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Abstract

We introduce a new kind of a fuzzy Lie subalgebra of a Lie algebra called, an (α, β)-
fuzzy Lie subalgebra and investigate some of its properties. We also present characterization
theorems of implication-based fuzzy Lie subalgebras.
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1 Introduction and Preliminaries

In 1965, Zadeh [15] introduced the notion of a fuzzy subset of a set as a method for representing
uncertainty. Rosenfeld [10] introduced notion of fuzzy subgroup of a group in 1971. Since then,
many scholars have studied the theories of fuzzy subgroups of a group. On the other hand, the
concept of quasi-coincidence of a fuzzy point in a fuzzy subset was introduced by Pu and Liu
[9]. Using the concept of belongingness and quasicoincidence, Bhakat and Das [3] defined a new
fuzzy subgroup called, an (α, β)-fuzzy subgroup. This concept is studied further in [4]. Yehia
[11] introduced notion of a fuzzy Lie subalgebra and studied some of its properties. In this paper
we introduce a new kind of a fuzzy Lie subalgebra of a Lie algebra which is generalization Yehia’s
fuzzy Lie subalgebra and investigate some of its properties. We also present characterization
theorems of implication-based fuzzy Lie subalgebras.

Let µ be a fuzzy set on L, i.e., a map µ : L→ [0, 1]. A fuzzy set µ in a set L of the form

µ(y) =

{
t ∈ (0, 1], if y=x ,
0, y 6= x,

is said to be a fuzzy point with support x and value t and is denoted by xt. A fuzzy point xt is
said to “belonging to” a fuzzy set µ, written as xt ∈ µ if µ(x) ≥ t. A fuzzy point xt is said to be
“quasicoincident with” a fuzzy set µ, denoted by xtqµ if µ(x) + t > 1.

(i) ”xt ∈ µ” or “xtqµ” will be denoted by xt ∈ ∨qµ.
(ii) “xt∈µ and xt∈ ∨qµ” mean that “xt ∈ µ and xt ∈ ∨qµ” do not hold, respectively.

2 (α, β)- fuzzy Lie subalgebra

Definition 1. A fuzzy set µ in L is called an (α, β)-fuzzy Lie subalgebra of L if it satisfies the
following conditions:

(1) xsαµ, ytαµ⇒ (x+ y)min(s,t)βµ,
(2) xsαµ⇒ (mx)sβµ,
(3) xsαµ, ytαµ⇒ [x, y]min(s,t)βµ

for all x, y ∈ L, m ∈ F , s, t ∈ (0, 1].

From (2), it follows that:
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(4) xsαµ⇒ (−x)sβµ.
(5) xsαµ⇒ (0)sβµ.

The proofs of the following propositions are obvious.

Proposition 1. Every (∈,∈)-fuzzy Lie subalgebra is an (∈,∈ ∨q)-fuzzy Lie subalgebra.

Proposition 2. Every (∈ ∨q,∈ ∨q)-fuzzy Lie subalgebra is an (∈,∈ ∨q)-fuzzy Lie subalgebra.

Converse of Propositions 1 and 2 may not be true as seen in the following example.

Example. Let V be a vector space over a field F such that dim(V ) = 5. Let V = {e1, e2, . . . , e5}
be a basis of a vector space over a field F with Lie brackets as follows:

[e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e5, [e1, e5] = 0
[e2, e3] = e5, [e2, e4] = 0, [e2, e5] = 0, [e3, e4] = 0
[e3, e5] = 0, [e4, e5] = 0, [ei, ej ] = −[ej , ei]

and [ei, ej ] = 0 for all i = j. Then V is a Lie algebra over F . We define a fuzzy set µ : V → [0, 1]
by

µ(x) :=


0.5 if x = 0,
0.6 if x ∈ {e3, e5},
1.0 if x ∈ {e1, e2, e4}.

By routine computations, it is easy to see that µ is an (∈,∈ ∨q)-fuzzy Lie subalgebra of L. But,
it is easy to see that µ is not (∈,∈)- and (∈ ∨q,∈ ∨q)-fuzzy Lie subalgebra of L.

