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Abstract
Properties of fuzzy subalgebras and ideals of n-ary Lie algebras are described. Methods of construction fuzzy 

ideals are presented. Connections with various fuzzy quotient n-Lie algebras are proved.
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Introduction
In 1985 Filippov [1] proposed a generalization of the concept of a 

Lie algebra by replacing the binary operation by n-ary one. He defined 
an n-ary Lie algebra structure on a vector space L as an operation which 
associates with each n–tuple (x1,…,xn) of elements in L another element 
[x1,…,xn] which is n-linear, skew-symmetric:

(1) ( ) 1[ , , ] = s ( )[ , , ]n nx x ign x xσ σ σ 

and satisfies the generalized Jacobi identity (called also the Filippov 
identity):

1 2 1 1 2 1
=1

[[ , , ], , , ] = [ , , ,[ , , , ], , , ],
n

n n i i n i n
i

x x y y x x x y y x x− +∑    

where  σ∈Sn.

Now, such structures are also called n-Lie algebras or Filippov 
algebras. For n=2 we obtain a classical Lie algebras.

Note that such an n-ary operation, realized on the smooth function 
algebra of a manifold and additionally assumed to be an n-derivation, 
is an n-Poisson structure. This general concept, however, was not 
introduced neither by Filippov, nor by other mathematicians that 
time. It was done much later in 1994 by Takhtajan [2] in order to 
formalize mathematically the n-ary generalization of Hamiltonian 
mechanics proposed by Nambu [3]. Apparently Nambu was motivated 
by some problems of quark dynamics and the n-bracket operation he 
considered was:

1 1

1

1

1

[ , , ] :=
n

n

n n

n

f f
x x

f f det
f f
x x

∂ ∂ 
 ∂ ∂ 
 
 

∂ ∂ 
 ∂ ∂ 



   



where L=R[x1,…,xn] is the vector space of polynomials in n-variables.

Nambu does not mentions that the n-bracket operation satisfies the 
generalized Jacobi identity but Filippov reports this operation in his 
paper [1] among other examples of n-Lie algebras. The formal proof 
is given in [4].

Ternary Lie algebras were studied [5,6]. For other generalizations 
and applications see ref. [7].

The study of fuzzy Lie algebras was initiated in refs. [8,9], and 
continued in various directions by many authors (for example [10-
12]). The study of fuzzy n-ary algebras was initiated by Dudek [13]. 
Davvaz and Dudek described fuzzy n-ary groups as a generalization of 

Rosenleld’s fuzzy groups [14].

In this paper we describe fuzzy n-ary Lie algebras.

Preliminaries
Let X be a non-empty set. A fuzzy subset µ of X is a function µ: 

X→[0,1]. Let µ and λ be two fuzzy subsets of X, we say that µ is contained 
in λ, if µ(x)≤ λ(x) for all x∈X. The set = { | ( ) }, [0,1]t x X x t tµ µ∈ ≥ ∈  is 
called a level subset of µ.

Definition 2.1

Let V be a vector space over a field F. A fuzzy subset µ of V is called 
a fuzzy subspace of V if for all x,y∈V and α∈F, the following conditions 
are satisfied:

• µ(x+y)≥min{µ(x), µ(y)} for all x,y∈V,

• µ(αx)≥µ(x) for all x∈V, α∈F.

Note that the second condition implies, µ(−x)≥ µ(x) for all x∈V,

Lemma 2.2

If µ is a fuzzy subspace of a vector space V, then µ(x)≤ µ(0) for all
x∈V, and

• µ(x)=µ(−x),

• µ(x−y)=µ(0)⇒ µ(x)=µ(y),

• µ(x)< µ(y)⇒ µ(x−y)=µ(x)=µ(y−x)

for all x,y∈V.

Proof. Directly from the definition we obtain µ(x)≤ µ(0) and 
µ(x)=µ(−x). Moreover, for all x,y∈V we have

min{ ( ), ( )} min{min{ ( ), ( )}, ( )} = min{ ( ), ( )}
= min{ (( ) ), ( )} min{min{ ( ), ( )}, ( )}
= min{ ( ), ( )},

x y y x y y x y
x y y y x y y y

x y y

µ µ µ µ µ µ µ
µ µ µ µ µ
µ µ

− ≥ −
− + ≥ −

−

which implies



Citation: Davvaz B, Dudek WA (2017) Fuzzy n-Lie Algebras. J Generalized Lie Theory Appl 11: 268. doi: 10.4172/1736-4337.1000268

Page 2 of 6

Volume 11 • Issue 2 • 1000268J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

min{ ( ), ( )} = min{ ( ), ( )}.x y y x yµ µ µ µ−

Similarly

min{ ( ), ( )} = min{ ( ), ( )}.x y x x yµ µ µ µ−

Hence
min{ ( ), ( )} = min{ ( ), ( )} = min{ ( ), ( )}.x y y x y x x yµ µ µ µ µ µ− −

This for µ(x−y)=µ(0) gives µ(x)=µ(y), and µ(x−y)=µ(x) for µ(x)< 
µ(y).

Theorem 2.3

For a fuzzy subset µ of a vector space V, the following statements 
are equivalent.

• µ is a fuzzy subspace of V.

• Each non-empty tµ  is a subspace of V.

This theorem firstly proved in ref. [15] is a consequence of the 
Transfer Principle for fuzzy sets described in ref. [16].

Let { }i i Iµ ∈  be a collection of fuzzy subsets of X. Then, we define the 

fuzzy subsets i I∈  and ii I
µ

∈  by:

( )( ) = { ( )} f ,inf

( )( ) = { ( )} f .sup

i i
i Ii I

i i
i Ii I

x x or all x X

x x or all x X

µ µ

µ µ
∈∈

∈∈

∈

∈





Fuzzy Subalgebras and Ideals
Recall that a non-empty subset S of an n-Lie algebra L is its 

subalgebra if it is a subspace of a vector space L and [x1,…,xn]∈S for 
all x1,…,xn∈S.

A subspace S of an i-ideal of L if for all x1,..., xn∈L and y∈S we have 
[x1,...,x{i-1},y, x{i+1}, ..., xn]∈ L.

Two n-Lie algebras L1, L2 over the same field F are isomorphic 
if there exists a vector space isomorphism ϕ:L1→L2 such that for all  
ϕ([x1,…,xn])=[ϕ(x1),..,ϕ(xn)] for all x1,…,xn∈L.

Let L be an n-Lie algebra. Fixing in [x1, x2,…,xn] elements x2,…, 
x{n-1} we obtain a new binary operation 〈x,y〉=[x,x2,…,xn−1,y] with the 
property 〈xk,y〉=〈y,xk〉=0 for all k=2,…,n−1 and all y∈L. It is easily to 
see that L with respect to this new operation is an classical Lie algebra. 
It is called a binary retract. Fixing various x2,…,xn-1 we obtain various 
(generally non-isomorphic) retracts. Obviously, any subalgebra (ideal) 
of an n-Lie algebra is a subalgebra (ideal) of each binary retract of L. 
The converse is not true. Hence results obtained for n-Lie algebras are 
essential generalizations of results proved for Lie algebras.

Basing on the idea of fuzzyfications of algebras with one n-ary 
operation proposed in ref. [13] we present a fuzzyfication of n-Lie 
algebras.

Definition 3.1

Let L be an n-Lie algebra. A fuzzy subalgebra of L is a fuzzy subspace 
µ such that

1 1 1([ , , ]) min{ ( ), , ( )} f , , .n n nx x x x or all x x Lµ µ µ≥ ∈  

Definition 3.2 

Let L be an n-Lie algebra. A fuzzy ideal of L is a fuzzy subspace µ such that

1 1([ , , ]) ( ) for all , , and 1 .n i nx x x x x L i nµ µ≥ ∈ ≤ ≤ 

The following facts are obvious. Their proofs are very similar to the 
proofs of analogous results for fuzzy n-ary systems [13] and fuzzy Lie 
algebras [9].

Proposition 3.3:

A fuzzy subspace µ of an n-Lie algebra L is its fuzzy ideal if and 
only if

1 1([ , , ]) max{ ( ), , ( )}n nx x x xµ µ µ≥  		                (1)

for all x1,…,xn∈L.

Proposition 3.4: If µ is a fuzzy ideal of an n-Lie algebra L, then

= { | ( ) = (0)}L x L xµ µ µ∈

is an ideal of L contained in every non-empty level subset of µ.

Proposition 3.5: Let µ and λ be two fuzzy ideals of an n-Lie algebra 
L such that µ(0)=λ(0). Then Lµ∩λ=Lµ∩Lλ.

Theorem 3.6

Let ϕ:L→L′ be an n-Lie algebra homomorphism of an n-Lie algebra 
L onto an n-Lie algebra L′. Then the following conditions hold:

• if µ is a fuzzy ideal of L, then ϕ(µ) is a fuzzy ideal of L′,

• if v is a fuzzy ideal of L′ then ϕ−1(v) is a fuzzy ideal of L,

• 1 1( ) = ( )t tϕ ν ϕ ν− −  for every t∈[0,1] and every fuzzy ideal v of L′.

Proposition 3.7: Let L be an n-Lie algebra. Then the intersection of 
any family of fuzzy subalgebras (ideals) of L is again a fuzzy subalgebra 
(ideal) of L.

