alexa Generalized Electronic Devices and Circuits | OMICS International
ISSN: 2155-6210
Journal of Biosensors & Bioelectronics

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Generalized Electronic Devices and Circuits

Chiangga S1, Kimura T2, Suwandee S3 and Yupapin PP1,3*

1Spintronics Research Center, Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand

2Spintronics Research Center, Department of Physics, Kyushu University, Fukuoka, Japan

3Interdisciplinary Research Center, Faculty of Science and Technology, Kasem Bundit University, Bangkok, Thailand

*Corresponding Author:
Yupapin PP
Interdisciplinary Research Center
Faculty of Science and Technology
Kasem Bundit University; SCI Center
SOL Corporation International Company Limited
Advanced Studies Center, Faculty of Science
King Mongkut’s Institute of Technology Ladkrabang
Bangkok 10520, Thailand
Tel: 6623298000
E-mail: [email protected]

Received Date: June 13, 2015; Accepted Date: June 16, 2015; Published Date: June 26, 2015

Citation: Chiangga S, Kimura T, Suwandee S, Yupapin PP (2015) Generalized Electronic Devices and Circuits. J Biosens Bioelectron 6:e139. doi: 10.4172/2155-6210.1000e139

Copyright: © 2015 Chiangga S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Biosensors & Bioelectronics


Spintronic device concept has been established almost two decades, where the researches have been involved in solid-state electronics. Nowadays, the Spin-based nanoelectronic devices such as GMR valves, magnetic tunnel junctions, semiconductor spin transistor devices and quantum bits based on spins have been the challenging and exciting devices with various attractive performances such as the low energy consumption and the high density integrations. Moreover, recently, the microwave devices based on the dynamical spin properties have been considerable attention because of its fast time scale less than subnano second and its flexibility. Especially, since a few GHz operations are the physical upper limit of the devices based on the surface acoustic wave which is commonly utilized in the present device, a microwave device based on the dynamical spin properties with higher operation frequency is a timely demonstration. Moreover, the development of high-performance microwave spintronic devices makes an innovation not only in the telecommunications, but also in the sensing devices such as healthcare, military, security and applications. In fact, a coherent magnetization precession with a frequency characterized by a spin wave has been considered as next-generation on-chip microwave filter devices. However, because of the influence of the boundary or the edge of the ferromagnet, the magneto-static interaction, which is a key for stabilizing the spin wave, becomes inhomogeneous, especially in nanostructured devices. As a result, the miniaturization of the microwave spin device is an important milestone.

The development of a high performance spin wave resonator by using a ferromagnetic metallic nano ring can be realized, from which a ferromagnetic nano ring is fabricated by using an ultra-high precision electron-beam lithography system, which has been installed in Kyushu University. The ring diameter is systematically varied from whose diameter is varied from 100 nm to 1 micron and the width is 50 nm or less. The amorphous Permalloy or CoFeB films are deposited by the ultra-high-vacuum evaporation system. The spin wave will be excited by the current-induce Oersted field using a nonmagnetic Cu strip and/or spin transfer torque induced by a local pure spin current injection. We will stabilize the standing spin wave by superimposing the propagating magnetostatic backward volume waves in opposite direction. The frequency dispersion of the resonant peak should be less than Hz range, which is much smaller than the spin wave in the conventional ferromagnet and is comparable to the ferromagnetic YIG film.

After the demonstration of the sharp resonant peak and its frequency tenability, the use of a panda ring resonator will be exploited with various applications. Here, a panda ring resonator consists of the main nano ring resonator with two nano ring resonators, as schematically shown in (Figure 1). The generation of the spin wave in the main resonator will nonlinearly excite another magnetostatic backward volume wave in the side rings with a specific wave length. These nonlinear responses provide innovative operation schemes of the spin current circuits, leading to the novel spintronic devices such as spin-current amplifier and ultrafast spin logic circuit.


Figure 1: Spin wave excitation by magnetic field using Panda ring structure, where the spin wave excitation by spin injection using (a) copper wire, (b) ferromagnetic and copper wires.

In conclusion, such a spin wave (spintronic) device can be used and replaced the former electronic devices without any charge conservation requirement, in which the device material can be metal, insulator or semiconductor. By using the panda ring structure similarly to the optical device applications [1-7], then all designed and manipulated devices can be fabricated, tested and used by the metallic device based spintronics.


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 11968
  • [From(publication date):
    September-2015 - Jun 19, 2018]
  • Breakdown by view type
  • HTML page views : 8190
  • PDF downloads : 3778

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7