For a fuzzy set µ in L, we define support of µ by L0 = {x ∈ L : µ(x) > 0}. We now establish
a series of Lemmas.

Lemma 1. If µ is a nonzero (∈,∈)-fuzzy Lie subalgebra of L, then the set L0 is a fuzzy Lie
subalgebra of L.

Proof. Let x, y ∈ L0. Then µ(x) > 0 and µ(y) > 0.
(1) If µ(x+ y) = 0. Then we can see that xµ(x) ∈ µ and yµ(y) ∈ µ, but (x+ y)min(µ(x),µ(y))∈µ

since µ(x + y) = 0 < min(µ(x), µ(y)). This is clearly a contradiction, and hence µ(x + y) > 0,
which shows that x+ y ∈ L0.

(2) If µ(mx) = 0. Then we can see that xµ(x) ∈ µ, but (mx)µ(x)∈µ since µ(mx) = 0 < µ(x).
This is clearly a contradiction, and hence µ(mx) > 0, which shows that mx ∈ L0.

(3) If µ([x, y]) = 0. Then we can see that xµ(x) ∈ µ and yµ(y) ∈ µ, but ([x, y])min(µ(x),µ(y))∈µ
since µ([x, y]) = 0 < min(µ(x), µ(y)), a contradiction, and hence µ([x, y]) > 0, which shows that
[x, y] ∈ L0. Consequently L0 is a Lie subalgebra of L.

Lemma 2. If µ is a nonzero (∈, q)-fuzzy Lie subalgebra of L, then the set L0 is a fuzzy Lie
subalgebra of L.

Proof. Let x, y ∈ L0. Then µ(x) > 0 and µ(y) > 0.
(1) Suppose that µ(x+ y) = 0, then

µ(x+ y) + min(µ(x), µ(y)) = min(µ(x), µ(y)) ≤ 1

Hence (x + y)min(µ(x),µ(y))qµ, which is a contradiction since xµ(x) ∈ µ and yµ(y) ∈ µ. Thus
µ(x+ y) > 0, so x+ y ∈ L0.
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(2) Suppose that µ(mx) = 0, then

µ(mx) + µ(x) = µ(x) ≤ 1

Hence mxµ(x)qµ, which is a contradiction since xµ(x) ∈ µ. Thus µ(mx) > 0, so mx ∈ L0.
(3) Suppose that µ([x, y]) = 0, then

µ([x, y]) + min(µ(x), µ(y)) = min(µ(x), µ(y)) ≤ 1

Hence [x, y]min(µ(x),µ(y))qµ, which is a contradiction since xµ(x) ∈ µ and yµ(y) ∈ µ. Thus
µ([x, y]) > 0, so [x, y] ∈ L0. Hence L0 is a fuzzy Lie subalgebra of L.

Lemma 3. If µ is a nonzero (q,∈)-fuzzy Lie subalgebra of L, then the set L0 is a fuzzy Lie
subalgebra of L.

Proof. Let x, y ∈ L0. Then µ(x) > 0 and µ(y) > 0. Thus µ(x) + 1 > 1 and µ(y) + 1 > 1, which
imply that x1qµ and y1qµ.

(1) If µ(x + y) = 0, then µ(x + y) < 1 = min(1, 1). Therefore, (x + y)min(1,1)∈µ, which is a
contradiction. It follows that µ(x+ y) > 0 so that x+ y ∈ L0.

(2) If µ(mx) = 0, then µ(mx) < 1 = 1. Therefore, mx1∈µ, a contradiction. It follows that
µ(mx) > 0 so that mx ∈ L0.

(3) If µ([x, y]) = 0, then µ([x, y]) < 1 = min(1, 1). Therefore, [x, y]min(1,1)∈µ, which is a
contradiction. It follows that µ([x, y]) > 0 so that [x, y] ∈ L0.

Lemma 4. If µ is a nonzero (q, q)-fuzzy Lie subalgebra of L, then the set L0 is a fuzzy Lie
subalgebra of L.

