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Introduction
Due to applications of the semi-Riemannian geometry in sciences, 

engineering, medical, etc. (specially, in the mathematical physics to 
study the general theory of relativity and cosmology), its study became 
most popular and interesting area among the researchers (specially for 
geometers and physicist). A smooth connected n-dimensional semi-
Riemannian manifold along with the Lorentzian metric g of signature 
(+, +, +, . . . , +) is known as an n-dimensional Lorentzian manifold. 
To start the study of Lorentzian manifold the causal character of 
vectors played a significant role and therefore it become a suitable 
choice for the researcher to study the general theory of relativity and 
cosmology. A space-time means a Lorentzian manifold of dimension 
4. The Einstein’s field equations showed that the energy momentum 
tensor is divergence free [1]. Due to this requirement, the energy 
momentum tensor should be covariantly constant. In [2], Chaki et 
al. considered a general relativistic space-time and proved that if the 
energy momentum tensor on a space-time is covariantly constant, then 
the space-times is Ricci symmetric, that is, S=0, where and S denote the 
covariant derivative and the Ricci tensor corresponding to the metric 
g, respectively. In [3], De et al. taken a general relativistic space-time 
and proved that the energy momentum tensor is semisymmetric if and 
only if the space-time is Ricci semisymmetric. For more details about 
the space-times, we refer [4-7] and their references. On the other hand, 
if S=0 then the space-time may be called as weakly Ricci symmetric 
[8]. The notion of the pseudo Ricci symmetric Riemannian manifold 
has been introduced by Chaki [9]. Let M be an n-dimensional semi-
Riemannian manifold, then M is said to be pseudo Ricci symmetric, 
denoted by (P RS)n, if it’s the non-vanishing Ricci tensor S satisfies the 
tensorial relation

(∇U S)(V, Z)=2A(U)S(V, Z)+A(V)S(U, Z)+A(Z)S(U, V)	          (1.1)

for all vector fields U, V and Z on M , where A is the 1-form corresponding 
to the vector field ρ, that is, g(U, ρ)=A(U). As a particular case if the 
1-form A is zero, then the (P RS)n manifold converts in to the Ricci 
symmetric manifold.

Alias [10] introduced the notion of generalized Robertson-Walker 
(GRW) space-time, which is a generalization of the Robertson-
Walker (RW) space-time. A GRW space-time of dimension n is an 
n-dimensional Lorentzian manifold M , that is, M=-I×f2M∗, where I 
is an open interval of the real line R, M∗, a Riemannian manifold of 
dimension (n-1) and f (>0), a smooth warping function (or scale factor). 
In [11], it is observed that the GRW space-times have applications in 
inhomogeneous space-times admitting an isotropic radiation. An 
n-dimensional Lorentzian manifold M with the metric (in local shape)

ds2=gαβdxαdxβ=−(dt)2+f (t)2g∗
α β

  dxαdxβ,

where g∗
αβ=g∗

αβ (xγ) are functions of xγ only (α, β, γ=2, 3, . . ., n) and f, the 
warping function of t only, is known as GRW space-time. In particular, 
if gα∗ β has dimension 3 and constant curvature, then the space-time 
converts into the RW space-time. For instance, we refer [12-17].

Lorentzian manifolds with a non-vanishing Ricci tensor S are 
known as the perfect fluid space-times if

S=ag+bA ⊗ A,					               (1.2)

where a and b are scalar fields and g(ρ, ρ)=-1. O’Neill [1] in his book 
listed that a Robertson-Walker space-time is a perfect fluid space-
time. It is also noticed that a GRW space-time (for n=4) is a perfect 
fluid if and only if it is RW space-time. If the energy-matter content 
of space-time is a perfect fluid with fluid velocity ρ, then the Einstein’s 
field equations reflect that the Ricci tensor assumes the form (1.2) and 
the scalars a and b are linearly related to the pressure p and the energy 
density µ measured in the locally commoving inertial frame [16]. Many 
authors studied the properties of space-time but few are [18-20].

According to the geometers, a semi-Riemannian manifold with 
a non-zero Ricci tensor S, satisfies the equation (1.2), is known as a 
quasi-Einstein manifold. For instance [21-23]. Deszcz [23] investigated 
that a quasi-Einstein Rie-mannian manifold under certain conditions 
is a warped product (+1) × f 2M∗, where M∗ is an (n-1)-dimensional 
Riemannian manifold of constant curvature.

