

Open Access

Fuzzy n-Lie Algebras

Davvaz B¹ and Dudek WA^{2*}

¹Department of Mathematics, Yazd University, Yazd, Iran

²Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

Abstract

Properties of fuzzy subalgebras and ideals of n-ary Lie algebras are described. Methods of construction fuzzy ideals are presented. Connections with various fuzzy quotient *n*-Lie algebras are proved.

Keywords: Fuzzy set; n-ary Lie algebra; Subalgebra; Ideal; Fuzzy ideal

Introduction

In 1985 Filippov [1] proposed a generalization of the concept of a Lie algebra by replacing the binary operation by *n*-ary one. He defined an *n*-ary Lie algebra structure on a vector space *L* as an operation which associates with each *n*-tuple $(x_1,...,x_n)$ of elements in *L* another element $[x_1,...,x_n]$ which is *n*-linear, skew-symmetric:

 $[x_{\sigma(1)},\ldots,x_{\sigma(n)}] = \operatorname{sign}(\sigma)[x_1,\ldots,x_n]$

and satisfies the generalized Jacobi identity (called also the Filippov identity):

$$[[x_1,...,x_n], y_2,..., y_n] = \sum_{i=1}^n [x_1,...,x_{i-1}, [x_i, y_2,..., y_n], x_{i+1},..., x_n],$$

where $\sigma \in S_{u}$.

Now, such structures are also called *n*-Lie algebras or Filippov algebras. For n=2 we obtain a classical Lie algebras.

Note that such an n-ary operation, realized on the smooth function algebra of a manifold and additionally assumed to be an n-derivation, is an n-Poisson structure. This general concept, however, was not introduced neither by Filippov, nor by other mathematicians that time. It was done much later in 1994 by Takhtajan [2] in order to formalize mathematically the n-ary generalization of Hamiltonian mechanics proposed by Nambu [3]. Apparently Nambu was motivated by some problems of quark dynamics and the n-bracket operation he considered was:

$$[f_1, \dots, f_n] := det \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$

where $L=R[x_1,...,x_n]$ is the vector space of polynomials in *n*-variables.

Nambu does not mentions that the *n*-bracket operation satisfies the generalized Jacobi identity but Filippov reports this operation in his paper [1] among other examples of *n*-Lie algebras. The formal proof is given in [4].

Ternary Lie algebras were studied [5,6]. For other generalizations and applications see ref. [7].

The study of fuzzy Lie algebras was initiated in refs. [8,9], and continued in various directions by many authors (for example [10-12]). The study of fuzzy *n*-ary algebras was initiated by Dudek [13]. Davvaz and Dudek described fuzzy *n*-ary groups as a generalization of

J Generalized Lie Theory Appl, an open access journal ISSN: 1736-4337

Rosenleld's fuzzy groups [14].

In this paper we describe fuzzy *n*-ary Lie algebras.

Preliminaries

Let *X* be a non-empty set. A fuzzy subset μ of *X* is a function μ : $X \rightarrow [0,1]$. Let μ and λ be two fuzzy subsets of *X*, we say that μ is contained in λ , if $\mu(x) \le \lambda(x)$ for all $x \in X$. The set $\overline{\mu_t} = \{x \in X | \mu(x) \ge t\}, t \in [0,1]$ is called a level subset of μ .

Definition 2.1

Let *V* be a vector space over a field *F*. A fuzzy subset μ of *V* is called a fuzzy subspace of *V* if for all $x, y \in V$ and $\alpha \in F$, the following conditions are satisfied:

• $\mu(x+y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in V$,

• $\mu(\alpha x) \ge \mu(x)$ for all $x \in V$, $\alpha \in F$.

Note that the second condition implies, $\mu(-x) \ge \mu(x)$ for all $x \in V$,

Lemma 2.2

If μ is a fuzzy subspace of a vector space *V*, then $\mu(x) \le \mu(0)$ for all $x \in V$, and

- $\mu(x)=\mu(-x)$,
- $\mu(x-y)=\mu(0) \Longrightarrow \mu(x)=\mu(y),$
- $\mu(x) < \mu(y) \Longrightarrow \mu(x-y) = \mu(x) = \mu(y-x)$

for all $x, y \in V$.

Proof. Directly from the definition we obtain $\mu(x) \le \mu(0)$ and $\mu(x)=\mu(-x)$. Moreover, for all $x, y \in V$ we have

 $\min\{\mu(x-y), \mu(y)\} \ge \min\{\min\{\mu(x), \mu(-y)\}, \mu(y)\} = \min\{\mu(x), \mu(y)\}$ = min { $\mu((x-y)+y), \mu(y)\} \ge \min\{\min\{\mu(x-y), \mu(y)\}, \mu(y)\}$ = min { $\mu(x-y), \mu(y)\},$

which implies

*Corresponding author: Dudek WA, Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, Wyspian'skiego 27, 50-370 Wroclaw, Poland, Tel: 71 320-31-62; Fax: (+48)-(71)-328-07-51; E-mail: wieslaw.dudek@pwr.edu.pl

Received April 28, 2017; Accepted June 05, 2017; Published June 12, 2017

Citation: Davvaz B, Dudek WA (2017) Fuzzy *n*-Lie Algebras. J Generalized Lie Theory Appl 11: 268. doi: 10.4172/1736-4337.1000268

Copyright: © 2017 Davvaz B, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 $\min\{\mu(x-y), \mu(y)\} = \min\{\mu(x), \mu(y)\}.$

Similarly

 $\min\{\mu(x-y), \mu(x)\} = \min\{\mu(x), \mu(y)\}.$

Hence

 $\min\{\mu(x-y), \mu(y)\} = \min\{\mu(x-y), \mu(x)\} = \min\{\mu(x), \mu(y)\}.$

This for $\mu(x-y)=\mu(0)$ gives $\mu(x)=\mu(y)$, and $\mu(x-y)=\mu(x)$ for $\mu(x)<\mu(y)$.

Theorem 2.3

For a fuzzy subset μ of a vector space V, the following statements are equivalent.

• μ is a fuzzy subspace of *V*.