It is easy to see that the union of fuzzy subalgebras (ideals) of an 
n-Lie algebra L is not a fuzzy subalgebra (ideal) of L, in general. But 
we have the following proposition on the union of fuzzy subalgebras 
(ideals) of L.

Proposition 3.8: Let {µn} be a chain of fuzzy subalgebras (ideals) of 
an n-Lie algebra L. Then nn

µ


 is a fuzzy subalgebra (ideal) of L.

Theorem 3.9

For a fuzzy subset µ of an n-Lie algebra L, the following statements 
are equivalent.

• µ is a fuzzy subalgebra (ideal) of L.

• Each non-empty tµ , is a subalgebra (ideal) of L.

Proof. Let µ be a fuzzy ideal of L. Since µ is a fuzzy subspace of 
L, by Theorem 2.3, each non-empty tµ  is a subspace of L. Therefore, 

it is enough to prove that 
1

[ , , , , , , ]t t
i n i

L L L Lµ µ
− −

⊆
 

  . For every ty µ∈  

and x1,…,xn∈L we show that 1 1 1[ , , , , , , ]i i n tx x y x x µ− + ∈  . Since µ is 
a fuzzy ideal, we have

1 1 1( ) ([ , , , , , , ])i i nt y x x y x xµ µ − +≤ ≤  

and so 1 1 1[ , , , , , , ]i i n tx x y x x µ− + ∈  .

Conversely, assume that every non-empty tµ  is an ideal of L. 
Therefore, tµ  is a subspace of L and so by Theorem 2.3, µ is a fuzzy 

subspace of L. Now, for every y∈L, we put t0=µ(y). Then, 
0t

y µ∈ . Therefore, 
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for every x1,…xn∈L we have 1 1 1 0
[ , , , , , , ]i i n tx x y x x µ− + ∈   which implies 

that 1 1 1([ , , , , , , ])i i nx x y x xµ − +   0 = ( )t yµ≥ . So, µ is a fuzzy ideal.

For subalgebras the proof is analogous.

Proposition 3.10: Let L be an n-Lie algebra and µ be a fuzzy 

subalgebra of L. Let 1t
µ  and 2t

µ  (with t1<t2) be any two level 

subalgebras of µ. Then 
1 2

=t tµ µ  if and only if there is no x in L such 
that t1 ≤ µ(x)<t2.

Theorem 3.11

Let {S| λ∈λ}, where ∅≠λ⊆[0,1], be a collection of ideals of an n-Lie 
algebra L such that

(i) =L Sλ
λ∈Λ


(ii) α > β ⇔ Sα⊂ Sβ for all α,β∈Λ

Then µ defined by

( ) = sup{ | }x x Sλµ λ ∈ Λ ∈

is a fuzzy ideal of L.

Proof. By Theorem 3.9, it is sufficient to show that every non-empty 

level αµ  is an ideal of L.

Let αµ ≠ ∅  for some fixed α∈[0,1]. Then

= sup{ | < } = sup{ | }S Sα λα λ λ α λ∈ Λ ∈ Λ ⊂

or

sup{ | < } = sup{ | }.S Sα λα λ λ α λ≠ ∈ Λ ∈ Λ ⊂

In the first case we have 
<

= Sα λ
λ α

µ


, because

( )
<

for all < .x x S x Sα λ λ
λ α

µ λ α∈ ⇔ ∈ ⇔ ∈


In the second, there exists ε>0 such that (α −ε,λ)∩λ=∅. In this case 

= Sα λ
λ α

µ
≥


. Indeed, if x Sλ
λ α≥

∈


, then x∈Sλ for some λ≥α, which gives 

µ(x)≥λ≥α. Thus x αµ∈ , i.e., Sλ α
λ α

µ
≥

⊆
 .

Conversely, if x Sλ∈ , then x Sλ∈  for all λ≥α, which implies 

x Sλ∈  for all λ>α−ε, i.e., if x∈Sλ then λ≤α−ε. Thus µ(x)≤α−ε. 

Therefore x αµ∈ . Hence Sα λ
λ α

µ
≥

⊆


, and consequently = Sα λ
λ α

µ
≥


. 
This completes our proof.

Theorem 3.12

Let µ be a fuzzy subset defined on an n-Lie algebra L and let 
Im(µ)={t0,t1,t2,…}, where 1≥t0>t1>t2…≥0. If S0 ⊂S1⊂S2… are subalgebras 
(ideals) of L such that µ(Sk\Sk−1)=tk for k=0,1,2,…, where S−1=∅, then µ 
is a fuzzy subalgebra (ideal) of L.

Proof. First consider the case when all Si are subalgebras. If 

1[ , , ] \n kk
x x L S∈



 then also at least one of x1,…,xn is in \ kk
L S


 because 
in the opposite case x1,…,xn and [x1,…,xn] will be in some Sk. So, in this case

1 1([ , , ]) = 0 = min{ ( ), , ( )}.n nx x x xµ µ µ 

It is clear that for arbitrary elements x1,…, xn∈L there exists only one 
k such that [x1,…,xn]∈Sk\Sk−1 and only one ki such that 1\i k ki i

x S S −∈ . 

Thus 1([ , , ])nx xµ   = kt , ( ) =i ki
x tµ .

Suppose >k ki
t t  for all i=1,2,…,n. Then, by the assumption, ki<k 

and 1k s k ki
S S S S−⊆ ⊆ ⊂ , where s=max{k1,…,kn}. Hence x1,…xn∈Sk−1 

and, in the consequence, [x1,…xn]∈Sk−1 because Sk−1 is a subalgebra. 
This is a contradiction. Therefore there is at least one k ki

t t≤ . In this 
case 1 1([ , , ]) = min{ ( ), , ( )}n k k ni

x x t t x xµ µ µ≥ ≥  . Since µ also is a fuzzy 
subspace of a vector space L, it is a fuzzy subalgebra of L.

Now, let all Si be ideals and let [x1,…xn]∈Sk\Sk−1 for some x1,…xn∈L. 
Then these x1,…xn are in L\Sk−1. If not, then there exists xi∈Sk−1. But in 
this case [x1,…xn]∈Sk−1 because Sk−1 is an ideal. This is a contradiction. 

So, all xi∈L\Sk−1. Hence 1 1max{ ( ), , ( )} = ([ , , ])n k nx x t x xµ µ µ≤  . Now, 

if 1[ , , ] \n kk
x x L S∈



, then also all x1,…xn are in \ kk
L S


. Thus 

1 1max{ ( ), , ( )} = ([ , , ])n nx x x xµ µ µ 

. This completes the proof that 

µ is a fuzzy ideal.

Corollary 3.13

For any chain S0⊂S1⊂S2… of subalgebras (ideals) of an n-Lie algebra 
L and any chain of reals 1≥t0>t1>…≥0 there exists a fuzzy subalgebra 

(ideal) µ of L such that =t kk
Sµ .

Theorem 3.14

Let Im(µ)={t1|i∈I} be the image of a fuzzy subalgebra (ideal) µ of an 
n-Lie algebra L. Then

(a) There exists a unique t0∈Im(µ) such that t0≥ ti for all ti∈Im(µ),

(b) L is the set-theoretic union of all ti
µ , ( )it Im µ∈ ,

(c) = { | ( )}t ii
t Imµ µΩ ∈  is linearly ordered by inclusion,

(d) Ω contains all level subalgebras (ideals) of µ if and only if µ 
attains its infimum on all subalgebras (ideals) of L.

Proof. (a) Follows from the fact that t0=µ(0)≥µ(x) for all x∈L.

(b) If x∈L, then µ(x)=tx∈Im(µ). Thus ti
x Lµ∈ ⊆


, where 
ti∈Im(µ), which proves (b).

(c) Since t t i ji j
t tµ µ⊆ ⇔ ≥  for i,j∈I, then Ω linearly ordered by 

inclusion.

(d) Suppose that Ω contains all levels of µ. Let S be a subalgebra 
(ideal) of L. If µ is constant on S, then we are done. Assume that µ is 
not constant on S. We have two cases: (1) S=L and (2) S≠L. For S=L 

let β=infIm(µ). Then β≤t∈Im(µ), i.e., tβµ µ⊇  for all t∈Im(µ). But 

0 = Lµ ∈Ω  because Ω contains all levels of µ. Hence there exists 

t′∈Im(µ) such that =t Lµ ′ . It follows that =t Lβµ µ ′⊃  so that 

= =t Lβµ µ ′  because every level of µ is a subalgebra (resp. ideal) of L.

Now it sufficient to show that β=t′. If β<t′, then there exists 

t″∈Im(µ) such that β≤t″<t′. This implies =t t Lµ µ′′ ′⊃ , which is a 
contradiction. Therefore β=t′∈Im(µ).

In the case S≠L we consider the fuzzy set µS defined by
f ,

( ) =
0 f \ .S

or x S
x

or x L S
α

µ
∈

 ∈
Clearly µS is a fuzzy subalgebra (ideal) of L if S is a subalgebra (ideal).

Let
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= { | ( ) = f }.iJ i I x t or some x Sµ∈ ∈

Then = { | }S ti
i JµΩ ∈  contains (by the assumption) all levels of µS. 

This means that there exists x0∈S such that 0( ) = inf{ ( ) | },Sx x x Sµ µ ∈  
i.e., µ(x0)=µS(x) for some x∈S. Hence µ attains its infimum on all 
subalgebras (ideals) of L.

To prove the converse let αµ  be a level subalgebra of µ. If α=t for 
some t∈Im(µ), then αµ ∈Ω . If α≠t for all t∈Im(µ), then there does not 
exist x∈L such that µ(x)=α.