In [24], Derdzinski et al. discussed the existence of a non-trivial 
Codazzi tensor on a Riemannian manifold and listed its geometrical 
and topological consequences. The parallel tensors are the simplest 
example of the Codazzi tensors. A non-vanishing (0, 2)-type tensor 
field P on an n-dimensional semi-Riemannian manifold M is said to 
be of Codazzi type if

(∇U P)(V, Z) = (∇V P)(U, Z)

for all vector fields U, V and Z on M. As a particular case, if we replace 
P with S
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then M possesses a Codazzi type Ricci tensor, that is,

(∇U S)(V, Z) = (∇V S)(U, Z).		   	             (1.3)

It is well known that the conformal curvature tensor C plays a 
lead role in the theory of relativity and cosmology. It is defined on an 
n-dimensional semi-Riemannian manifold M by 

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ){ }

1
C U, V Z = R U, V Z -

n - 2
rS V, Z U - S U, Z V + g V, Z QU- g U,Z QV - g V,Z U-g U,Z Vn-1

é ùê úë û

for all vector fields U, V and Z on M [25]. Here R denotes the curvature 
tensor with respect to∇, Q, the Ricci operator corresponding to S and r 
is the scalar curvature of the manifold.

Motivated by the projective curvature tensor, Pokhariyal [26], 
defined and studied the relativistic significance of W1-curvature tensor 
on an n-dimensional semi-Riemannian manifold, defined by 

 ( ) ( )
1

{
1

W U, V Z = R U, V Z + S V, Z U -( ) (S U, Z
n -1

)V}           (1.4)

for all vector fields U, V and Z on M. The properties of the same 
curvature tensor on the Lorentzian para-Sasakian manifolds have been 
studied by Pokhariyal [27].

The above studies motivate us to study the properties of space-time 
admitting W1-curvature tensor. We plan our present work as follows: 
After introduction part in Section 1, we study the properties of the 
space-time endowed with the divergence free W1-curvature tensor in 
Section 2. It is proved that a W1-curvature tensor on a space-time is 
divergence free if and only if the Ricci tensor is of Codazzi type. If the 
divergence of W1-curvature tensor on a space-time is zero, then the 
1-form A is closed and the integral curves generated by a unit timelike 
vector field ρ are geodesics and also ρ is irrotational. We summarize 
this section by the result “A perfect fluid space-time with divergence 
free W1-curvature tensor is a GRW space-time”. Section 3 deals 
with the study of pseudo Ricci symmetric space-time admitting the 
divergence free W1-curvature tensor. We show that the pseudo Ricci 
symmetric space-time satisfying divergence free W1-curvature tensor 
is a GRW space-time. In Section 4, we consider a perfect fluid space-
time satisfying the Einstein’s field equations without cosmological term 
and investigate many results. A space-time admits a divergence free 
W1-curvature tensor if and only if the energy momentum tensor is of 
Codazzi type. It is also proved that a perfect fluid space-time satisfying 
the Einstein’s field equations without cosmological term has divergence 
free W1-curvature tensor if and only if the space-time is a GRW space-
time.

Divergence Free W1-Curvature Tensor
This section deals with the study of fluid space-time carrying the 

divergence free W1-curvature tensor. Let V4 is a space-time, and then 
the W1-curvature tensor, from (1.4), takes the form

( ) ( )
1

1
W U, V Z = R U, V Z + S V, Z U - S U, Z V .

3
{ ( ) ( ) } 	            (2.1)

The covariant derivative of (2.1) with respect to the vector field X 
gives

( )( ) ( )( ) ( )( ) ( )( ){ } .
1

S V,Z U- S U,Z VX X3
W U,V Z= R U,V Z+X X1∇ ∇ ∇ ∇ (2.2)

Considering a frame field and contracting (2.2), we find

( )( ) ( )( ) ( )( ){ }1
, , , ,1 3

divW U V Z divR U V Z S V ZU= + Ñ        (2.3)

where (divW1)(U, V)Z= 4
1iå = ∈g ((∇ei W1)(U, V)Z, ei), ∈i=g(ei, ei). 

Here {ei, i=1, 2, 3, 4} denotes an orthonormal frame field of the space-
time. It is well known that (divR)(U, V)Z=(∇U S)(V, Z) - (∇V S)(U, Z) 
and therefore the equation (2.3) becomes

(divW1)(U, V)Z = 
4

3
 {(∇U S) (V, Z) − (∇V S)(U, Z)}.	           (2.4)

Thus we can state:

Theorem 2.1. The space-time admits a Codazzi type Ricci tensor if 
and only if the W1-curvature tensor is divergence free.

