alexa Gamma Attenuation Coefficient of Carbonate Rocks Sampled from the North Western Coast of Egypt | Open Access Journals
ISSN: 2229-8711
Global Journal of Technology and Optimization
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Gamma Attenuation Coefficient of Carbonate Rocks Sampled from the North Western Coast of Egypt

Samir Al-Gamal1*, Sherine El-Essawy1, El-Sayed M El-Refaie2 and Mohammed Durra1

1Department of Engineering, Helwan University of Engineering and Technology, Cairo, Egypt

2Egyptian Nuclear and Radiological Regulatory Authority (ENRRA), Egypt

*Corresponding Author:
Samir Al-Gamal
Department of Engineering, Helwan
University of Engineering and Technology, Cairo, Egypt
Tel:
202 25558292
E-mail:
[email protected]

Received date: July 13, 2016; Accepted date: July 18, 2016; Published date: July 22, 2016

Citation: Al-Gamal S, El-Essawy S, El-Refaie EM, Durra M (2016) Gamma Attenuation Coefficient of Carbonate Rocks Sampled from the North Western Coast of Egypt. Global J Technol Optim 7:198. doi:10.4172/2229-8711.1000198

Copyright: © 2016 Gamal SAL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Global Journal of Technology and Optimization

Abstract

Gamma attenuation coefficients of host rocks belonging to Moghra Formation of Eocene era in one of two candidate sites located at the North Western Coast of Egypt in Al-Dabaa locality were estimated using Monte-Carlo Code for Nuclear Power (MCNP). Carbonates rock samples were taken to represents several depth intervals. A virtual mono-energetic gamma source with increasing energies was used. The gamma attenuation properties were found to be totally independent on the lithology of rock type, provided that roch sample density remains constant. Ultimately it is found that, gamma attenuation coefficient showed an inverse exponential dependence on the gamma energy regardless rock type and their related depth.

Keywords

Gamma; Nuclear power; Carbonate rocks

Introduction

The main objective of this study was to significantly improve the knowledge of the local rock attenuation characteristics using Monte- Carlo Code for Nuclear Power (MCNP) tools allowing better understanding of nuclear safety including possible waste disposal/ storage of low level radioactive materials inside the different layers and compartments, as well as boundary conditions. This implies to decipher all elements related to eco-system and of which water-rock interaction and processes leading to the observed mineralization.

Study area and dealt with case study

The North Western coast of Egypt contains a variety of sediments. Al-Almein quadrangle include in its periphery area Al-Dabaa site dedicated for the near future nuclear power plant. The present study aims at investigating whether the attenuation characteristics of host rock is appropriate for disposing and/or storing low level waste resulted from many sources of which nuclear waste may constitute a considerable part. Accordingly gamma attenuation coefficient of the rocks constituting the soil of the region is a key issue. The west coast of Egypt is mainly composed of pure oolitic carbonate [1-3]. The oolitic grains constitute an average of 78% and 89% of the bottom and beach sediments, respectively.

Monte- Carlo Code for Nuclear Power (MCNP)

Gamma-ray attenuation is known to depend mainly on density of material rather than is composition. Physical examination of the rocks taken from different depths in North West coast of Egypt showed that all rocks up to depth of 30 m have the same physical density, despite that chemical analysis demonstrated some change of chemical structure.

MCNP code was used to verify that attenuation coefficient will not be different for rocks from different depth in the north west coast of Egypt, given they have almost equal physical densities.

The attenuation of gamma rays passing through a length x in shield of linear attenuation coefficient μ can be expressed by the attenuation equation [4].

image

Where:

Io is the gamma beam intensity incident on the shield,

I the intensity of the emergent gamma beam from the shield (or attenuated beam),

μ (cm-1) is the linear attenuation coefficient of the shield material, and

x (cm) the mean path length of a gamma-ray in the shield.

The value of μ can be calculated directly from this equation if the intensities of the incident beam and emerging beam, and thickness of the shield were known. MCNP served in calculations. The shield geometry and thickness is chosen on demand. The intensity of the incident and the emerging beams are calculated using MCNP when a specified gamma source is present in front of the shield.

The ultimate aim of this study was to calculate gamma attenuation properties of rocks from different depths in North West coast of Egypt. MCNP was used in calculation. A virtual mono-energetic gamma source with increasing energies was used to investigate the gamma attenuation coefficient as a function of the gamma energy. The gamma attenuation coefficient was found independent on the type of rock, given the density is almost equal [5]. However, it showed inverse exponential dependence on the gamma energy.

Methodologies and Techniques

Rocks samples from Al-Dabaa locality (North Western Coast of Egypt) at a depth from ground surface, 6 m and 30 m were used to shield Gamma photons emitted by a virtual mono-energetic isotropic point source. The geometry was a 5.0 cm thick spherical shield of the rock material, with the gamma source at its center, as shown in Figure 1.

Depth CaO CO2 Al2O3 SiO2 MgO K2O Na2O
6 m 56.00 43.44 0.5% 0.5% 0.056% 0.056% 0.056%
30 m 51.68% 40.61% 3% 3% 0.57% 0.57% 0.57%

Table 1: Chemical composition of the rock.

global-journal-technology-MCNP-model

Figure 1: Geometry of the MCNP model.

Rock samples corresponding to the foregoing depths; 6 and 30 m respectively were also analyzed for chemical compositions and expressed in terms of oxides (Table 1) as well as major elements (Table 2).

Element w/o C O Na Mg Al Si K Ca Fe
6 m 11.8555 48.1407 0.0415 0.0338 0.2646 0.2337 0.0465 40.0226 0.0810
30 m 11.0831 47.7519 0.4229 0.3437 1.5878 1.4023 0.4732 36.9352 --

Table 2: Element composition of the rock.

Physical densities of the rocks were: 2.0 and 2.1 g/cm3 for the 6 and 30 meters depth rocks respectively (Figure 2).

global-journal-technology-Microscopic-structure

Figure 2: Microscopic structure of the host carbonate rock.

Results and Discussion

Calculations showed that the dose attenuation coefficient of the rock material for a 5 cm thick shield was as in Figure 3.

global-journal-technology-gamma-attenuation

Figure 3: The calculated gamma attenuation coefficient.

There was almost no difference between gamma attenuation coefficients of the rocks from 6 and 30 meters depth. This is expected since they have almost equal physical densities. Gamma attenuation coefficients for both samples changed as inverse exponential function of gamma energy.

Figure 4 illustrates “Half-value thickness” for both rock samples. “Half-value thickness” of a material is the thickness required for reducing the intensity of radiation by one half.

global-journal-technology-Half-value-thickness

Figure 4: “Half-value thickness” for both rock samples.

image

For half-value thickness:

image

.

image

image

Figure 5 illustrates “Tenth-value thickness” for both rock samples. “Tenth-value thickness” of a material is the thickness required for reducing the intensity of radiation by a factor of 10.

global-journal-technology-Tenth-value-thickness

Figure 5: “Tenth-value thickness” for both rock samples.

image

For tenth-value thickness:

image

image

image

image

Conclusion

There were no significant differences in gamma attenuation properties of the rocks from 6 and 30 meters depths from North West coast of Egypt. The gamma attenuation properties were found independent on the type of rock, given the density is almost equal. However, gamma attenuation coefficient showed inverse exponential dependence on the gamma energy.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Recommended Conferences

Article Usage

  • Total views: 8287
  • [From(publication date):
    August-2016 - Aug 21, 2017]
  • Breakdown by view type
  • HTML page views : 8173
  • PDF downloads :114
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords