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Abstract
Background: In most patients gastric bypass (GBP) causes remission of type 2 diabetes. It is established that 

plasma levels of gut hormones are affected by GBP, but it is not well understood how the enteroendocrine cells 
producing these gut hormones are affected by GBP. 

Objectives: We set out to investigate the effect of GBP on enteroendocrine cells in the stomach and intestine 
of pigs. 

Methods: Lean non-diabetic pigs were subjected to either GBP or sham-surgery and immunocytochemistry and 
morphometry for all major gut hormones in all parts of the GI-tract was performed. Sham-operated, pair-fed pigs 
were used as controls.

Results: Postoperatively in the antrum, the density of gastrin-cells was lower (GBP 12.8±2.1 cells/μm2 versus 
sham 21.3±2.6 cells/μm2 ) while density of serotonin-cells was higher in GBP-pigs (GBP 21.6±2.3 cells/μm2 versus 
sham 10.6±0.7 cells/μm2). In the fundus, no effect of GBP was observed on any cell population. In the duodenum, 
densities of CCK- (GBP 5.1±1.0 cells/μm2 versus sham 2.6±0.4 cells/μm2), ghrelin- (GBP 3.4±0.5 cells/μm2 versus 
sham 1.4±0.2 cells/μm2), GIP- (GBP 5.5±0.3 cells/μm2 versus sham 2.3±0.3 cells/μm2) and neurotensin-cells (GBP 
3.5±0.7 cells/μm2 versus sham 0.5±0.2 cells/μm2) were higher in the GBP-pigs. In the distal jejunum, density of 
ghrelin-cells was lower (GBP 0.7±0.2 cells/μm2 versus sham 2.3±0.4 cells/μm2) while densities of GIP- (GBP 3.5±0.3 
cells/μm2 versus sham 2.4±0.2 cells/μm2) and secretin-cells (GBP 3.4±0.7 cells/μm2 versus sham 1.6±0.3 cells/
μm2) were higher in GBP-pigs compared to sham-pigs. In the ileum, densities of GIP-cells (GBP 5.4±0.4 cells/
μm2 versus sham 3.9±0.4 cells/μm2) and somatostatin-cells (GBP 3.3±0.4 cells/μm2 versus sham 2.1±0.3 cells/
μm2) were higher, while densities of GLP-1-cells (GBP 5.0±0.5 cells/μm2 versus sham 8.8±1.4 cells/μm2) and PYY-
immunoreactive cells (GBP 3.8±0.1 cells/μm2 versus sham 5.9±0.8 cells/μm2) were lower in the GBP-pigs. In the 
colon, densities of GIP- (GBP 2.8±0.3 cells/μm2 versus sham 1.4±0.2 cells/μm2), serotonin- (GBP 6.7±0.3 cells/μm2 
versus sham 4.8±0.5 cells/μm2) and somatostatin-cells (GBP 1.9±0.2 cells/μm2 versus sham 1.3±0.1 cells/μm2) were 
higher in the GBP-pigs. GBP had no effect on villi length or total mucosa height in any of the intestinal segments 
analyzed, whereas duodenum (GBP 37.6±3.4 cells/μm2 versus sham 26.5±2.8 cells/μm2) and ileum (GBP 127±1.2 
cells/μm2 versus sham 84.7±9.9 cells/μm2) of the GBP-pigs displayed higher proliferation, as assessed by Ki67 
immunoreactivity.

Conclusions: We conclude that GBP induces rapid and profound changes in the densities of gut hormone-
producing cells throughout the GI-tract in pigs. These changes seem to be the result of GBP per se and not a result 
of body weight or food intake. Also, GIP was increased in the GBP-pigs in all the intestinal segments analyzed.
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Introduction
Currently, gastric bypass surgery (GBP) is the most commonly 

used weight-loss treatment for the morbidly obese. In most cases, GBP 
leads to rapid remission of type 2 diabetes (T2D) [1-3]. The degree of 
remission is dependent on disease duration [4], and although some 
patients relapse, 60% of the patients remain in T2D remission after 
5 years [5]. Furthermore, factors such as family history of T2D and 
prediabetes [6,7] may also affect the remission of T2D. The effect of 
surgery is also very strong in reducing the incidence of new T2D cases 
in humans [2]. The underlying mechanisms for the remission of T2D 
remain to be elucidated. If these were to be resolved new treatment 
regimens for T2D could be developed.

A number of factors have been proposed to contribute to the T2D 
remission. These include improved insulin sensitivity, presumably in 
the liver [8], altered bile acid composition [9,10], altered gut nutrient 

sensing [11], altered gut microbiota [12-14], altered secretory pattern of 
gut hormones in response to a meal [15,16] and the possible removal of 
anti-incretins in the upper intestine [17]. Another possible contributing 
factor to remission of T2D is increased β-cell mass and improved β-cell 
function, as we recently reported in a porcine model of GBP [18]. Speck 
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et al. reported similar findings in a rat model of duodeno-jejunal bypass 
(DJB) [19]. Furthermore, our data show that the insulinotropic and 
glucose-lowering effect of GBP cannot entirely be explained by weight 
loss or reduced food intake, since GBP-pigs had similar body weight 
as the control pigs and since both groups consumed an equal amount 
of food [18]. Also, subjecting GBP-patients to a mixed-meal challenge 
orally yields a more robust hormone response than does a mixed-meal 
administered via a gastrostomy catheter [20-22].

The gastrointestinal (GI)-tract harbors eleven distinct endocrine 
cell types [23-30], many of which produce and secrete hormones 
involved in the regulation of appetite, body weight, glucose homeostasis, 
and insulin secretion [31]. Thus in the stomach gastrin-producing 
G-cells are present in the antrum and ghrelin-producing P/D1-cells 
and histamine-producing ECL-cells are present in the fundus. CCK-
producing I-cells, secretin-producing S-cells, ghrelin-producing P/D1-
cells, neurotensin-producing NT-cells, GIP-producing K-cells mainly 
reside in the proximal part of the intestine (duodenum and jejunum) 
whereas GLP-1-producing L-cells, which also contain PYY, are 
enriched in distal parts of the intestine. Serotonin-producing EC-cells 
and somatostatin-producing D-cells are present in all segments of the 
GI-tract.  The secretion and expression of enteroendocrine hormones 
is largely influenced by luminal stimuli, e.g. food/macronutrients 
entering the intestine and eliciting a hormonal response. The influence 
of luminal stimuli is evident e.g. in patients and animals receiving total 
parenteral nutrition, which causes gut atrophy and lower gut hormone 
secretory response [24,32,33].

Several reports have shown effects of various bariatric surgery 
techniques in rodents on glucose homeostasis and gut-hormone 
secretion (e.g. [11,34-36]). Much attention has been given to how GBP 
affects plasma levels of gut hormones [15]. However, little attention has 
been given to the effects of GBP on the distribution of gut hormone-
producing cells in the GI-tract. Speck et al. reported trends towards 
increased K- and L-cell densities and increased number of GIP and 
GLP-1 co-expressing cells after DJB in rats, and Mumphrey et al. 
reported increased number of L-cells in a rat model of GBP. However, 
it is hard to extrapolate these data to humans due to considerable 
differences in GI-tract anatomy between humans and rodents. The 
pig, however, serves as an appropriate animal model for studying GBP. 
The pig shares a number of similarities with humans; both species are 
omnivorous and have similar GI-tract and pancreas physiology and 
anatomy. 

Here, we studied the effects of GBP on all enteroendocrine cell 
populations in segments representing the entire GI-tract in a porcine 
model. 