Proof. Let x, y ∈ L0. Then µ(x) > 0 and µ(y) > 0. Thus µ(x) + 1 > 1 and µ(y) + 1 > 1. This
implies that x1qµ and y1qµ.

(1) If µ(x + y) = 0, then µ(x + y) + min(1, 1) = 0 + 1 = 1, and so (x + y)min(1,1)qµ. This is
impossible, and hence µ(x+ y) > 0 , i. e., x+ y ∈ L0.

(2) If µ(mx) = 0, then µ(mx)+1 = 0+1 = 1, and so (mx)1qµ. This is impossible, and hence
µ(mx) > 0 , i. e., mx ∈ L0.

(3) If µ([x, y]) = 0, then µ([x, y]) + min(1, 1) = 0 + 1 = 1, and so [x, y]min(1,1)qµ. This is
impossible, and hence µ([x, y]) > 0 , i. e., [x, y] ∈ L0.

By using similar method as given in the above Lemmas, we can also prove the following
Lemma.

Lemma 5. If µ is a nonzero (∈,∈ ∨q)-, (∈,∈ ∧q)-,(∈ ∨q, q)-, (∈ ∨q,∈)-, (∈ ∨q,∈ ∧q)-,
(q,∈ ∧q)-, (q,∈ ∨q)-, or (∈ ∨q,∈ ∨q)-fuzzy Lie subalgebra of L. Then the set L0 is a fuzzy
Lie subalgebra of L.

In summarizing the above lemmas, we obtain the following theorem.

Theorem 1. If µ is a nonzero (α, β)-fuzzy Lie subalgebra of L, then the set L0 is a fuzzy Lie
subalgebra of L.

Theorem 2. Let L0 ⊂ L1 ⊂ · · · ⊂ Ln = L be a strictly increasing chain of an (∈,∈)-fuzzy Lie
subalgebras of a Lie algebra L, then there exists (∈,∈)-fuzzy Lie subalgebra µ of L whose level
subalgebras are precisely the members of the chain with µ0.5 = L0.
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Proof. Let {ti : ti ∈ (0, 0.5], i = 1, 2, · · · , n} be such that t1 > t2 > t3 > · · · > tn. Let
µ : L→ [0, 1] defined by

µ(x) =



t, if x = 0,
n, if x = 0, x ∈ L0,

t1, if x ∈ L1 \ L0,
t2, if x ∈ L2 \ L1,
...
tn, if x ∈ Ln \ Ln−1.

Let x, y ∈ L. If x+ y ∈ L0, then

µ(x+ y) ≥ 0.5 ≥ min(µ(x), µ(y), 0.5)

On the other hand, If x+ y /∈ L0, then there exists i, 1 ≤ i ≤ n such that x+ y ∈ Li \ Li−1 so
that µ(x+ y) = ti. Now there exists j(≥ i) such that x ∈ Lj or y ∈ Lj . If x, y ∈ Lk(k < i), then
Lk is a Lie subalgebra of L, x+ y ∈ Lk which contradicts x+ y /∈ Li−1. Thus

µ(x+ y) ≥ ti ≥ tj ≥ min(µ(x), µ(y), 0.5)

The verification is analogous (2-3) and we omit the details. Hence µ is (∈,∈)-fuzzy Lie subalgebra
of L. It follows from the contradiction of µ that µ0.5 = L0, µti = Li for i = 1, 2, . . . , n.

3 Implication-based fuzzy Lie subalgebras

Fuzzy logic is an extension of set theoretic multivalued logic in which the truth values are
linguistic variables or terms of the linguistic variable truth. Some operators, for example ∨; ∧;
¬; → in fuzzy logic are also defined by using truth tables and the extension principle can be
applied to derive definitions of the operators. In fuzzy logic, the truth value of fuzzy proposition
p is denoted by [p]. For a universe of discourse U , we display the fuzzy logical and corresponding
set-theoretical notations used in this paper.

(1) [x ∈ µ] = µ(x),
(2) [p ∧ q] = min([p], [q]),
(3) [p→ q] = min(1, 1− [p] + [q]),
(4) [∀xp(x)] = infx∈U [p(x)],
(5) |= p if and only if [p] = 1 for all valuations.

The truth valuation rules given in (4) are those in the Lukasiewicz system of continuous-valued
logic. Of course, various implication operators have been defined. We show only a selection of
them as follows:

(A) Gaines-Rescher implication operator (IGR):

IGR(x, y) :=

{
1 if x ≤ y,
0 otherwise.

(B) Gödel implication operator (IG):

IG(x, y) :=

{
1 if x ≤ y,
y otherwise.
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(C) The contraposition of Gödel implication operator (IG):

IG(x, y) :=

{
1 if x ≤ y,
1− x otherwise.

Ying [13] introduced the concept of fuzzifying topology. We can expand this concept to Lie
algebras, and we define a fuzzifying Lie subalgebra as follows:

Definition 2. A fuzzy set µ in L is called a fuzzfying Lie subalgebra of L if it satisfies the
following conditions:

(a) for any x, y ∈ L,

|= min([x ∈ µ], [y ∈ µ])→ [x+ y ∈ u]

(b) for any x ∈ L and m ∈ F ,

|= [x ∈ µ]→ [mx ∈ u]

(c) for any x, y ∈ L,

|= min([x ∈ µ], [y ∈ µ])→ [[x, y] ∈ u]

Obviously, Definition 3 is equivalent to the Definition 2.4 [1]. Hence a fuzzifying Lie subal-
gebra is an ordinary fuzzy Lie subalgebra.

Definition 3. Let µ be a fuzzy set of L and t ∈ (0, 1]. Then µ is called a t-implication-based
Lie subalgebra of L if it satisfies the following conditions:

(d) For any x, y ∈ L |=t min([x ∈ µ], [y ∈ µ])→ [x+ y ∈ µ],
(e) For any x ∈ L, m ∈ F |=t [x ∈ µ]→ [mx ∈ µ],
(f) For any x, y ∈ L |=t min([x ∈ µ], [y ∈ µ])→ [[x, y] ∈ µ].

Proposition 3. Let I be an implication operator. A fuzzy set µ of L is a t-implication based
fuzzy Lie subalgebra of L if and only if it satisfies the following:

(g) I(min(µ(x), µ(y)), µ(x+ y)) ≥ t,
(h) I(µ(x), µ(mx)) ≥ t,
(i) I(min(µ(x), µ(y)), µ([x, y])) ≥ t

for all x, y ∈ L, m ∈ F .

Proof. Straightforward.

Definition 4. Let λ1, λ2 ∈ [0, 1] and λ1 < λ2. If µ is a fuzzy set of a Lie algebra L, then µ is
called a fuzzy Lie subalgebra with thresholds if

(j) max(µ(x+ y), λ1) ≥ min(µ(x), µ(y), λ2),
(k) max(µ(mx), λ1) ≥ min(µ(x), λ2),
(l) max(µ([x, y]), λ1) ≥ min(µ(x), µ(y), λ2)

for all x, y ∈ L, m ∈ F .

We now give characterization theorems.
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Theorem 3. Let µ be a fuzzy set in L. If I = IG, then µ is a 0.5-implication- based fuzzy Lie
subalgebra of L if and only if µ is a fuzzy Lie subalgebra with thresholds λ1 = 0 and λ2 = 0.5
of L.

Proof. Suppose that µ is a 0.5-implication based Lie subalgebra of L. Then

(i) IG(min(µ(x), µ(y)), µ(x+ y)) ≥ 0.5, and hence

µ(x+ y) ≥ min(µ(x), µ(y)) or min(µ(x), µ(y)) ≥ µ(x+ y) ≥ 0.5

It follows that

µ(x+ y) ≥ min(µ(x), µ(y), 0.5)

(ii) IG(min(µ(x), µ(mx)) ≥ 0.5, and hence

µ(mx) ≥ µ(x) or µ(x) ≥ µ(mx) ≥ 0.5

It follows that

µ(mx) ≥ min(µ(x), 0.5)

(iii) IG(min(µ(x), µ(y)), µ([x, y])) ≥ 0.5, and hence

µ([x, y]) ≥ min(µ(x), µ(y)) or min(µ(x), µ(y)) ≥ µ([x, y]) ≥ 0.5

It follows that

µ([x, y]) ≥ min(µ(x), µ(y), 0.5)

so that µ is a fuzzy Lie subalgebra with with thresholds λ1 = 0 and λ2 = 0.5 of L.