If the space-time is Einstein, that is, S(U, V)=κ1g(U, V), where κ1 
is a constant.

Then we have

∇S=0. 

Thus we have the following theorem.

Theorem 2.2. The divergence of W1-curvature tensor on an Einstein 
space-time is always zero.

Next, we are going to study the properties of divergence free W1-
curvature tensor on a perfect fluid space-time. A space-time V4 is said 
to be a perfect fluid space-time if the non-vanishing Ricci tensor S of 
V4 satisfies the equation (1.2).

The covariant derivative of (1.2) gives

(∇U S)(V, Z)=da(U)g(V, Z) + db(U)A(V)A(Z)+b{(∇U A)(V)A(Z) + 
A(V)(∇U A)(Z)}.				                                (2.5)

if we suppose that the W1-curvature tensor of the space-time is 
divergence free, that is, (divW1) (U, V) Z=0. Then the Theorem 2.1 
shows that the Ricci tensor S of V4 to be of Codazzi type, that is, the 
equation (1.3) is satisfied on V4.

From (1.3) and (2.5), we have

da(U)g(V,Z)+db(U)A(V)A(Z)−da(V)g(U,Z)−db(V)A(U)
A(Z)+b{(∇UA)(V)A(Z)+A(V)(∇UA)(Z)−(∇VA)(U)A(Z)−A(U)(∇VA)
(Z)}=0.					                                  (2.6)

Considering a frame field and then contracting (2.6) over U and 
Z we get

−3da(V)+db(V)+db(ρ)A(V)+b{(∇ρA)(V)+A(V)δA}=0,	           (2.7)

where ( )( )4
1A A ei ei iid = Î Ñå =  and ∈i=g(ei, ei). Replacing U and Z 

with ρ in (2.6), we find 

b(∇ρA)(V)=-3da(ρ)A(V)−3da(V).			               (2.8)

Taking a frame field and then contracting the equation (1.3) for U 
and V, we have

dr(Z)=0 ⇔ r=constant.

Again, considering a frame field and contracting (1.2) over U and 
V we conclude that

r=4a− b, 

which gives
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4da(U)=db(V).		  			             (2.9)

In consequence of the equations (2.8) and (2.9), equation (2.7) 
takes the form

−2da(V)+da(ρ)A(V)+bA(V)δA=0.			            (2.10)

Substituting V=ρ in (2.10), we obtain

( )3 ,A da pbd =- 			    	           (2.11)

Provided b¹0. We have from (2.9) and (2.11)

da(V)=−da(ρ)A(V), db(V−4da(ρ)A(V).		          (2.12)

Replacing Z with ρ in (2.6), we get

da(U)A(V)−db(U)A(V)−da(V)A(U)+db(V)A(U)−b{(∇UA)(V)−
(∇VA)(U)}=0.

In view of the equation (2.12), above equation assumes the form

b{(∇UA)(V)−(∇VA)(U)}=0,			               (2.13)

which shows that the 1-form A is closed, provided b¹0. Thus we can 
state the following theorem.

Theorem 2.3. If the W1-curvature tensor is divergence free on a 
perfect fluid space-time, then the 1-form A is closed.

Since b¹0 (in general), therefore the equation (2.13) gives

(∇UA)(V)=(∇VA)(U).

Setting V=ρ in the above equation, we get

g(∇Uρ, ρ)=g(∇ρρ, U).

Since g(ρ, ρ)=-1⇒g(∇U ρ, ρ)=0 and hence ∇ρρ=0. This reflects that 
the integral curves generated by the velocity vector field ρ are geodesics 
and the vector field ρ is an irrotational vector field. Thus we are in 
position to state the following:

Theorem 2.4. If the W1-curvature tensor on a perfect fluid space-
time is diver-gence free, then the integral curves generated by the unit 
timelike vector field ρ are geodesics and the vector field ρ is irrotational.

Yano [28], studied the geometrical properties of a torse-forming 
vector field on a Riemannian manifold. This study on the semi-
Riemannian manifolds has been extended by Sinyukov [29], Mikes 
[30] and many others.

Deftnition 2.5. A vector field Uj on a semi-Riemannian manifold is 
said to be a torse-forming vector field if ∇kUj=ωkUj+φgkj, where φ is a 
scalar function and ωk, a non-vanishing 1-form .