Materials and Methods
Animals and surgery

Castrated male pigs (Swedish Landrace X Yorkshire X Hampshire) 
weighing approximately 25 kg at the start of the study, were randomly 
selected from the University herd at Odarslöv research farm (Swedish 
Agricultural University) for the study and transported to the animal 
facilities at the Department of Cell and Organism Biology (Lund 
University, Lund, Sweden) where they were kept in individual pen with 
wood chips as bedding material. All pens were equipped with a dry 
feeding trough, a drinking nipple and a constant heating lamp (150 W). 
All surgery was performed under aseptic conditions. For the gastric 
bypass, seven pigs were operated through an upper midline incision 
under sterile conditions and general halothane anesthesia. Standard 

instruments for porcine surgery were used. All anastomoses were 
performed using commercially available devices intended for human 
use. The gastric pouch (12-15 ml volume) was constructed using linear 
staplers (Covidien, Mansfield, MA) using 3-4 cm of the upper stomach 
[18]. The pouch was carefully and completely separated from the 
remaining main stomach, with great care taken not to interfere with 
the vagus trunks. The jejunum was divided 60 cm from the duodeno-
jejunal transition and a jejuno-jejunostomy was created 150 cm more 
distally. The jejunal end of the Roux limb (alimentary limb, 150 cm) 
was brought up and anastomosed to the lowest part of the gastric 
pouch. For the sham-operation, eight pigs were operated through an 
upper midline incision under sterile conditions and general halothane 
anesthesia. The bowel was gently manipulated but not transected. The 
pigs were kept under anesthesia for the same length of time as the 
average GBP-operation lasted (approximately 70 minutes). The pigs 
were closely monitored and treated with ampicillin (Doktacillin, 15 
mg*kg-1) and Temgesic (Buprenorphine) for three days after surgery. 
After surgery, all pigs were given three meals per day (at 0800, 1300, 
and 1800) of low-calorie diet (250 ml, Modifast, Stocksund, Sweden; 
220 kcal, 25E% protein, 52E% carbohydrates, and 21E% fat [18].

Tissue collection

Overnight-fasted pigs were euthanized three weeks after surgery 
using an overdose of halothane. Tissues were collected and kept in 4% 
paraformaldehyde until analysis. It should be noted that distal jejunum 
biopsies were obtained 130 cm distal to the ligament of Treitz in the 
sham-operated pigs and in the corresponding area in the GBP-pigs 
segment, i.e. 10 cm distal to the jejunojejunostomy. 

Measurements of villi length and total mucosa height

Villi length was measured at 10X magnification using the NIS-
Elements AR-software (Nikon, Tokyo, Japan). Approximately 50 villi 
were measured from each animal. Villi were measured in duodenum, 
distal jejunum and ileum. Total mucosa height was defined as the height 
from the tip of approximately 50 villi to the muscularis mucosae in the 
duodenum, jejunum and ileum, and at approximately 50 sites in the 
stomach and colon, and measured using NIS-Elements AR-software.

Immunohistochemistry

Antibodies were diluted in PBS (pH 7.2) containing 0.25% BSA 
and 0.25% Triton X-100. Sections (6 μm) were incubated with primary 
antibodies (Table 1) overnight at 4°C, followed by rinsing in PBS 
with Triton X-100 for 2 × 10 min. Thereafter, secondary antibodies 
with specificity for rabbit coupled to Cy2 (Jackson, West Grove, PA) 
were applied on the sections. Incubation period was for 1 h at room 
temperature. Sections were again rinsed and then mounted in PBS-
glycerol (1:1). 

Cell density quantification

The density of immunoreactive (IR) cells was quantified in an 
epifluorescense microscope (Olympus BX60) with a filter for Cy2 (492 
nm) (visual field=0.63 mm2) as described previously [37]. Briefly, the 
number of IR cells was counted in transversely sectioned mucosa, with 
the entire depth of the mucosa visible in three separate sections from 
each tissue specimen.  Images were taken with a digital camera (Nikon 
DS-2Mv). 