• Each non-empty μ_t is a subspace of V.

This theorem firstly proved in ref. [15] is a consequence of the Transfer Principle for fuzzy sets described in ref. [16].

Let $\{\mu_i\}_{i \in I}$ be a collection of fuzzy subsets of *X*. Then, we define the fuzzy subsets $_{i \in I}$ and $\bigcup_{i \in I} \mu_i$ by:

$$(\bigcap_{i\in I} \mu_i)(x) = \inf_{i\in I} \{\mu_i(x)\} \text{ for all } x \in X,$$
$$(\bigcup_{i\in I} \mu_i)(x) = \sup_{i\in I} \{\mu_i(x)\} \text{ for all } x \in X.$$

Fuzzy Subalgebras and Ideals

Recall that a non-empty subset S of an *n*-Lie algebra L is its subalgebra if it is a subspace of a vector space L and $[x_1, ..., x_n] \in S$ for all $x_1, ..., x_n \in S$.

A subspace *S* of an *i*-ideal of *L* if for all $x_1, \dots, x_{n \in L}$ and $y \in S$ we have $[x_1, \dots, x_{i_{i-1}}, y, x_{i_{i+1}}, \dots, x_n] \in L$.

Two *n*-Lie algebras L_1 , L_2 over the same field *F* are isomorphic if there exists a vector space isomorphism $\varphi:L_1 \rightarrow L_2$ such that for all $\varphi([x_1,...,x_n])=[\varphi(x_1),...,\varphi(x_n)]$ for all $x_1,...,x_n \in L$.

Let *L* be an *n*-Lie algebra. Fixing in $[x_1, x_2,...,x_n]$ elements $x_2,...,x_{[n-1]}$ we obtain a new binary operation $\langle x,y \rangle = [x,x_2,...,x_{n-1},y]$ with the property $\langle x_k,y \rangle = \langle y,x_k \rangle = 0$ for all k=2,...,n-1 and all $y \in L$. It is easily to see that *L* with respect to this new operation is an classical Lie algebra. It is called a binary retract. Fixing various $x_2,...,x_{n-1}$ we obtain various (generally non-isomorphic) retracts. Obviously, any subalgebra (ideal) of an *n*-Lie algebra is a subalgebra (ideal) of each binary retract of *L*. The converse is not true. Hence results obtained for *n*-Lie algebras are essential generalizations of results proved for Lie algebras.

Basing on the idea of fuzzyfications of algebras with one n-ary operation proposed in ref. [13] we present a fuzzyfication of n-Lie algebras.

Definition 3.1

Let L be an n -Lie algebra. A fuzzy subalgebra of L is a fuzzy subspace μ such that

$$\mu([x_1,...,x_n]) \ge \min\{\mu(x_1),...,\mu(x_n)\}$$
 for all $x_1,...,x_n \in L$.

Definition 3.2

Let L be an n-Lie algebra. A fuzzy ideal of L is a fuzzy subspace μ such that

 $\mu([x_1,\ldots,x_n]) \ge \mu(x_i)$ for all $x_1,\ldots,x_n \in L$ and $1 \le i \le n$.

The following facts are obvious. Their proofs are very similar to the proofs of analogous results for fuzzy *n*-ary systems [13] and fuzzy Lie algebras [9].

Proposition 3.3:

A fuzzy subspace μ of an *n*-Lie algebra *L* is its fuzzy ideal if and only if

$$\mu([x_1, \dots, x_n]) \ge \max\{\mu(x_1), \dots, \mu(x_n)\}$$
(1)

for all $x_1, \ldots, x_n \in L$.

Proposition 3.4: If μ is a fuzzy ideal of an *n*-Lie algebra *L*, then

$$L_{\mu} = \{ x \in L | \mu(x) = \mu(0) \}$$

is an ideal of *L* contained in every non-empty level subset of μ .

Proposition 3.5: Let μ and λ be two fuzzy ideals of an *n*-Lie algebra *L* such that $\mu(0)=\lambda(0)$. Then $L_{\mu\cap\lambda}=L_{\mu}\cap L_{\lambda}$.

Theorem 3.6

Let $\varphi: L \rightarrow L'$ be an *n*-Lie algebra homomorphism of an *n*-Lie algebra *L* onto an *n*-Lie algebra *L'*. Then the following conditions hold:

- if μ is a fuzzy ideal of *L*, then $\varphi(\mu)$ is a fuzzy ideal of *L'*,
- if *v* is a fuzzy ideal of *L*' then $\varphi^{-1}(v)$ is a fuzzy ideal of *L*,
- $\overline{\varphi^{-1}(v)_t} = \varphi^{-1}(\overline{v_t})$ for every $t \in [0,1]$ and every fuzzy ideal v of L'.

Proposition 3.7: Let *L* be an *n*-Lie algebra. Then the intersection of any family of fuzzy subalgebras (ideals) of *L* is again a fuzzy subalgebra (ideal) of *L*.

It is easy to see that the union of fuzzy subalgebras (ideals) of an n-Lie algebra L is not a fuzzy subalgebra (ideal) of L, in general. But we have the following proposition on the union of fuzzy subalgebras (ideals) of L.

Proposition 3.8: Let $\{\mu_n\}$ be a chain of fuzzy subalgebras (ideals) of an *n*-Lie algebra *L*. Then $\bigcup_{n \in \mathbb{N}} \mu_n$ is a fuzzy subalgebra (ideal) of *L*.

Theorem 3.9

For a fuzzy subset μ of an n -Lie algebra L , the following statements are equivalent.

- μ is a fuzzy subalgebra (ideal) of *L*.
- Each non-empty $\overline{\mu_t}$, is a subalgebra (ideal) of *L*.

Proof. Let μ be a fuzzy ideal of L. Since μ is a fuzzy subspace of L, by Theorem 2.3, each non-empty $\overline{\mu_t}$ is a subspace of L. Therefore, it is enough to prove that $[\underbrace{L,...,L}_{i-1}, \overline{\mu_i}, \underbrace{L,...,L}_{n-i}] \subseteq \overline{\mu_i}$. For every $y \in \overline{\mu_i}$ and $x_1,...,x_n \in L$ we show that $[x_1,...,x_{i-1}, y, x_{i+1},..., x_n] \in \overline{\mu_i}$. Since μ is a fuzzy ideal, we have

 $t \le \mu(y) \le \mu([x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_n])$

and so $[x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_n] \in \overline{\mu_i}$.