Conversely, if µ is a fuzzy Lie subalgebra with with thresholds λ1 = 0 and λ2 = 0.5 of L. Then

(i) µ(x+y)=max(µ(x+y), 0) ≥ min(µ(x), µ(y), 0.5). If min(µ(x), µ(y), 0.5)=min(µ(x), µ(y)),
then

IG(min(µ(x), µ(y)), µ(x+ y)) = 1 ≥ 0.5

Otherwise,

IG(min(µ(x), µ(y)), µ(x+ y)) ≥ 0.5

(ii) µ(mx) = max(µ(mx), 0) ≥ min(µ(x), 0.5). If min(µ(x), 0.5) = µ(x), then

IG(µ(x), µ(mx)) = 1 ≥ 0.5

Otherwise,

IG(µ(x), µ(mx)) ≥ 0.5

(iii) µ([x, y])=max(µ([x, y]), 0) ≥ min(µ(x), µ(y), 0.5). If min(µ(x), µ(y), 0.5)=min(µ(x), µ(y)),
then

IG(min(µ(x), µ(y)), µ([x, y])) = 1 ≥ 0.5

Otherwise,

IG(min(µ(x), µ(y)), µ([x, y])) ≥ 0.5

Hence µ is a 0.5-implication based Lie subalgebra of L.
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This completes the proof.

Theorem 4. Let µ be a fuzzy set in L. If I = IG, then µ is a 0.5-implication- based fuzzy Lie
subalgebra of L if and only if µ is a fuzzy Lie subalgebra with thresholds λ1 = 0.5 and λ2 = 1
of L.

Proof. Suppose that µ is a 0.5-implication based Lie subalgebra of L. Then

(i) IG(min(µ(x), µ(y)), µ(x+ y)) ≥ 0.5 which implies that

µ(x+y) ≥ min(µ(x), µ(y)) or 1−min(µ(x), µ(y)) ≥ 0.5, i.e min(µ(x), µ(y)) ≤ 0.5

Thus

max(µ(x+ y), 0.5) ≥ min(µ(x), µ(y), 1)

(ii) IG(min(µ(mx)µ(mx)) ≥ 0.5 which implies that

µ(mx) ≥ µ(x) or 1− µ(x) ≥ 0.5, i.e µ(x) ≤ 0.5

Thus

max(µ(mx), 0.5) ≥ min(µ(x), 1)

(iii) IG(min(µ(x), µ(y)), µ([x, y])) ≥ 0.5 which implies that

µ([x, y]) ≥ min(µ(x), µ(y)) or 1−min(µ(x), µ(y)) ≥ 0.5 i.e min(µ(x), µ(y)) ≤ 0.5

Thus

max(µ([x, y]), 0.5) ≥ min(µ(x), µ(y), 1)

Hence µ is a fuzzy Lie subalgebra with thresholds λ1 = 0.5 and λ2 = 1 of L The proof of
converse part is obvious.

This completes the proof.

Theorem 5. Let µ be a fuzzy set in L. If I = IGR, then µ is a 0.5-implication- based fuzzy Lie
subalgebra of L if and only if µ is a fuzzy Lie subalgebra with thresholds λ1 = 0 and λ2 = 1 of
L.

Proof. Obvious.

As a consequence of the above Theorems we obtain the following

Corollary 1. (1) Let L = LGR. Then µ is an implication-based fuzzy Lie subalgebra of L if
and only if µ is a Yehia’s fuzzy Lie subalgebra of L.

(2) Let L = LG. Then µ is an implication-based fuzzy Lie subalgebra of L if and only if µ is
an (∈,∈ ∨q)- fuzzy Lie subalgebra of L.
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