Statistics

All data are presented as mean±SEM. Statistical significance was 
assessed by the unpaired Student’s t-test. A p<0.05 was considered 
statistically significant. 
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Results
Body weight, glucose and insulin

Body weight development and glucose and insulin response to an 
intravenous glucose tolerance test in the two groups of pigs have been 
reported elsewhere [18]. In brief, both GBP-pigs and sham-pigs had 
similar body weight development throughout the study period, but 
GBP-pigs displayed lower plasma glucose, improved β-cell function 
and β-cell mass.

Villi height and total mucosa height

First we analyzed whether GBP affects gross morphology of the GI-
tract. The effect of GBP on villi height in duodenum (Figure 1A), distal 
jejunum (Figure 1B) and ileum (Figure 1C) was analyzed in GBP-pigs 
and sham-pigs. GBP did not affect villi length in any of the intestinal 
segments. Furthermore, total mucosa height was unaffected by GBP in 
antrum (Figure 1D), fundus (Figure 1E), duodenum (Figure 1F), distal 
jejunum (Figure 1G), distal jejunum (Figure 1H) and colon (Figure 1I).

The primary goal of the study was to analyze all major 
enteroendocrine cell populations known to reside in the stomach 
(antrum and fundus), small intestine (bypassed duodenum, non-
bypassed jejunum and ileum) and large intestine (non-bypassed colon).

Stomach

In the antrum, the density of gastrin-cells was 40% lower (Figure 
2A), but the density of serotonin-cells was 2-fold higher in the GBP-
pigs (Figure 2B). No difference was observed for antral somatostatin-
cells (Figure 2C). In the fundus, the density of ghrelin-cells trended 
towards an increase in the GBP-pigs (Figure 2D; p=0.061), whereas 
leptin-IR cells and somatostatin-cells were unaffected by the GBP-
procedure (Figure 2E and F, respectively). 

Duodenum

Higher densities of CCK-, ghrelin-, GIP- and neurotensin-cells 
(Figure 3A, B, C and E, respectively) were observed in the GBP-pigs. 
Densities of GLP-1-, secretin-, serotonin- and somatostatin-cells were 
unaffected by GBP (Figure 3D, F, G and H).

Distal jejunum

Densities of GIP- and secretin-cells were higher in the GBP-pigs, 

(Figure 4C and F, respectively). On the other hand, GBP-pigs displayed 
lower density of ghrelin cells (Figure 4B). Densities of CCK-, GLP-1-
, neurotensin-, serotonin- and somatostatin-cells were unaffected by 
GBP (Figure 4A, D, E, G and H, respectively)

Ileum

Higher densities of GIP-cells (Figure 5A) and somatostatin-cells 
(Figure 5E), but lower densities of GLP-1-cells and PYY-IR cells 
was evident in the GBP-pigs (Figure 5B and C, respectively). Cells 
producing serotonin were unaffected by GBP (Figure 5D). 

Colon

Densities of GIP-, serotonin- and somatostastin-cells were higher 
in GBP-pigs compared to sham-pigs (Figure 6A, D and E, respectively), 
whereas densities of GLP-1-cells and PYY-IR cells were unaffected by 
GBP (Figure 6B and C, respectively).

Proliferation

Since we found GBP to impact on cell density we next studied 
whether this could be explained by changed proliferative activity. 
To this end we assessed densities of cells with Ki67-positive nuclei 
as a measure of general tissue proliferation. This revealed that distal 
jejunum (Figure 7B) and colon (Figure 7D) had similar densities of 
Ki67-postive cells in both groups, but GBP-pigs displayed higher 
densities of Ki67-postive cells in the duodenum (Figure 7A) and ileum 
(Figure 7C) compared to sham-pigs. 

Discussion
It is well established that GBP results in improved glycaemia and 

remission of T2D in most cases. To provide mechanistic explanation for 
this effect, a major focus has been on how GBP affects plasma levels of 
gut hormones [15]. However, the impact of GBP on the enteroendocrine 
cell populations producing these hormones has so far only been studied 
in rodents [38, 39]. Rodents and humans differ considerably in GI-tract 
physiology and anatomy, as well as in dietary composition. The human 
and porcine GI-tract is similar and both species are omnivorous. Thus, 
pigs are suitable model animals for studies of mechanistic events, e.g. 
possible alterations in enteroendocrine cell populations, potentially 
underlying effects of GBP on glucose homeostasis.