Conversely, assume that every non-empty μ_t is an ideal of *L*. Therefore, $\overline{\mu_t}$ is a subspace of *L* and so by Theorem 2.3, μ is a fuzzy subspace of *L*. Now, for every $y \in L$, we put $t_0 = \mu(y)$. Then, $y \in \overline{\mu_{t_0}}$. Therefore, For subalgebras the proof is analogous.

Proposition 3.10: Let *L* be an *n*-Lie algebra and μ be a fuzzy subalgebra of *L*. Let $\overline{\mu_{t_1}}$ and $\overline{\mu_{t_2}}$ (with $t_1 < t_2$) be any two level subalgebras of μ . Then $\overline{\mu_{t_1}} = \overline{\mu_{t_2}}$ if and only if there is no *x* in *L* such that $t_1 \le \mu(x) < t_2$.

Theorem 3.11

Let {S | $\lambda \in \lambda$ }, where $\emptyset \neq \lambda \subseteq [0,1]$, be a collection of ideals of an *n*-Lie algebra *L* such that

(i)
$$L = \bigcup_{\lambda \in \Lambda} S_{\lambda}$$

(*ii*) $\alpha > \beta \Leftrightarrow S_{\alpha} \subset S_{\beta}$ for all $\alpha, \beta \in \Lambda$

Then μ defined by

 $\mu(x) = \sup\{\lambda \in \Lambda \mid x \in S_{\lambda}\}$

is a fuzzy ideal of L.

Proof. By Theorem 3.9, it is sufficient to show that every non-empty level $\overline{\mu_{\alpha}}$ is an ideal of *L*.

Let
$$\mu_{\alpha} \neq \emptyset$$
 for some fixed $\alpha \in [0,1]$. Then

$$\alpha = \sup\{\lambda \in \Lambda \mid \lambda < \alpha\} = \sup\{\lambda \in \Lambda \mid S_{\alpha} \subset S_{\lambda}\}$$

or

$$\alpha \neq \sup\{\lambda \in \Lambda \mid \lambda < \alpha\} = \sup\{\lambda \in \Lambda \mid S_{\alpha} \subset S_{\lambda}\}.$$

In the first case we have $\overline{\mu_{\alpha}} = \bigcap_{\lambda \in \Omega} S_{\lambda}$, because

$$x \in \overline{\mu_{\alpha}} \Leftrightarrow (x \in S_{\lambda} \text{ for all } \lambda < \alpha) \Leftrightarrow x \in \bigcap_{\lambda < \alpha} S_{\lambda}.$$

In the second, there exists $\varepsilon > 0$ such that $(\alpha - \varepsilon, \lambda) \cap \lambda = \emptyset$. In this case $\overline{\mu_{\alpha}} = \bigcup_{\lambda \ge \alpha} S_{\lambda}$. Indeed, if $x \in \bigcup_{\lambda \ge \alpha} S_{\lambda}$, then $x \in S_{\lambda}$ for some $\lambda \ge \alpha$, which gives

 $\mu(x) \ge \lambda \ge \alpha$. Thus $x \in \overline{\mu_{\alpha}}$, i.e., $\bigcup_{\lambda \ge \alpha} S_{\lambda} \subseteq \overline{\mu_{\alpha}}$.

Conversely, if $x \not\in S_{\lambda}$, then $x \not\in S_{\lambda}$ for all $\lambda \ge \alpha$, which implies $x \not\in S_{\lambda}$ for all $\lambda > \alpha - \varepsilon$, i.e., if $x \in S_{\lambda}$ then $\lambda \le \alpha - \varepsilon$. Thus $\mu(x) \le \alpha - \varepsilon$. Therefore $x \not\in \overline{\mu_{\alpha}}$. Hence $\overline{\mu_{\alpha}} \subseteq \bigcup_{\lambda \ge \alpha} S_{\lambda}$, and consequently $\overline{\mu_{\alpha}} = \bigcup_{\lambda \ge \alpha} S_{\lambda}$. This completes our proof.

Theorem 3.12

Let μ be a fuzzy subset defined on an *n*-Lie algebra *L* and let $Im(\mu) = \{t_0, t_1, t_2, ...\}$, where $1 \ge t_0 > t_1 > t_2 ... \ge 0$. If $S_0 \subset S_1 \subset S_2 ...$ are subalgebras (ideals) of *L* such that $\mu(S_k \setminus S_{k-1}) = t_k$ for k=0,1,2,..., where $S_{-1} = \emptyset$, then μ is a fuzzy subalgebra (ideal) of *L*.

Proof. First consider the case when all S_i are subalgebras. If $[x_1,...,x_n] \in L \setminus \bigcup_k S_k$ then also at least one of $x_1,...,x_n$ is in $L \setminus \bigcup_k S_k$ because in the opposite case $x_1,...,x_n$ and $[x_1,...,x_n]$ will be in some S_k . So, in this case

 $\mu([x_1,...,x_n]) = 0 = \min\{\mu(x_1),...,\mu(x_n)\}.$

It is clear that for arbitrary elements $x_1, ..., x_n \in L$ there exists only one k such that $[x_1, ..., x_n] \in S_k \setminus S_{k-1}$ and only one k_i such that $x_i \in S_{k_i} \setminus S_{k_i-1}$.

Thus $\mu([x_1,...,x_n]) = t_k$, $\mu(x_i) = t_{k_i}$.