Let S={x∈L|µ(x)>α}. Obviously 0∈S and µ(xi)>α for all xi ∈S. From 
the fact that µ is a fuzzy subalgebra we obtain

1 1 2([ , , ]) min{ ( ), ( ), , ( )} > ,n nx x x x xµ µ µ µ α≥ 

which proves [x1,…,xn]∈S. Hence S is a subalgebra. By hypothesis, 
there exists y∈S such that µ(y)=inf{µ(x)|x∈S}. But µ(y)∈Im(µ) implies 
µ(y)=t′ for some t′∈Im(µ). Hence inf{µ(x)|x∈S}=t′>α.

Note that there does not exist z∈L such that α≤µ(z)<t′. This gives 
= tαµ µ ′ . Hence αµ ∈Ω . Thus Ω contains all level subalgebras of µ.

Theorem 3.15

If every fuzzy subalgebra (ideal) µ defined on an n-Lie algebra L has 
a finite number of values, then every descending chain of subalgebras 
(ideals) of L terminates at finite step.

Proof. Suppose there exists a strictly descending chain

S0⊃S1⊃S2⊃…

of ideals of L which does not terminate at finite step. We prove that µ 
defined by

1f \ ,
( ) = 1

1 f ,

k k

k

k or x S S
x k

or x S
µ +

 ∈ +
 ∈ 

where k=0,1,2,… and S0=L, is a fuzzy ideal with an infinite number of 
values.

If 1[ , , ]n kx x S∈



, then obviously

1 1 2([ , , ]) = 1 max{ ( ), ( ), , ( )}.n nx x x x xµ µ µ µ≥ 

If 1[ , , ]n kx x S∈



, then 1 1[ , , ] \n p px x S S +∈  for some p≥0 

and there exists at least one i=1,2,…,n such that i kx S∈


, because 

1, , n kx x S∈



 implies 1[ , , ]n kx x S∈



.

Let Sm be a maximal ideal of L such that at least one of 
x1,…,xn belongs to Sm\Sm+1. Then m≤p. Indeed, for m>p we have 

1 2 1, , , n m p px x x S S S+∈ ⊆ ⊂  and, consequently 1 1[ , , ]n px x S +∈ , 

which is impossible. Thus m≤p and

1 1([ , , ]) = max{ ( ), , ( )} = .
1 1n n

p mx x x x
p m

µ µ µ≥
+ +

 

This proves that µ is a fuzzy ideal and has an infinite number of 
different values. This is a contradiction. Hence every descending chain 
of ideals terminates at finite step.

For subalgebras the proof is analogous.

Theorem 3.16

Every ascending chain of subalgebras (ideals) of an n-Lie algebra 
L terminates at finite step if and only if the set of values of any fuzzy 
subalgebra (ideal) of L is a well-ordered subset of [0,1].

Proof. If the set of values of a fuzzy subalgebra (ideal) µ is not well-
ordered, then there exists a strictly decreasing sequence {ti} such that 
ti=µ(xi) for some xi∈L. But in this case ti

µ  form a strictly ascending 
chain of subalgebras (ideals) of L, which is a contradiction.

In order to prove the converse suppose that there exists a strictly 
ascending chain S1⊂S2⊂S3⊂… of subalgebras (ideals) of L. Then 

= i
i N

M S
∈


 is a subalgebra (ideal) of L and µ defined by

0 f ,
( ) = 1 w = min{ | }i

or x M
x

here k i x S
k

µ
∈




∈
is a fuzzy subalgebra (ideal) on L.

Indeed, for every x1,…,xn∈M there exist a minimal number ki such 
that i ki

x S∈ , and a minimal number p such that [x1,…,xn]∈Sp. If all Si 
are subalgebras, then for k=max{k1,k2,…,kn} all x1,…,xn and [x1,…,xn]
are in Sk. Thus k≥p. Consequently,

1 1 2
1 1([ , , ]) = = min{ ( ), ( ), , ( )}.n nx x x x x
p k

µ µ µ µ≥ 

The case when at least one of x1,x2,…,xn is not in M is obvious. 
Hence µ is a fuzzy subalgebra.

Now, if all Si are ideals, then [x1,…,xn]∈Sm for m=min{k1,…,kn}. 
Thus p≤m. Hence

1 1 2
1 1([ , , ]) = = max{ ( ), ( ), , ( )},n nx x x x x
p m

µ µ µ µ≥ 

which means that in this case µ is a fuzzy ideal.

Since the chain S1⊂S2⊂S3⊂… is not terminating, µ has a strictly 
descending sequence of values. This contradicts that the set of values 
of any fuzzy subalgebra (ideal) is well-ordered. The proof is complete.