Here we studied the effect of GBP on all major enteroendocrine 
cell populations in segments representing the entire GI-tract. Our data 
show that GBP has select effects on subpopulations of enteroendocrine 
cells along the length of the GI-tract. 

A key finding was that GBP-pigs had higher density of GIP-cells in 
all intestinal segments studied. Our data are in line with Speck et al., 
who reported a trend towards an increase in K-cells per villus [19] in 
DJB-rats. On the other hand, the effect of GBP on circulating GIP levels 
is not so clear-cut [40]. This may be due to differences in study design 
and study subjects, e.g. prandial state, obese or lean and T2D or not. 
Although Rubino and coworkers have shown reduced fasting levels of 
GIP after GBP in T2D patients [41], our data (submitted manuscript) 
and those of others [42] indicate that postprandial GIP levels are 
increased after GBP. 

Despite a body of evidence showing increased plasma levels of 
GLP-1 in response to GBP (e.g. [15,16,43,44]), our present data show 
GLP-1-cell density in the ileum of the GBP-pigs to be slightly lower 
than in sham-pigs. Our data are in contrast with Hansen et al. [45] who 
were unable to find any effect of GBP on L-cell density in a rat model of 

Table 1: Details of the different antisera used.

Antigen Code Dilution Source

CCK 1564/12 1: 1280 Gift from Prof J. Rehfeld (Copenhagen, 
Denmark)

Gastrin 4562 1: 1200 Gift from Prof J. Rehfeld (Copenhagen, 
Denmark)

Ghrelin R726-2 1: 2560 Phoenix (Belmont, CA)

GIP RD11/19/77 1: 640 Gift from Prof. TO'dorisio (Columbus, OH)

GLP-1 7811 1: 10000 Euro Diagnostica, Malmo, Sweden

Ki67 MAB1445 1: 300 CloneTec, Shiga, Japan

PYY 8415/2 1: 1: 640 Euro Diagnistica

Secretin 7875 1: 640 Euro Diagnistica

Serotonin N-Ser 1: 3200 Immunonuclear, Stillwater, MN, USA
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GBP. The present finding of reduced GLP-1-cell density may provide 
explanation for our recent data showing that GBP in pigs does not 
provoke elevated plasma levels of active GLP-1 (submitted manuscript) 
as is evident in humans [15]. 

PYY is known to be produced by both L-cells and K-cells [46]. 
This could be a possible explanation as to why our data show lower 
density of PYY-IR cells in the ileum (in which L-cells were fewer in the 
GBP pigs), but not in the colon (where L-cells were unchanged in the 

Figure 1: Villi length was analyzed in duodenum (A), distal jejunum (B) and ileum (C) of the pigs. GBP did not affect villi height compared to sham-operation. GBP-
pigs and sham-pigs had similar mucosa height in antrum (D), fundus (E), duodenum (F), distal jejunum (G), ileum (H) and colon (I). Data is presented for n=7 for 
GBP-pigs and n=8 for sham-pigs.
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GBP-pigs compared to sham-pigs). In agreement with most studies in 
humans [47] elevated plasma levels of PYY have been reported after 
GBP in pigs [48] and in rodents [49]. 