It is noticed that a unit time like torse-forming vector field ui on a 
semi-Riemannian manifold M takes the following form:

∇kuj=φ (ukuj+gkj).				             (2.14) 

For more details, we refer [31].

Motivated by the beautiful result of Chen [32]

Theorem 2.6. [32] A Lorentzian n-manifold with n ≥ 3 is a 
generalized Robert-son-Walker space-time if and only if it admits a 
timelike concircular vector field.

Mantica [31] proved the necessary and sufficient conditions for the 
Lorentzian manifold to be GRW space-time as:

Theorem 2.7. A Lorentzian manifold of dimension n ≥ 3 is a GRW 

space-time if and only if it admits a unit timelike torse-forming vector, 
∇kuj=φ(ukuj + gkj), that is also an eigen vector of the Ricci tensor [31].

In consequence of (2.6) and (2.12), we obtain

A(V)(∇UA)(Z)−A(U)(∇VA)(Z)=da(ρ){A(U)g(V,Z)−A(V)g(U,Z)}.

Changing U by ρ in the above equation and then using the 
equations (2.8) and (2.12) we find

(∇VA)(Z)=−da(ρ){g(V,Z) + A(V)A(Z)},		            (2.15)

which shows, from (2.14), that a unit timelike vector field ρ is a torse-
forming vector field. Again in view of r=4a−b, equation (1.2) becomes

S(U,V)=αg(U,V)+(4α − r)A(U)A(V),

where r is a constant scalar curvature. Setting V=ρ in the above 
equation, we have

S(U, ρ)=(r – 3a)g(U, ρ),

provided r¹3a. This informs that the unit timelike torse-forming 
vector field ρ is an eigen vector of S corresponding to the eigen value 
r-3a. Above discussions along with the Theorem 2.7 state the following:

Theorem 2.8. A perfect fluid space-time with divergence free W1-
curvature tensor is a GRW space-time.

Let V4 is a perfect fluid space-time endowed with a divergence 
free W1-curvature tensor. We suppose that ρ⊥ is an orthonormal 
3-dimensional distribution to ρ in V4, then g(U, ρ)=g(V, ρ)=0. It is well 
known that

(∇Ug)(V, ρ)=U g(V, ρ)−g(∇U V, ρ)−g(V, ∇U ρ).

In consequence of the equation (2.15), we have

g(∇UV, ρ)=da(ρ)g(V, U).

In the same fashion, we can also show that

g(∇V U, ρ)=da(ρ)g(U,V).

Since ∇ is a Levi-Civita connection, then g([U, V], ρ)=0. Hence [U, 
V] is orthog-onal to ρ and therefore [U, V] belongs to ρ⊥. In the light 
of [33], we can observe that ρ⊥ is an involute and thus the Frobineous 
theorem [33] implies that ρ⊥ is in-tegrable. This shows that the perfect 
fluid space-time along with a divergence free W1-curvature tensor is 
locally a product space. Hence we can state:

Theorem 2.9. A perfect fluid space-time together with the divergence 
free W1-curvature tensor is locally a product space.

Proposition 2.10. If a perfect fluid space-time admits a divergence 
free W1-curvature tensor, then we have

I.	 R(U, V)ρ=φ{A(U)V − A(V)U },

II.	 A(R(U, V)Z)=φ{A(V)g(U, Z) − A(U)g(V, Z)},

III.	R(ρ, U)V=φ{A(V)U − g(U, V)ρ},

IV.	 S(U, ρ)=−3φA(U),

where φ=d2a(ρ, ρ)−(da(ρ))2.

Proof. From equation (2.12), we have

d2a(U, V)=−d2a(ρ, V)A(U)−da(ρ)(∇V A)(U),

which gives

d2a(ρ, V)A(U)=d2a(ρ, U)A(V).			            (2.16)
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In consequence of (2.15), we find that

∇U ∇V ρ=−d2 a(ρ, U){V+A(V)ρ}−da(ρ){∇U V+(∇U A)(V)ρ+A(∇U 
V)ρ+A(V)∇U ρ}.		   			            (2.17)

Interchanging U and V in (2.17), we get

∇V ∇U ρ=−d2 a(ρ, V){U+A(U)ρ}−da(ρ){∇V U+(∇V A)(U)ρ+A(∇V 
U)ρ+A(U)∇V ρ}.					              (2.18)

Equations (2.15)-(2.18) give

R(U, V)ρ={d2a(ρ, ρ)−(da(ρ))2}{A(U)V−A(V)U}.	            (2.19)

This proves the Proposition 2.10 (i). Other parts can be easily 
obtained from (2.19).