Definition 3.17

A fuzzy subset µ of an n-Lie algebra L is said to be normal if µ(0)=1.

The following lemma is obvious.

Lemma 3.18

If µ is a fuzzy subalgebra (ideal) of an n-Lie algebra L, then µ+ 
defined by

µ+(x)=µ(x)+1−µ(0)

is a normal fuzzy subalgebra (ideal) of L.

Corollary 3.19

Any fuzzy subalgebra (ideal) of an n-Lie algebra L is contained in 
some normal fuzzy subalgebra (ideal) of it.

Proof. Indeed, ( ) ( ) 1 (0) = ( )x x xµ µ µ µ +≤ + −  for every x∈L.

Proposition 3.20: A maximal normal fuzzy subalgebra of an n-Lie 
algebra L takes only two values: 0 and 1.

Proof. If µ(x)=1 for all x∈L, then obviously µ is a maximal normal 
fuzzy subalgebra of L. If µ is a maximal normal fuzzy subalgebra of 
L and 0<µ(a)<1 for some a∈L, then a fuzzy subset v defined by 

( )1( ) = ( ) ( )
2

x x aν µ µ+  is a fuzzy subalgebra of L. Moreover, v+ is a 

non-constant normal fuzzy subalgebra of L such that µ(x)≤v+(x) for 
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every x∈L. Thus, µ is not maximal. Obtained contradiction shows that 
µ(a)=0 for all µ(a)<1.

Proposition 3.21: Let µ be a fuzzy subalgebra (ideal) of an n-Lie 
algebra L. If h:[0,µ(0)]→[0,1] is an increasing function, then a fuzzy 
subset µh defined on L by µh(x)=h(µ(x)) is a fuzzy subalgebra (ideal). 
Moreover, µh is normal if and only if h(µ (0))=1.

Proof. Straightforward.

If µ is a fuzzy subset of an n-Lie algebra L, and f is a function defined 
on L, then the fuzzy subset v of f(L) defined by 1( )( ) = { ( )},sup x f yv y xµ−∈  
for all y∈f(L) is called the image of µ under f. Similarly, if v is a fuzzy 
subset in f(L), then the fuzzy set µ=vf in L is called preimage of v under f.

Theorem 3.22

An n-Lie algebra homomorphic preimage of a fuzzy ideal is a fuzzy 
ideal.

Proof. Let ϕ:L1→L2 be an n-Lie algebra homomorphism, and v be 
a fuzzy ideal of L2 and µ be the preimage of v under ϕ. Then, as it is not 
difficult to see, µ is a fuzzy subspace of L and

1 1 1 1 1 1

1 1 1

([ , , , , , , ]) = ( ([ , , , , , , ]))
= ([ ( ), , ( ), ( ), ( ), , ( )])

( ( )) = ( ),

i i n i i n

i i n

x x y x x v x x y x x
v x x y x x
v y y

µ ϕ
ϕ ϕ ϕ ϕ ϕ

ϕ µ

− + − +

− +

≥

   

 

for all x1,…,xn,y∈L and α∈F.

A fuzzy set µ of a set X is said to possess sup property if for every 
non-empty subset S of X, there exists x0∈S such that µ(x0)=supx∈S{µ(x)}.

Theorem 3.23

An n-Lie algebra homomorphism image of a fuzzy ideal having the 
sup property is a fuzzy ideal.

Proof. Suppose that ϕ:L1→L2 is an n-Lie algebra homomorphism, μ 
is a fuzzy ideal of L1 with the sup property and v is the image of µ under 
ϕ. Suppose that ϕ(x),ϕ(y)∈ϕ(L). Let x0∈ϕ−1(ϕ((x)) and y0∈ϕ−1(ϕ((x)) be 
such that 10 ( ( ))( ) = { ( )}supt xx tϕ ϕµ µ−∈  and 10 ( ( ))( ) = { ( )}supt yy tϕ ϕµ µ−∈ , 
respectively. Then,

0 0 0 0
1( ( ) ( ))

1 1( ( )) ( ( ))

( ( ) ( )) = { ( )} ( ) min{ ( ), ( )}sup

= min { ( )}, { ( )}sup sup

= min{ ( ( ), ( ( ))},

t x y

t x t y

v x y t x y x y

t t

v x v y

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ µ µ µ µ

µ µ

ϕ ϕ

−∈ +

− −∈ ∈

+ ≥ + ≥

  
 
  

and

0 0
1( ( ))

0 0
1 ( ( ))