Suppose $t_{k_i} \ge t_k$ for all i=1,2,...,n. Then, by the assumption, $k_i < k$ and $S_{k_i} \subseteq S_s \subseteq S_{k-1} \subset S_k$, where $s=\max\{k_1,...,k_n\}$. Hence $x_1,...,x_n \in S_{k-1}$ and, in the consequence, $[x_1,...,x_n] \in S_{k-1}$ because S_{k-1} is a subalgebra. This is a contradiction. Therefore there is at least one $t_{k_i} \le t_k$. In this case $\mu([x_1,...,x_n]) = t_k \ge t_{k_i} \ge \min\{\mu(x_1),...,\mu(x_n)\}$. Since μ also is a fuzzy subspace of a vector space L, it is a fuzzy subalgebra of L.

Now, let all S_i be ideals and let $[x_1, \dots, x_n] \in S_k \setminus S_{k-1}$ for some $x_1, \dots, x_n \in L$. Then these x_1, \dots, x_n are in $L \setminus S_{k-1}$. If not, then there exists $x_i \in S_{k-1}$. But in this case $[x_1, \dots, x_n] \in S_{k-1}$ because S_{k-1} is an ideal. This is a contradiction. So, all $x_i \in L \setminus S_{k-1}$. Hence $\max\{\mu(x_1), \dots, \mu(x_n)\} \le t_k = \mu([x_1, \dots, x_n])$. Now, if $[x_1, \dots, x_n] \in L \setminus \bigcup_k S_k$, then also all x_1, \dots, x_n are in $L \setminus \bigcup_k S_k$. Thus $\max\{\mu(x_1), \dots, \mu(x_n)\} = \mu([x_1, \dots, x_n])$. This completes the proof that μ is a fuzzy ideal.

Corollary 3.13

For any chain $S_0 \subset S_1 \subset S_2 \ldots$ of subalgebras (ideals) of an *n*-Lie algebra *L* and any chain of reals $1 \ge t_0 > t_1 > \ldots \ge 0$ there exists a fuzzy subalgebra (ideal) μ of *L* such that $\overline{\mu_{t_k}} = S_k$.

Theorem 3.14

Let $Im(\mu) = \{t_i | i \in I\}$ be the image of a fuzzy subalgebra (ideal) μ of an *n*-Lie algebra *L*. Then

(a) There exists a unique $t_0 \in Im(\mu)$ such that $t_0 \ge t_i$ for all $t_i \in Im(\mu)$,

(b) *L* is the set-theoretic union of all $\overline{\mu_{t_i}}$, $t_i \in Im(\mu)$,

(c) $\Omega = \{\overline{\mu_{t_i}} \mid t_i \in Im(\mu)\}$ is linearly ordered by inclusion,

(d) Ω contains all level subalgebras (ideals) of μ if and only if μ attains its infimum on all subalgebras (ideals) of *L*.

Proof. (*a*) Follows from the fact that $t_0 = \mu(0) \ge \mu(x)$ for all $x \in L$.

(b) If $x \in L$, then $\mu(x) = t_x \in Im(\mu)$. Thus $x \in \bigcup \overline{\mu_{i_i}} \subseteq L$, where $t_i \in Im(\mu)$, which proves (b).

(c) Since $\overline{\mu_{t_i}} \subseteq \overline{\mu_{t_j}} \Leftrightarrow t_i \ge t_j$ for $i,j \in I$, then Ω linearly ordered by inclusion.

(*d*) Suppose that Ω contains all levels of μ . Let *S* be a subalgebra (ideal) of *L*. If μ is constant on *S*, then we are done. Assume that μ is not constant on *S*. We have two cases: (1) *S*=*L* and (2) *S*≠*L*. For *S*=*L* let β =inf*Im*(μ). Then $\beta \le t \in Im(\mu)$, i.e., $\overline{\mu_{\beta}} \supseteq \overline{\mu_{t}}$ for all $t \in Im(\mu)$. But $\overline{\mu_{0}} = L \in \Omega$ because Ω contains all levels of μ . Hence there exists $t' \in Im(\mu)$ such that $\overline{\mu_{t'}} = L$. It follows that $\overline{\mu_{\beta}} \supseteq \overline{\mu_{t'}} = L$ so that $\overline{\mu_{\beta}} = \overline{\mu_{t'}} = L$ because every level of μ is a subalgebra (resp. ideal) of *L*.

Now it sufficient to show that $\beta=t'$. If $\beta<t'$, then there exists $t'' \in Im(\mu)$ such that $\beta \leq t'' < t'$. This implies $\overline{\mu_{t''}} \supset \overline{\mu_{t'}} = L$, which is a contradiction. Therefore $\beta=t' \in Im(\mu)$.

In the case $S \neq L$ we consider the fuzzy set μ_s defined by

$$\mu_{S}(x) = \begin{cases} \alpha & \text{for} \quad x \in S, \\ 0 & \text{for} \quad x \in L \setminus S. \end{cases}$$

Clearly μ_s is a fuzzy subalgebra (ideal) of *L* if *S* is a subalgebra (ideal). Let $J = \{i \in I \mid \mu(x) = t_i \text{ for some } x \in S\}.$

Then $\Omega_s = {\overline{\mu_{i_i}} | i \in J}$ contains (by the assumption) all levels of μ_{s} . This means that there exists $x_0 \in S$ such that $\mu(x_0) = \inf {\{\mu_s(x) | x \in S\}}$, i.e., $\mu(x_0) = \mu_s(x)$ for some $x \in S$. Hence μ attains its infimum on all subalgebras (ideals) of *L*.

To prove the converse let $\overline{\mu_{\alpha}}$ be a level subalgebra of μ . If $\alpha=t$ for some $t \in Im(\mu)$, then $\overline{\mu_{\alpha}} \in \Omega$. If $\alpha \neq t$ for all $t \in Im(\mu)$, then there does not exist $x \in L$ such that $\mu(x) = \alpha$.

Let $S = \{x \in L | \mu(x) > \alpha\}$. Obviously $0 \in S$ and $\mu(x_i) > \alpha$ for all $x_i \in S$. From the fact that μ is a fuzzy subalgebra we obtain

 $\mu([x_1,...,x_n]) \ge \min\{\mu(x_1),\mu(x_2),...,\mu(x_n)\} > \alpha,$

which proves $[x_1,...,x_n] \in S$. Hence *S* is a subalgebra. By hypothesis, there exists $y \in S$ such that $\mu(y) = \inf\{\mu(x) | x \in S\}$. But $\mu(y) \in Im(\mu)$ implies $\mu(y)=t'$ for some $t' \in Im(\mu)$. Hence $\inf\{\mu(x) | x \in S\}=t' > \alpha$.