Our data showing lower density of gastrin-cells in the antrum 
contrasts a previous study reporting unchanged levels of gastrin cell 
density six months after GBP in pigs [50]. Nevertheless, our observation 
fits well with the fact that the antrum is bypassed after surgery and the 

stimuli for gastrin release may be lowered, as the ingested food is not 
introduced into this part of the stomach. A positive correlation between 
gastrin serum levels and gastrin cell density has been shown in short-
term in the rat [51]. Whether changes in cell density are translated 
into differences in circulating levels in other species and over long-
term remains to be investigated. However, Jacobsen et al. report that 
within two weeks after GBP gastrin levels are markedly reduced and 
less responsive to a mixed-meal test in non-diabetic subjects [52]. 
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Figure 2: In the antrum density of gastrin-cells was decreased after GBP (A), while density of serotonin-cells was increased (B) and density of somatostatin-cells 
was unaffected (C). In the fundus, density of ghrelin- cells trended towards an increase after GBP (D) whereas densities of leptin-cells and somatostatin-cells were 
unchanged (E and F, respectively). Data is presented for n=7 for GBP-pigs and n=8 for sham-pigs. *, p<0.05; ***, p<0.001.
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In the duodenum ghrelin-cells were observed more frequently 
in the GBP-pigs whereas ghrelin cell density was lower in distal 
jejunum. Whether this difference in ghrelin cell density between 
bypassed (duodenum) and non-bypassed segments (distal jejunum) is 

a consequence of compensatory mechanisms or lack of luminal stimuli 
in the bypassed segments remains to be investigated. Cummings 
et al. showed that the 24-h ghrelin profile for GBP-patients was 
markedly lower compared to normal-weight and matched obese 

Figure 3: In the duodenum, the densities of CCK- (A) ghrelin- (B), GIP- (C) and neurotensin-cells (E) were increased in GBP-pigs compared to sham pigs. Densities 
of GLP-1-, secretin-, serotonin- and somatostatin-cells were unaffected by GBP (D, F, G and H, respectively). Data is presented for n=7 for GBP-pigs and n=8 for 
sham-pigs. *, p<0.05; **, p<0.01; ****, p<0.0001.
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controls, suggesting absence of meal-related fluctuations and diurnal 
rhythm of ghrelin after GBP [53]. However, other studies show that 
the effect of GBP on ghrelin plasma levels is not so clear-cut. Thus, 
early after GBP, ghrelin levels seem to be unaltered [16]; one year after 
GBP, normoglycemic superobese patients have increased levels [54], 
while T2D-patients have decreased levels [16]. Whether the reported 
differences in ghrelin plasma levels after GBP are related to ghrelin cells 
reacting differently in different parts of the GI-tract or other circulating 

factors or other cell populations throughout the GI-tract contribute 
remains to be elucidated.

Our data on markedly higher density of duodenal neurotensin-
cells in GBP-pigs is in line with histological observations made in rats 
[39]. Recently, elevated fasting levels of proneurotensin were associated 
with the development of diabetes in humans [55] and neurotensin was 
shown to stimulate insulin secretion from isolated rat islets [56]. It 

Figure 4: In the distal jejunum, density of ghrelin-cells (B) was decreased while densities of GIP- (C) and secretin-cells (F) were increased. Densities of CCK- (A), 
GLP-1- (D), neurotensin- (E), serotonin- (G) and somatostatin-cells (H) did not differ between the two surgical groups. Data is presented for n=7 for GBP-pigs and 
n=8 for sham-pigs. *, p<0.05; **, p<0.01.
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remains to be established whether our present morphological findings 
translate into circulating neurotensin levels. Nevertheless, increased 
insulinotropic action of neurotensin may be a potential mechanism 
contributing to the remission of T2D induced by GBP.

CCK plasma levels have been shown to increase in response to a 
mixed-meal test within two weeks after GBP-surgery in non-diabetic 
subjects [52]. This fits with our observation made in the present study 
that duodenal CCK-cell density was higher in GBP-pigs. 

Mumphrey et al. reported increased amount of serotonin-cells 

in the Roux- and the common limb in GBP-rats compared to obese 
sham-operated rats [39]. This is in contrast to our present data on 
increased density of antral and colonic serotonin-cells as a response to 
GBP. Whether adiposity or species differences are responsible for the 
discrepancy in intestinal segments exhibiting GBP-induced increase in 
serotonin-cells remains to be elucidated. 