( ( )) = { ( )} ( ) = ( ) = ( ( )),sup

( ( )) = { ( )} ( ) ( ) = ( ( )).sup
t x

t x

v x t x x v x

v x t x x v x
ϕ ϕ

αϕ ϕ

ϕ µ µ µ ϕ

αϕ µ µ α µ ϕ

−∈ −

−∈

− ≥ −

≥ ≥

Finally, let 1( ), , ( ), ( ) ( )nx x y Lϕ ϕ ϕ ϕ∈  and let 

1 1
1 1( ( )), , ( ( ))n na x a xϕ ϕ ϕ ϕ− −∈ ∈

, 1( ( ))b yϕ ϕ−∈  be such that

1
1 1( ( )) ( ( ))1

1 ( ( ))

( ) = { ( )}, , ( ) = { ( )},sup sup

( ) = { ( )}.sup

n
t x t xn

t y

a t a t

b t
ϕ ϕ ϕ ϕ

ϕ ϕ

µ µ µ µ

µ µ

− −∈ ∈

−∈



Then,

1 1 1

1 1 1

1( ([ ( ), , ( ), ( ), ( ), , ( )]))1 1 1

1 1 1

([ ( ), , ( ), ( ), ( ), , ( )])
= ( ([ ( ), , ( ), ( ), ( ), , ( )]))
= { ( )}sup

([ , , , , , , ]) ( ) = ( ( )).

i i n

i i n

t x x y x xi i n

i i n

v x x y x x
v x x y x x

t

a a b a a b v y
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

µ

µ µ ϕ

− +

− +

−∈ − +

− +≥ ≥

 

 

 

 

This proves that v is a fuzzy ideal of ϕ(L).

Fuzzy Quotient n-Lie Algebras
 If I is an ideal of an n-Lie algebra L, then we can define a new n-Lie 

algebra on the quotient space L/I with the n-linear map

1 1[ , , ] := [ , , ] ,n nx I x I x x I+ + + 

for all x1,…,xn∈L.

If I is an ideal of an n-Lie algebra L, then the quotient space L/I is 
also an n-Lie algebra and is the quotient n-Lie algebra.

Theorem 4.1

Let L be an n-Lie algebra.

• Let µ be a fuzzy ideal of L and let t=µ(0). Then the fuzzy subset 

µ* of / tL µ  defined by 
*( ) = ( )tx xµ µ µ+  for all x∈L, is a fuzzy ideal 

of / tL µ .

• If I is an ideal of L and v is a fuzzy ideal of L/I such that v(x+I)=v(I) 
only when x∈I, then there exists a fuzzy ideal µ of L such that =t Iµ , 
where t=µ(0); and v=µ*.

Proof. (1). Since µ is a fuzzy ideal of L, tµ  is an ideal of L. 

Now, µ* is well-defined, because if =t tx yµ µ+ +  for x,y∈L, then 

tx y µ− ∈  and so µ(x−y)=µ(0). Hence, µ(x)=µ(y) which implies that 
* *( ) = ( )t tx yµ µ µ µ+ + .

Now, we show µ* is a fuzzy ideal of L. Let x,y∈L and α∈F. Then, 
we have

* *

* *

(( ) ( )) (( ) ) = ( ) min{ ( ), ( )}

= min{ ( ), ( )},
t t t

t t

x y x y x y x y

x y

µ µ µ µ µ µ µ µ

µ µ µ µ

+ + + = + + + ≥

+ +

and

* *

* * *

( ) ( ) = ( ) = ( ),

( ( )) ( ) = ( ) ( ) = ( ).
t t

t t t

x x x x

x x x x x

µ µ µ µ µ µ

µ α µ µ α µ µ α µ µ µ

− + = − +

+ = + ≥ +

Finally, for x1,…,xn∈L, we have
*

1 1 1

*
1 1 1

*
1 1 1

([ , , , , , , ])

= ([ , , , , , ] )
= ([ , , , , , ]) ( ) = ( ).

t i t t i t n t

i i n t

i i n t

x x y x x

x x y x x
x x y x x y y

µ µ µ µ µ µ

µ µ
µ µ µ µ

− +

− +

− +

+ + + + +

+
≥ +

 

 

 

(2). We define a fuzzy subset µ of L by µ(x)=v(x+I) for all x∈L. A 
routine computation shows that µ is a fuzzy ideal of L. Now, =t Iµ , 
because

( ) = = (0) ( ) = ( ) .tx x t x I I x Iµ µ µ ν ν∈ ⇔ ⇔ + ⇔ ∈

Finally, µ*=v, since 
* *( ) = ( ) = ( ) = ( ).tx I x x x Iµ µ µ µ ν+ + +

Let µ be any fuzzy ideal of an n-Lie algebra L and let x∈L. The fuzzy 
subset *

xµ  of L defined by *( ) = ( ) fx a a x or all a Lµ µ − ∈  is called the 
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fuzzy coset determined by x and µ.

Let I be an ideal of L. If χI is the characteristic function of I, then it is 
easy to see that *( )I xχ  is the characteristic function of x+I.

Theorem 4.2

Let µ be any fuzzy ideal of an n-Lie algebra L. Then the set of all 
fuzzy cosets of µ in L, i.e., the set *[ ] = { | }xL x Lµ µ ∈ , is an n-Lie algebra 
under the following operations:

* * *

* *

* * *
[ , , ] 11 1

= f , ,
= f , ,

[ , , ] = f , , .

x y x y

x x

x x x x nn n

or all x y L
or all x L F
or all x x L

α

µ µ µ
αµ µ α
µ µ µ

++ ∈
∈ ∈

∈


 

Theorem 4.3

If µ is any fuzzy ideal of an n-Lie algebra L, then the map ϕ:L→L[µ] 

defined by *( ) = xxϕ µ  for all x∈L, is a homomorphism with kernel tµ , 
where t=µ(0).

Proof. It is easy to see that f is a homomorphism. We show 
µ(x)=µ(0) implies * *

0=xµ µ . For this, let a∈L. Then, µ(a)≤µ(0)=µ(x). 
If µ(a)<µ(x), then µ(a−x)=µ(a), by Lemma 2.2. On the other hand, if 
µ(a)=µ(x), then a,x∈{y∈L|µ(y)=µ(0)}. Hence, µ(a−x)=µ(0)=µ(x)=µ(a). 
Therefore, in either case, we have shown that µ(a−x)=µ(a) for all a∈L. 
Consequently * *

0=xµ µ . Also, * *
0=xµ µ  implies that µ(x)=µ(0). Hence, 

* *
0=xµ µ  if and only if µ(x)=µ(0). Now, we have

* * *
0 0k = { | ( ) = } = { | = } = { | ( ) = (0)} = ,x ter x L x x L x L xϕ ϕ µ µ µ µ µ µ∈ ∈ ∈

where t=µ(0) = (0)t µ .

Theorem 4.4

Given a homomorphism of n-Lie algebras :L→L′ and fuzzy ideal 
µ of L and µ′ of L′ such that ϕ(µ)⊆µ′. Then, there is a homomorphism 
of n-Lie algebras ϕ*:L[µ]→L′[µ′], where * * *

( )( ) =x xϕϕ µ µ′ , such that the 
following diagram is commutative.

*

[ ] [ ]

L L

L L

ϕ

ϕ

µ µ

′→
↓ ↓

′ ′→

Proof. If * *=x yµ µ  then µ(x−y)=µ(0). So

1( ( ) ( )) = ( ( )) = ( )( ) ( ) = (0),x y x y x y x yµ ϕ ϕ µ ϕ ϕ µ µ µ−′ ′ ′− − − ≥ −

and so µ′(ϕ(x)−ϕ(y))=µ(0). Hence, µ′(ϕ(x))=µ′(ϕ(y)) holds. Thus, ϕ* is 
well-defined. It is easily seen that ϕ* is a homomorphism.

Let µ be a fuzzy ideal of an n-Lie algebra L. For any x,y∈L, we 
define a binary relation ∼ on L by x∼y if and only if µ(x−y)=µ(0). Then 
∼ is a congruence relation on L. We denote [x]µ the equivalence class
containing x, and L/µ={[x]µ|x∈L} the set of all equivalence classes of L.
Then, L/µ is an n-Lie algebra under the following operations:

1 1

[ ] [ ] = [ ] f , ,
[ ] = [ ] f , ,

[[ ] , [ ] ] = [[ , , ]] f , .n n

x y x y or all x y L
x cx or all x L F

x x x x or all x y L

µ µ µ

µ µ

µ µ µ

α α
+ + ∈

∈ ∈
∈ 

Theorem 4.5 (Fuzzy first isomorphism theorem)

Let ϕ:L→L′ be an epimorphism of n-Lie algebras and λ be a fuzzy 

ideal of L′. Then L/ϕ−1(λ)≅L′|λ.

Let I be an ideal and µ a fuzzy ideal of an n-Lie algebra L. If µ is 
restricted to I, then µ is a fuzzy ideal of I and I|µ is an ideal of L/µ.

Theorem 4.6 (Fuzzy second isomorphism theorem)

Let µ and λ be two fuzzy ideals of an n-Lie algebra L with µ(0)=λ(0). 

Then .
L L Lµ λ µ

λ µ λ
+

≅
∩

Theorem 4.7 (Fuzzy third isomorphism theorem)

 Let µ and λ be two fuzzy ideals of an n-Lie algebra L with λ⊆µ and 

μ(0)=λ(0). Then / / .
/

L L
Lµ

λ µ
λ

≅

Conclusion
Methods of construction fuzzy ideals are presented. Connections 

with various fuzzy quotient n-Lie algebras are proved. Properties of 
fuzzy subalgebras and ideals of n-ary Lie algebras are described.
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