Note that there does not exist $z \in L$ such that $\alpha \leq \mu(z) < t'$. This gives $\overline{\mu_{\alpha}} = \overline{\mu_{t'}}$. Hence $\overline{\mu_{\alpha}} \in \Omega$. Thus Ω contains all level subalgebras of μ .

Theorem 3.15

If every fuzzy subalgebra (ideal) μ defined on an *n*-Lie algebra *L* has a finite number of values, then every descending chain of subalgebras (ideals) of *L* terminates at finite step.

Proof. Suppose there exists a strictly descending chain

$$S_0 \supset S_1 \supset S_2 \supset \dots$$

of ideals of L which does not terminate at finite step. We prove that μ defined by

$$\mu(x) = \begin{cases} \frac{k}{k+1} & \text{for} \quad x \in S_k \setminus S_{k+1}, \\ 1 & \text{for} \quad x \in \bigcap S_k, \end{cases}$$

where k=0,1,2,... and $S_0=L$, is a fuzzy ideal with an infinite number of values.

If
$$[x_1, \dots, x_n] \in \bigcap S_k$$
, then obviously

$$\mu([x_1, \dots, x_n]) = 1 \ge \max\{\mu(x_1), \mu(x_2), \dots, \mu(x_n)\}.$$

If $[x_1,...,x_n] \not\in \bigcap S_k$, then $[x_1,...,x_n] \in S_p \setminus S_{p+1}$ for some $p \ge 0$ and there exists at least one i=1,2,...,n such that $x_i \not\in \bigcap S_k$, because $x_1,...,x_n \in \bigcap S_k$ implies $[x_1,...,x_n] \in \bigcap S_k$.

Let S_m be a maximal ideal of L such that at least one of x_1, \ldots, x_n belongs to $S_m \setminus S_{m+1}$. Then $m \le p$. Indeed, for m > p we have $x_1, x_2, \ldots, x_n \in S_m \subseteq S_{p+1} \subset S_p$ and, consequently $[x_1, \ldots, x_n] \in S_{p+1}$, which is impossible. Thus $m \le p$ and

$$\mu([x_1,...,x_n]) = \frac{p}{p+1} \ge \max\{\mu(x_1),...,\mu(x_n)\} = \frac{m}{m+1}.$$

This proves that μ is a fuzzy ideal and has an infinite number of different values. This is a contradiction. Hence every descending chain of ideals terminates at finite step.

For subalgebras the proof is analogous.

Theorem 3.16

Every ascending chain of subalgebras (ideals) of an *n*-Lie algebra L terminates at finite step if and only if the set of values of any fuzzy subalgebra (ideal) of L is a well-ordered subset of [0,1].

Proof. If the set of values of a fuzzy subalgebra (ideal) μ is not wellordered, then there exists a strictly decreasing sequence $\{t_i\}$ such that $t_i = \mu(x_i)$ for some $x_i \in L$. But in this case $\overline{\mu_{i_i}}$ form a strictly ascending chain of subalgebras (ideals) of *L*, which is a contradiction.

In order to prove the converse suppose that there exists a strictly ascending chain $S_1 \subseteq S_2 \subseteq S_3 \subseteq ...$ of subalgebras (ideals) of *L*. Then $M = \bigcup S_i$ is a subalgebra (ideal) of *L* and μ defined by

$$\mu(x) = \begin{cases} 0 & \text{for } x \not \in M, \\ \frac{1}{k} & \text{where } k = \min\{i \mid x \in S_i\} \end{cases}$$

is a fuzzy subalgebra (ideal) on L.

Indeed, for every $x_1, ..., x_n \in M$ there exist a minimal number k_i such that $x_i \in S_{k_i}$, and a minimal number p such that $[x_1, ..., x_n] \in S_p$. If all S_i are subalgebras, then for $k=\max\{k_1,k_2,...,k_n\}$ all $x_1,...,x_n$ and $[x_1,...,x_n]$ are in S_k . Thus $k \ge p$. Consequently,

$$\mu([x_1,...,x_n]) = \frac{1}{p} \ge \frac{1}{k} = \min\{\mu(x_1),\mu(x_2),...,\mu(x_n)\}.$$

The case when at least one of $x_1, x_2, ..., x_n$ is not in *M* is obvious. Hence μ is a fuzzy subalgebra.

Now, if all S_i are ideals, then $[x_1,...,x_n] \in S_m$ for $m = \min\{k_1,...,k_n\}$. Thus $p \le m$. Hence

$$\mu([x_1,...,x_n]) = \frac{1}{p} \ge \frac{1}{m} = \max\{\mu(x_1),\mu(x_2),...,\mu(x_n)\},\$$

which means that in this case μ is a fuzzy ideal.

Since the chain $S_1 \subseteq S_2 \subseteq S_3 \subseteq ...$ is not terminating, μ has a strictly descending sequence of values. This contradicts that the set of values of any fuzzy subalgebra (ideal) is well-ordered. The proof is complete.

Definition 3.17

A fuzzy subset μ of an *n*-Lie algebra *L* is said to be normal if $\mu(0)=1$.

The following lemma is obvious.

Lemma 3.18

If μ is a fuzzy subalgebra (ideal) of an *n*-Lie algebra *L*, then μ^+ defined by

$$\mu^{+}(x) = \mu(x) + 1 - \mu(0)$$

is a normal fuzzy subalgebra (ideal) of L.

Corollary 3.19

Any fuzzy subalgebra (ideal) of an n-Lie algebra L is contained in some normal fuzzy subalgebra (ideal) of it.

Proof. Indeed, $\mu(x) \le \mu(x) + 1 - \mu(0) = \mu^+(x)$ for every $x \in L$.

Proposition 3.20: A maximal normal fuzzy subalgebra of an *n*-Lie algebra *L* takes only two values: 0 and 1.

