Gene Therapy for X-Linked Retinitis Pigmentosa

Xinhua Shu*
Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland

Retinitis Pigmentosa (RP) is a group of heterogeneous genetic disorders with a worldwide prevalence of 1 in 4000 individuals [1]. RP can be inherited in autosomal, X-linked or mitochondrial format. X-linked RP (XLRP) is one of the most severe forms of retinopathies, accounting for about 10-20% of all RP cases. Mutations in the Retinitis Pigmentosa Gtpase Regulator (RPGR) gene are the major cause of XLRP, accounting for 70% to 80% of affected XLRP cases [2]. The initially identified RPGR (RPGRORF15) contains 19 exons and encodes for a predicted 90 KDa protein [3]. A subsequent study identified a large C-terminal exon, called ORF15, in the major functional form (RPGRORF15). The exon ORF15 encodes a repetitive glycine and glutamic acid-rich domain with a evolutionary conserved basic C-terminal domain, and harbors a high frequency of reading-framenshift and premature stop mutations, producing truncated proteins of varying length [4]. More than 300 RPGR mutations have been reported, most causing XLRP, a few causing human cone-rod, cone, or macular dystrophies, or syndromal forms of XLRP with primary ciliary dyskinesia and hearing loss [5].

RPGR is predominantly expressed in connecting cilia of photoreceptors, but expression has been reported in photoreceptor outer segments in some species. In mammalian and non-mammalian cell lines, RPGR localizes in centrosome of non-ciliated cells, and in basal body of ciliated cells [6]. Knock-down of RPGR in human retinal pigmented epithelium hTERT-RPE1 cell line caused defects in cilia genesis, suggesting RPGR has a role in the initial steps of cilia formation and/or stability [7]. Zebrafish embryos with RPGR knock-down by morpholino injection exhibited developmental defects ranging from small eyes to convergent extension defects, consistent with many other ciliary disorders [8]. RPGR Knock-out mouse model showed a slow degeneration of photoreceptors, with features resembling a cone-rod dystrophy, along with partial mislocalization of cone opsins [9]. There are two naturally occurring dog models: canine X-linked Progressive Retinal Atrophy (XLRP) 1 and 2 have a 5-base pair deletion in RPGR exon ORF15, XLRPA2 carries a 2-base deletion in exon ORF15 [10]. The XLRPA1 mutation results in a shorter framenshift and immediate premature stop codon, showing a slow degeneration phenotype in which rod and cone photoreceptors start to degenerate at about 6 months old; the XLRPA2 mutation leads to a long framenshift with 34 C-terminal basic residues. The XLRPA2 show a faster degeneration along with disorganized and disoriented photoreceptor outer segments. The above RPGR mouse and dog models provide a platform for testing preclinical therapies.

Gene therapy in the retina holds great promise in treating retinitis pigmentosa. Several factors make the retina amenable to the gene-replacement therapy, including relatively easy accessibility, immune privilege, and non-invasive safe evaluation of therapeutic effects [11]. The commonly used vectors for retinal gene delivery are recombinant Adeno-Associated Viruses (AAV), which have shown consistent success in targeting to the retinal pigmem epithelial and photoreceptor cells. Recently Dr Aguirre and his collaborators at the School of Veterinary Medicine, University of Pennsylvania, reported that gene therapy rescued retinal degeneration phenotype in RPGR mutant dog models by over-expression of human RPGRORF15 in XLRPA dog photoreceptor cells with Adeno-Associated Virus (AAV) 2/5 vector under the control of either a human IRBP or GRK1 promoters [12]. The treatment was more effective when human RPGRORF15 was driven by hIRBP promoter rather than GRK1 promoter. Since it is thought that over-expression of RPGRORF15 will cause toxicity in photoreceptors, ideally future RPGR gene therapy in RP patients will use human RPGR promoter to regulate RPGR expression. We have recently characterized the human RPGR promoter [13] and are now developing a mini promoter to drive RPGR expression in RPGR mutant animal models, which will provide preclinical data for progressing to a clinical trial. This will offer hope to RP patients with RPGR mutations.

Acknowledgements

The studies referred to from Dr Shu’s laboratory have been supported by grants from the Royal Society London, the TENOVSUS Scotland, the WH Ross Foundation, the National Eye Research Centre, the Rosetrees Trust, the Visual Research Trust, UK Fight for Sight, RP Fighting Blindness UK, and the Carnegie Trust for the University of Scotland.

References


*Corresponding author: Xinhua Shu, PhD, Department of Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland

Received December 20, 2013; Accepted December 23, 2013; Published December 25, 2013


Copyright: © 2013 Shu X. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.