{-1} \in F_1\) for all \(\lambda, \gamma \neq 0\) in \(F_1\). Therefore, \(F_1\) is a subfield of \(X\).

Suppose \(x, y \in A_t\). Then \(A(x) \geq t, A(y) \geq t\) and \(m(A(x), A(y), 0.5) \geq m(t, 0.5) = t\). So \(A(x + y) \geq m(A(x), A(y), 0.5) \geq t\) and hence \((x + y) \in A_t\). Let \(\lambda \in F_1, x \in A_t\). Then \(F(\lambda) \geq t, A(x) \geq t\) and \(m(F(\lambda), A(x)) \geq t\). Thus, \(m(F(\lambda), A(x), 0.5) \geq t\) and so \(A(\lambda x) \geq m(F(\lambda), A(x), 0.5) \geq t\). Hence, \(\lambda x \in A_t\).

Similarly, for \(x, y \in A_t\), \([x, y] \in A_t\). Therefore, \(A_t\) is a Lie subalgebra over the field \(F_t\). \(\square\)

Let \(f : L \rightarrow L'\) be a function. If \(A\) and \(B\) are fuzzy subsets of \(L\) and \(L'\), respectively, then \(f(A)\) and \(f^{-1}(B)\) are defined using Zadeh’s extension principle [6]. If \(\alpha\) is one of \(\in, \in\dot{\varepsilon}\), \(\in\cap\varepsilon\) or \(\forall\varepsilon\), it follows that \(x_\alpha f^{-1}(B)\) if and only if \((f(x))_\alpha B\) for all \(x \in L\) and for all \(t \in [0, 1]\).

Theorem 4.14. Let \(L\) and \(L'\) be Lie algebras over a field \(X\) and let \(f : L \rightarrow L'\) be a homomorphism. If \(B\) is an \((\in, \in\dot{\varepsilon})\)-fuzzy Lie algebra of \(L'\) over an \((\in, \in\dot{\varepsilon})\)-fuzzy field \(F\) of \(X\), then \(f^{-1}(B)\) is an \((\in, \in\dot{\varepsilon})\)-fuzzy Lie algebra of \(L\) over the \((\in, \in\dot{\varepsilon})\)-fuzzy field \(F\) of \(X\).

Proof. Let \(x, y \in L\) and \(t, s \in [0, 1]\) be such that \(x_t \in f^{-1}(B)\) and \(y_s \in f^{-1}(B)\). Then \((f(x))_t \in B\), \((f(y))_s \in B\). Since \(B\) is an \((\in, \in\dot{\varepsilon})\)-fuzzy Lie algebra of \(L'\) over an \((\in, \in\dot{\varepsilon})\)-fuzzy field \(F\) of \(X\),

\[
(f(x - y))_{m(t, s)} = (f(x) - f(y))_{m(t, s)} \in \in\dot{\varepsilon}B.
\]

So we have \((x - y)_{m(t, s)} \in \in\dot{\varepsilon}f^{-1}(B)\). Similarly, \([x, y]_{m(t, s)} \in \in\dot{\varepsilon}f^{-1}(B)\).

Let \(\lambda \in X\), \(x, y \in L\) and \(r, t \in [0, 1]\) be such that \(\lambda x_t \in F\) and \(x_t \in f^{-1}(B)\). Then \((f(x))_t \in B\) and so

\[
(f(\lambda x))_{m(r, t)} = (\lambda f(x))_{m(r, t)} \in \in\dot{\varepsilon}B
\]

and hence \((\lambda x)_{m(r, t)} \in \in\dot{\varepsilon}f^{-1}(B)\).