Now, we prove the following theorem.

Theorem 2.11. On a space-time, the W1-curvature tensor is 
divergence free if and only if the divergence of the conformal curvature 
tensor is zero.

Proof. Let us suppose that the W1-curvature tensor on a space-time 
is divergence free, then Theorem 2.1 says that the space-time possesses 
a Codazzi type Ricci tensor, that is, the equation (1.3) is satisfied and 
hence r = constant. Also, we have

( )( ) ( ) ( )

( ) ( ) ( ) ( ){ }

{(
1

 , , ,
2

1
, ,

) ( ) }

.
6

div C U V Z S V Z S U ZU V

dr U g V Z dr V g U Z

= Ñ - Ñ +

-

    (2.20)

In consequence of the above discussions, equation (2.20) gives 
div C=0. Con-versely, we assume that the space-time is conformally 
divergence free and thus the equation (2.20) becomes

( ) ( ) ( ) ( ) ( ) ( )1
( , ,  , , .

3
) ( ) { }S V Z S U Z dr U g V Z dr V g U ZU VÑ - Ñ =- -

Considering a frame field and contracting for V and Z we get 
dr(U)=0 ⇒ r=constant. Hence the above equation shows that the 
Ricci tensor is of Codazzi type and thus the W1-curvature tensor is 
divergence free. Hence the statement of the Theorem 2.11 is proved.

Pseudo Ricci Symmetric Space-time Admitting 
Divergence free W1-curvature Tensor

This section deals with the study of pseudo Ricci symmetric space-
time with vanishing divergence of W1-curvature tensor.

Let us suppose that the space-time is pseudo Ricci symmetric, then 
the equations (1.1) and (2.4) give

(divW1)(U, V)Z= 4

3
{A(U)S(V, Z)−A(V)S(U, Z)}.	             (3.1)

Suppose that the W1-curvature tensor on the pseudo Ricci 
symmetric space-time is divergence free. Then the equation (3.1) 
becomes

A(U)S(V, Z)−A(V)S(U, Z)=0.		   	               (3.2)

Setting V=ρ in (3.2), we get

S(U, Z)=−A(U)S(ρ, Z).				                (3.3)

Considering a frame field and contracting over the vector fields V 
and Z in (3.2) we have

S(U, ρ)=rA(U).					                 (3.4)

In the light of the equation (3.4), equation (3.3) becomes

S(U, Z)=−rA(U)A(Z).		  		               (3.5)

This shows that the space-time under consideration is a special 
type of perfect fluid space-time.

In [15], Mantica et al. proved the following:

“Let (M, g) be an n (> 3)-dimensional Lorentzian manifold. If the 
Ricci tensor has the form S(U,V)=-rA(U)A(V) and the divergence of 
the conformal curvature tensor vanishes, then there exists a suitable 
coordinate domain u of M such that on this set the space is a GRW 
space-time with Einstein fibers”.

After considering these facts, we can state the following theorem.

Theorem 3.1. A pseudo Ricci symmetric space-time satisfying 
divergence free W1-curvature tensor is a GRW space-time.

A space-time is said to be Ricci simple if its Ricci tensor satisfies 
(3.5). Thus we can state:

Corollary 3.2. A pseudo Ricci symmetric space-time with the 
divergence free W1-curvature tensor is Ricci-simple.

From (3.3), we can state:

Theorem 3.3. Let W1-curvature tensor is divergence free on a pseudo 
Ricci sym- metric space-time. Then the unit timelike vector field ρ is an 
eigen vector of the Ricci tensor S corresponding to the eigen value −r.

Perfect Fluid Space-times without Cosmological Terms
In this section, we consider a perfect fluid space-time satisfying the 

Einstein’s field equations without cosmological term and the divergence 
of W1-curvature ten-sor is zero.

The Einstein’s field equations without cosmological term are given by

( ) ( ) ( )1
, ,  ,

2
S U V rg U V T U Vk- = 	           		                (4.1)

for all vector fields U and V , where κ is a non-zero gravitational 
constant and T , the energy momentum tensor of the space-time. It is 
obvious from equation (4.1) that

−r = κT,				     	            (4.2)

(∇U S)(V, Z)−(∇V S)(U, Z)=κ{(∇U T)(V, Z)−(∇V T)(U, Z)}+ 1

2
{dr(U)

g(V, Z)−dr(V)g(U, Z)},				               (4.3)

where T is the trace of T. If we suppose that the energy momentum 
tensor

T of the space-time is of Codazzi type, then the equation (4.3) leads to 

2{(∇U S)(V, Z)−(∇V S)(U, Z)}=dr(U)g(V, Z)−dr(V)g(U, Z).       (4.4)

Considering a frame field and contracting for V and Z we get 
dr(U)=0, which implies that r=constant. Thus, like others, we can also 
state the following:

Theorem 4.1. If a perfect fluid space-time admits the Codazzi type 
energy momentum tensor, then it possesses a constant scalar curvature.