Proof. If $\mu(x)=1$ for all $x \in L$, then obviously μ is a maximal normal fuzzy subalgebra of *L*. If μ is a maximal normal fuzzy subalgebra of *L* and $0 < \mu(a) < 1$ for some $a \in L$, then a fuzzy subset ν defined by $\nu(x) = \frac{1}{2}(\mu(x) + \mu(a))$ is a fuzzy subalgebra of *L*. Moreover, ν^+ is a

non-constant normal fuzzy subalgebra of L such that $\mu(x) \leq v^+(x)$ for

every $x \in L$. Thus, μ is not maximal. Obtained contradiction shows that $\mu(a)=0$ for all $\mu(a)<1$.

Proposition 3.21: Let μ be a fuzzy subalgebra (ideal) of an *n*-Lie algebra *L*. If $h:[0,\mu(0)] \rightarrow [0,1]$ is an increasing function, then a fuzzy subset μ_h defined on *L* by $\mu_h(x)=h(\mu(x))$ is a fuzzy subalgebra (ideal). Moreover, μ_h is normal if and only if $h(\mu(0))=1$.

Proof. Straightforward.

If μ is a fuzzy subset of an *n*-Lie algebra *L*, and *f* is a function defined on *L*, then the fuzzy subset *v* of *f*(*L*) defined by $v(y) = \sup_{x \in f^{-1}(y)} \{\mu(x)\}$, for all $y \in f(L)$ is called the image of μ under *f*. Similarly, if *v* is a fuzzy subset in *f*(*L*), then the fuzzy set $\mu = v \circ f$ in *L* is called preimage of *v* under *f*.

Theorem 3.22

An *n*-Lie algebra homomorphic preimage of a fuzzy ideal is a fuzzy ideal.

Proof. Let $\varphi:L_1 \rightarrow L_2$ be an *n*-Lie algebra homomorphism, and ν be a fuzzy ideal of L_2 and μ be the preimage of ν under φ . Then, as it is not difficult to see, μ is a fuzzy subspace of L and

$$\mu([x_1,...,x_{i-1},y,x_{i+1},...,x_n]) = \nu(\varphi([x_1,...,x_{i-1},y,x_{i+1},...,x_n])) = \nu([\varphi(x_1),...,\varphi(x_{i-1}),\varphi(y),\varphi(x_{i+1}),...,\varphi(x_n)]) \geq \nu(\varphi(y)) = \mu(y),$$

for all $x_1, \ldots, x_n, y \in L$ and $\alpha \in F$.

A fuzzy set μ of a set *X* is said to possess sup property if for every non-empty subset *S* of *X*, there exists $x_0 \in S$ such that $\mu(x_0) = \sup_{x \in S} \{\mu(x)\}$.

Theorem 3.23

An *n*-Lie algebra homomorphism image of a fuzzy ideal having the sup property is a fuzzy ideal.

Proof. Suppose that $\varphi:L_1 \rightarrow L_2$ is an *n*-Lie algebra homomorphism, μ is a fuzzy ideal of L_1 with the sup property and ν is the image of μ under φ . Suppose that $\varphi(x), \varphi(y) \in \varphi(L)$. Let $x_0 \in \varphi^{-1}(\varphi((x))$ and $y_0 \in \varphi^{-1}(\varphi((x)))$ be such that $\mu(x_0) = \sup_{t \in \varphi^{-1}(\varphi(x))} {\mu(t)}$ and $\mu(y_0) = \sup_{t \in \varphi^{-1}(\varphi(y))} {\mu(t)}$, respectively. Then,

$$\begin{aligned} v(\varphi(x) + \varphi(y)) &= \sup_{t \in \varphi^{-1}(\varphi(x) + \varphi(y))} \{\mu(t)\} \ge \mu(x_0 + y_0) \ge \min\{\mu(x_0), \mu(y_0)\} \\ &= \min\left\{ \sup_{t \in \varphi^{-1}(\varphi(x))} \{\mu(t)\}, \sup_{t \in \varphi^{-1}(\varphi(y))} \{\mu(t)\} \right\} \\ &= \min\{v(\varphi(x), v(\varphi(y))\}, \end{aligned}$$

and

$$v(\varphi(-x)) = \sup_{t \in \varphi^{-1}(\varphi(-x))} \{\mu(t)\} \ge \mu(-x_0) = \mu(x_0) = v(\varphi(x)),$$

$$v(\alpha\varphi(x)) = \sup_{t \in \alpha\varphi^{-1}(\varphi(x))} \{\mu(t)\} \ge \mu(\alpha x_0) \ge \mu(x_0) = v(\varphi(x)).$$

Finally, let $\varphi(x_1), \dots, \varphi(x_n), \varphi(y) \in \varphi(L)$

 $a_1 \in \varphi^{-1}(\varphi(x_1)), \dots, a_n \in \varphi^{-1}(\varphi(x_n)), b \in \varphi^{-1}(\varphi(y))$ be such that

$$\mu(a_1) = \sup_{t \in \varphi^{-1}(\varphi(x_1))} \{\mu(t)\}, \dots, \mu(a_n) = \sup_{t \in \varphi^{-1}(\varphi(x_n))} \{\mu(t)\},$$
$$\mu(b) = \sup_{t \in \varphi^{-1}(\varphi(y))} \{\mu(t)\}.$$

Then,

$$v([\varphi(x_{1}),...,\varphi(x_{i-1}),\varphi(y),\varphi(x_{i+1}),...,\varphi(x_{n})]) = v(\varphi([\varphi(x_{1}),...,\varphi(x_{i-1}),\varphi(y),\varphi(x_{i+1}),...,\varphi(x_{n})])) = \sup_{t \in \varphi^{-1}(\varphi([\varphi(x_{1}),...,\varphi(x_{i-1}),\varphi(y),\varphi(x_{i+1}),...,\varphi(x_{n})]))} \{\mu(t)\}$$

 $\geq \mu([a_1,...,a_{i-1},b,a_{i+1},...,a_n]) \geq \mu(b) = v(\varphi(y)).$

This proves that v is a fuzzy ideal of $\varphi(L)$.

Fuzzy Quotient n-Lie Algebras

If *I* is an ideal of an *n*-Lie algebra *L*, then we can define a new *n*-Lie algebra on the quotient space L/I with the *n*-linear map

$$[x_1 + I, \dots, x_n + I] := [x_1, \dots, x_n] + I,$$

for all $x_1, \ldots, x_n \in L$.

If *I* is an ideal of an *n*-Lie algebra *L*, then the quotient space L/I is also an *n*-Lie algebra and is the quotient *n*-Lie algebra.

Theorem 4.1

Let *L* be an *n*-Lie algebra.

• Let μ be a fuzzy ideal of L and let $t=\mu(0)$. Then the fuzzy subset μ^* of $L/\overline{\mu_t}$ defined by $\mu^*(x+\overline{\mu_t}) = \mu(x)$ for all $x \in L$, is a fuzzy ideal of $L/\overline{\mu_t}$.

• If *I* is an ideal of *L* and *v* is a fuzzy ideal of *L*/*I* such that $v(x+\underline{I})=v(I)$ only when $x \in I$, then there exists a fuzzy ideal μ of *L* such that $\mu_t = I$, where $t=\mu(0)$; and $v=\mu^*$.

Proof. (1). Since μ is a fuzzy ideal of L, $\overline{\mu_t}$ is an ideal of L. Now, μ^* is well-defined, because if $x + \overline{\mu_t} = y + \overline{\mu_t}$ for $x, y \in L$, then $x - y \in \overline{\mu_t}$ and so $\mu(x-y) = \mu(0)$. Hence, $\mu(x) = \mu(y)$ which implies that $\mu^*(x + \overline{\mu_t}) = \mu^*(y + \overline{\mu_t})$.

Now, we show μ^* is a fuzzy ideal of *L*. Let $x,y \in L$ and $\alpha \in F$. Then, we have

$$\mu^{*}((x + \overline{\mu_{t}}) + (y + \overline{\mu_{t}})) = \mu^{*}((x + y) + \overline{\mu_{t}}) = \mu(x + y) \ge \min\{\mu(x), \mu(y)\}$$
$$= \min\{\mu^{*}(x + \overline{\mu_{t}}), \mu^{*}(y + \overline{\mu_{t}})\},$$

and

and

let

$$u^{*}(-x+\mu_{t}) = \mu(-x) = \mu(x) = \mu^{*}(x+\mu_{t}),$$

$$u^{*}(\alpha(x+\mu_{t})) = \mu^{*}(\alpha x + \mu_{t}) = \mu(\alpha x) \ge \mu(x) = \mu^{*}(x+\mu_{t}),$$

Finally, for $x_1, \ldots, x_n \in L$, we have

$$\mu^{*}([x_{1} + \overline{\mu_{t}}, ..., x_{i-1} + \overline{\mu_{t}}, y + \overline{\mu_{t}}, x_{i+1} + \overline{\mu_{t}}, ..., x_{n} + \overline{\mu_{t}}]) = \mu^{*}([x_{1}, ..., x_{i-1}, y, x_{i+1}, ..., x_{n}] + \overline{\mu_{t}}) = \mu([x_{1}, ..., x_{i-1}, y, x_{i+1}, ..., x_{n}]) \ge \mu(y) = \mu^{*}(y + \mu_{t}).$$

(2). We define a fuzzy subset μ of *L* by $\mu(x)=\nu(x+I)$ for all $x\in L$. A routine computation shows that μ is a fuzzy ideal of *L*. Now, $\overline{\mu_i} = I$, because

$$x \in \overline{\mu_i} \Leftrightarrow \mu(x) = t = \mu(0) \Leftrightarrow \nu(x+I) = \nu(I) \Leftrightarrow x \in I.$$

Finally, $\mu^* = \nu$, since $\mu^*(x+I) = \mu^*(x+\overline{\mu_i}) = \mu(x) = \nu(x+I).$

Let μ be any fuzzy ideal of an *n*-Lie algebra *L* and let $x \in L$. The fuzzy subset μ_x^* of *L* defined by $\mu_x^*(a) = \mu(a-x)$ for all $a \in L$ is called the

J Generalized Lie Theory Appl, an open access journal ISSN: 1736-4337

Let *I* be an ideal of *L*. If χ_I is the characteristic function of *I*, then it is easy to see that $(\chi_I)_x^*$ is the characteristic function of *x*+*I*.

Theorem 4.2

Let μ be any fuzzy ideal of an *n*-Lie algebra *L*. Then the set of all fuzzy cosets of μ in *L*, i.e., the set $L[\mu] = {\mu_x^* | x \in L}$, is an *n*-Lie algebra under the following operations:

$$\begin{split} \mu_{x}^{*} + \mu_{y}^{*} &= \mu_{x+y}^{*} & \text{for all } x, y \in L, \\ \alpha \mu_{x}^{*} &= \mu_{ax}^{*} & \text{for all } x \in L, \alpha \in F, \\ [\mu_{x_{1}}^{*}, \dots, \mu_{x_{n}}^{*}] &= \mu_{[x_{1}, \dots, x_{n}]}^{*} & \text{for all } x_{1}, \dots, x_{n} \in L. \end{split}$$

Theorem 4.3

If μ is any fuzzy ideal of an *n*-Lie algebra *L*, then the map $\phi:L \rightarrow L[\mu]$ defined by $\varphi(x) = \mu_x^*$ for all $x \in L$, is a homomorphism with kernel $\overline{\mu_i}$, where $t = \mu(0)$.