Somatostatin-cell densities were higher in the ileum and the colon 
of GBP-pigs. In GBP patients circulating levels of somatostatin were 
unaffected by a mixed-meal two weeks after surgery [52]. Furthermore, 
jejuno-ileal bypass in rats has been shown to have little effect on the 

Figure 5: In the ileum, densities of GIP-cells (A) and somatostatin-cells (E) were increased while densities of GLP-1- (B) and PYY-immunoreactive cells (C) were 
decreased in the GBP-pigs. Density of serotonin- (D) was unaffected by GBP. Data is presented for n=7 for GBP-pigs and n=8 for sham-pigs. *, p<0.05.
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density of somatostatin-cells in the functional and bypassed segments 
of the bowel [57]. However, circulating somatostatin levels may not 
reflect GI-tract expression since somatostatin may emanate from 
other sites as well. Of note is that densities of somatostatin-cells were 
unaffected in the bypassed parts of the GI-tract (fundus and duodenum) 
in the GBP-pigs. 

No effect of GBP was observed on villi length or total mucosa 
height in the present study. This is consistent with previous findings 
by Speck et al. [19]. Thus it is unlikely that the observed differences in 
cell densities are explained by gross morphological changes. Instead 
specific changes in each cell population seem to occur. Nevertheless, 
we found increased density of Ki67-postive cells (in the duodenum and 
the ileum) suggesting increased proliferation. The fact that this did not 
translate into differences in villi or total mucosa lengths may be related 

to the relatively short study period (3 weeks) compared to previous 
studies [39, 45, 50, 58]. In another study we have evidence for increased 
cell density of jejunal L- and K-cells in humans 12 months after GBP 
[59]. Similar observations were recently reported also by Rhee et al. 
[60]. Together with the present data this suggest that GBP provokes 
both rapid and sustained changes in enteroendocrine cell populations. 
Importantly, GBP-pigs were compared with pair-fed, sham-operated 
pigs. Furthermore pigs had similar body weight development in both 
groups. Hence, differences in food intake and weight loss could be ruled 
out as confounding factors for the observed changes in enteroendocrine 
cell populations. 

In the present study we have used the classic one cell-one hormone 
nomenclature, however recent evidence [61-63] suggest that this may 
be a simplified view. Rather a large degree of coexpression of several 

Figure 6: In the colon, densities of GIP- (A), serotonin- (D) and somatostatin- cells (E) were increased in the GBP-pigs compared to the sham-pigs. Densities of GLP-
1- (B) and PYY-immunoreactive cells (C) were unaffected by GBP. Data is presented for n=7 for GBP-pigs and n=8 for sham-pigs. *, p<0.05; **, p<0.01.
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hormones is evident at least in humans and mice. Although we showed 
that ghrelin and motilin are highly coexpressed and co-secreted [37], 
hormone coexpression patterns have not yet been described in detail 
in the porcine GI-tract. Nevertheless it is to be noted that in the 
present study, cells expressing CCK, GIP, and neurotensin showed 
similar density increases in duodenum. These hormones are together 
with secretin, GLP-1 and PYY believed to be coexpressed in a distinct 
lineage of enteroencorcine cells [61]. In the other GI-segments studied 
this pattern could not be traced to the same extent.

Our data show that GBP has profound effects on endocrine cells in 
all GI segments, both bypassed segments (stomach and duodenum) and 
non-bypassed segments. It should be mentioned that our observations 
may, to some extent be affected by cellular protein levels and therefore 
cells with low expression may have been underestimated. A consistent 
finding was increased density of GIP-cells in all intestinal segments 
included in the study. Furthermore, no clear pattern with respect to 
whether the GI-segment was bypassed or not was obvious for any 
enteroendocrine cell population. 

Conclusion
We conclude that the rearrangement of the GI-tract after GBP 

provokes a complex pattern of changes in several gut hormone-
producing cell populations. Whether this relates to circulating 
hormone levels remains to be established. But our data suggest that 
many players in addition to the incretin hormones may contribute to 
the GBP-induced remission of T2D.
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