Therefore, \(f^{-1}(B)\) is an \((\in, \in\dot{\varepsilon})\)-fuzzy Lie algebra of \(L\) over the \((\in, \in\dot{\varepsilon})\)-fuzzy field \(F\) of \(X\). \(\square\)

Definition 4.15. A fuzzy set \(\mu\) of a set \(Y\) is said to possess sup property if for every nonempty set \(S\) of \(Y\), there exists \(x_0 \in S\) such that

\[
\mu(x_0) = \text{Sup} \{\mu(x) \mid x \in S\}.
\]

Theorem 4.16. Let \(L\) and \(L'\) be Lie algebras over a field \(X\) and let \(f : L \rightarrow L'\) be an onto homomorphism. Let \(A\) be an \((\in, \in\dot{\varepsilon})\)-fuzzy Lie algebra of \(L\) over an \((\in, \in\dot{\varepsilon})\)-fuzzy field \(F\) of \(X\), which satisfies the sup property. Then \(f(A)\) is an \((\in, \in\dot{\varepsilon})\)-fuzzy Lie algebra of \(L'\) over the \((\in, \in\dot{\varepsilon})\)-fuzzy field \(F\) of \(X\).

Proof. Let \(a, b \in L'\) and \(t, s \in [0, 1]\) be such that \(a_t \in f(A)\) and \(b_s \in f(A)\). Then \(f(A)(a) \geq t\) and \(f(A)(b) \geq s\) and so

\[
\text{Sup} \{A(z) \mid z \in f^{-1}(a)\} \geq t \quad \text{and} \quad \text{Sup} \{A(w) \mid w \in f^{-1}(b)\} \geq s.
\]

Since \(f\) is onto, \(f^{-1}(a)\) and \(f^{-1}(b)\) are nonempty subsets of \(L\) and by the sup property of \(A\), there exists \(x \in f^{-1}(a)\) and \(y \in f^{-1}(b)\) such that

\[
A(x) = \text{Sup} \{A(z) \mid z \in f^{-1}(a)\} \quad \text{and} \quad A(y) = \text{Sup} \{A(w) \mid w \in f^{-1}(b)\},
\]
then \(x_t \in A \) and \(y_s \in A \). Since \(A \) is an \((\in, \in \lor)\)-fuzzy Lie algebra of \(L \) over an \((\in, \in \lor)\)-fuzzy field \(F \) of \(X \), we have \(([x, y])_{m(t,s)} \in \lor A \) and so \(A([x, y]) \geq m(t, s) \) or \(A([x, y]) + m(t, s) > 1 \). Now \(f(x) = a, f(y) = b \) and so \([x, y] \in f^{-1}([a, b])\). Therefore,

\[
f(A)([a, b]) = \text{Sup} \left\{ A(z) \mid z \in f^{-1}([a, b]) \right\} \geq A([x, y])
\]

and so \(f(A)([a, b]) \geq m(t, s) \) or \(f(A)([a, b]) + m(t, s) > 1 \). Thus, \(([a, b])_{m(t,s)} \in \lor q f(A)\). Also \((x - y)_{m(t,s)} \in \lor A \) shows that \((a - b)_{m(t,s)} \in \lor q f(A)\).

Let \(\lambda \in X, b \in L' \) and \(r, s \in (0, 1] \) be such that \(\lambda_r \in F \) and \(b_s \in f(A) \). Then it follows that \(\lambda_r \in F \) and \(y_s \in A \). So \((\lambda y)_{m(r,s)} \in \lor A \). Thus, \(A(\lambda y) \geq m(r, s) \) or \(A(\lambda y) + m(r, s) > 1 \). But \(f(A)(\lambda b) = \text{Sup} \{ A(w) \mid w \in f^{-1}(\lambda b) \} \geq A(\lambda y) \). This shows that \((\lambda b)_{m(r,s)} \in \lor q f(A)\).

Therefore, \(f(A) \) is an \((\in, \in \lor)\)-fuzzy Lie algebra of \(L' \) over the \((\in, \in \lor)\)-fuzzy field \(F \) of \(X \).

\[\square \]

References

Received July 14, 2009
Revised September 15, 2009