Proof. It is easy to see that *f* is a homomorphism. We show $\mu(x)=\mu(0)$ implies $\mu_x^* = \mu_0^*$. For this, let $a \in L$. Then, $\mu(a) \le \mu(0) = \mu(x)$. If $\mu(a) \le \mu(x)$, then $\mu(a-x)=\mu(a)$, by Lemma 2.2. On the other hand, if $\mu(a)=\mu(x)$, then $a,x \in \{y \in L | \mu(y)=\mu(0)\}$. Hence, $\mu(a-x)=\mu(0)=\mu(x)=\mu(a)$. Therefore, in either case, we have shown that $\mu(a-x)=\mu(a)$ for all $a \in L$. Consequently $\mu_x^* = \mu_0^*$. Also, $\mu_x^* = \mu_0^*$ implies that $\mu(x)=\mu(0)$. Hence, $\mu_x^* = \mu_0^*$ if and only if $\mu(x)=\mu(0)$. Now, we have

$$\ker \varphi = \{x \in L | \varphi(x) = \mu_0^*\} = \{x \in L | \mu_x^* = \mu_0^*\} = \{x \in L | \mu(x) = \mu(0)\} = \mu_t,$$

where $t = \mu(0)$ $t = \mu(0)$.

Theorem 4.4

Given a homomorphism of *n*-Lie algebras $:L \to L'$ and fuzzy ideal μ of *L* and μ' of *L'* such that $\varphi(\mu) \subseteq \mu'$. Then, there is a homomorphism of *n*-Lie algebras $\varphi^*:L[\mu] \to L'[\mu']$, where $\varphi^*(\mu_x^*) = \mu_{\varphi(x)}^*$, such that the following diagram is commutative.

Proof. If $\mu_x^* = \mu_y^*$ then $\mu(x-y) = \mu(0)$. So

$$\mu'(\varphi(x) - \varphi(y)) = \mu'(\varphi(x - y)) = \varphi^{-1}(\mu')(x - y) \ge \mu(x - y) = \mu(0),$$

and so $\mu'(\varphi(x)-\varphi(y))=\mu(0)$. Hence, $\mu'(\varphi(x))=\mu'(\varphi(y))$ holds. Thus, φ' is well-defined. It is easily seen that φ' is a homomorphism.

Let μ be a fuzzy ideal of an *n*-Lie algebra *L*. For any $x,y \in L$, we define a binary relation ~ on *L* by $x \sim y$ if and only if $\mu(x-y)=\mu(0)$. Then ~ is a congruence relation on *L*. We denote $[x]_{\mu}$ the equivalence class containing *x*, and $L/\mu=\{[x]\mu|x\in L\}$ the set of all equivalence classes of *L*. Then, L/μ is an *n*-Lie algebra under the following operations:

$[x]_{\mu} + [y]_{\mu} = [x + y]_{\mu}$	for all $x, y \in L$,
$\alpha[x]_{\mu} = [cx]_{\mu}$	for all $x \in L, \alpha \in F$
$[[x_1]_{\mu}, \dots [x_n]_{\mu}] = [[x_1, \dots, x_n]]_{\mu}$	for all $x, y \in L$.

Theorem 4.5 (Fuzzy first isomorphism theorem)

Let $\varphi: L \rightarrow L'$ be an epimorphism of *n*-Lie algebras and λ be a fuzzy

Let *I* be an ideal and μ a fuzzy ideal of an *n*-Lie algebra *L*. If μ is restricted to *I*, then μ is a fuzzy ideal of *I* and $I|\mu$ is an ideal of L/μ .

Theorem 4.6 (Fuzzy second isomorphism theorem)

Let μ and λ be two fuzzy ideals of an *n*-Lie algebra *L* with $\mu(0)=\lambda(0)$.

Then $\frac{L_{\mu} + L_{\lambda}}{\lambda} \cong \frac{L_{\mu}}{\mu \cap \lambda}$.

Theorem 4.7 (Fuzzy third isomorphism theorem)

Let μ and λ be two fuzzy ideals of an *n*-Lie algebra *L* with $\lambda \subseteq \mu$ and $\mu(0) = \lambda(0)$. Then $\frac{L / \lambda}{L_u / \lambda} \cong L / \mu$.

Conclusion

Methods of construction fuzzy ideals are presented. Connections with various fuzzy quotient n-Lie algebras are proved. Properties of fuzzy subalgebras and ideals of n-ary Lie algebras are described.

References

- 1. Filippov VT (1985) n-ary Lie algebras. (Russian) Sibirsk Mat Zh 26: 126-140.
- Takhtajan LA (1994) On fundation of generalized Nambu mechanics. Commun Math Phys 160: 295-315.
- Nambu Y (1973) Generalized Hamiltonian mechanics. Phys Rev D7: 2405-2412.
- 4. Filippov VT (1988) On n-Lie algebra of Jacobians. Siberian Math J 39: 573-581
- Bremner MR, Hentzel I (2000) Identities for generalized Lie and Jordan products on totally associative triple systems. J Algebra 231: 387-405.
- Bremner MR, Peresi LA (2006) Ternary analogues of Lie and Malcev algebras. Linear Algebra Appl 414: 1-18.
- Faulkner JR, Ferrar JC (1977) Exceptional Lie algebras and related algebraic and geometric structures. Bull London Math Soc 9: 1–35.
- Yehia SE (1996) Fuzzy ideals and fuzzy subalgebras of Lie algebras. Fuzzy Sets Syst 80: 237-244.
- Kim CG, Lee DS (1998) Fuzzy Lie ideals and fuzzy Lie subalgebras. Fuzzy Sets Syst 94: 101-107.
- Akram M (2008) Redefined fuzzy Lie subalgebras. Quasigroups Relat Syst 16: 119-132.
- 11. Davvaz B (2001) Fuzzy Lie algebras. Intern J Appl Math 6: 449-461.
- Jun YB, Chul H (2007) Intuitionistic fuzzy Lie ideals of Lie algebras. Honam Math J 29: 259-268.
- 13. Dudek WA (2000) Fuzzification of n-ary groupoids. Quasigroups Relat Syst 7: 45-66.
- Davvaz B, Dudek WA (2009) Fuzzy *n*-ary groups as a generalization of Rosenfeld's fuzzy groups. J Mult-Valued Logic and Soft Computing 15: 451-469.
- 15. Katsaras AK, Liu BD (1977) Fuzzy vector spaces. J Math Anal Appl 58: 135-146.
- Kondo M, Dudek WA (2005) On the transfer principle in fuzzy theory. Mathware and Soft Computing 12: 41-55.