Next, we prove the following theorem.

Theorem 4.2. The W1-curvature tensor on a perfect fluid space-
time is divergence free if and only if the energy momentum tensor is of 
Codazzi type.
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Proof. We suppose that the W1-curvature tensor of the perfect fluid 
space-time is divergence free, and then the Theorem 2.1 shows that the 
Ricci tensor of the space-time is of Codazzi type, that is, the equation 
(1.3) is satisfied. Taking a frame field and contracting (1.3) for V and Z, 
we conclude that dr(U)=0. This result along with (4.3) gives

(∇U T)(V, Z)=(∇V T)(U, Z),			                 (4.5)

provided κ¹0. This shows that the energy momentum tensor is of 
Codazzi type. Conversely, we assume the perfect fluid space-time 
admits (4.5), and then equation (4.3) leads to the equation (4.4). Hence 
the equation (1.3), Theorem 2.1 and Theorem 4.1 prove the converse 
part of the Theorem 4.2.

Let us suppose that the perfect fluid space-time is dust. Therefore

T (V, Z)=µA(V)A(Z),				                 (4.6)

where µ is the energy density and A is a 1-form associated with the 
velocity vector field ρ of the perfect fluid. Covariant derivative of (4.6) 
along U gives

(∇U T)(V, Z)=(∇U µ)A(V)A(Z)+µ{(∇U A)(V)A(Z)+(∇U A)(Z)
A(V)}. 	       					                  (4.7)

If we assume that the dust has divergence free 1-curvature tensor. 
From equations (4.6) and (4.7), we obtain 

T=−µ, dT(U)=−dµ(U).			    	                 (4.8)

In view of (4.2), equation (4.8) leads to µ =constant. Hence the 
equation (4.8) takes the form

(∇U T)(V, Z)=µ{(∇U A)(V)A(Z)+(∇U A)(Z)A(V)}.	             (4.9)

Theorem 4.2 and equation (4.9) lead to

(∇U A)(V)A(Z)+(∇U A)(Z)A(V)−(∇V A)(U)A(Z)−(∇V A)(Z)
A(U)=0, 						               (4.10)

provided µ¹0. Changing Z with ρ in (4.10), we have

(∇U A)(V)−(∇V A)(U)=0.				               (4.11)

This shows that Curl ρ=0 and thus ρ is an irrotational. Hence the 
vorticity of the fluid vanishes. Again changing U with ρ in (4.11), we 
obtain

∇ρρ=0.

This means that the integral curves generated by the unit timelike 
velocity vector field ρ are geodesic curves. Hence we are in condition 
to state the following:

Theorem 4.3. If a dust is satisfying the Einstein’s field equations 
without cos-mological term and admits a divergence free W1-curvature 
tensor, then the perfect fluid is vorticity free and the integral curves 
generated by the unit timelike velocity vector field are geodesics.

Next, we suppose that the energy momentum tensor of the perfect 
fluid space- time without cosmological term takes the form

Tji=(µ+p)ujui+pgji,		  		             (4.12) 

where µ is defined in (4.6) and p, isotropic pressure of the perfect fluid. 
Here Tji, ui and gij denote, respectively, the energy momentum tensor, 
velocity vector field of the fluid and the Lorentzian metric of the fluid. 
Multiplying (4.12) with gji, we obtain

T=−µ+3p,

which gives

r=κ(µ−3p), 					              (4.13)

where equation (4.2) is used.

Suppose that the perfect fluid space-time along with the energy 
momentum tensor defined by (4.12) possesses a divergence free W1-
curvature tensor, then we have r=constant and hence the equation 
(4.13) leads to

µ−3p=constant.					              (4.14)

Thus we state:

Theorem 4.4. If a perfect fluid space-time equipped with the energy 
momentum tensor defined by (4.12) satisfies the Einstein’s field equations 
without cosmological term, and W1-curvature tensor is free from 
divergence, then the state equation is µ=3p+constant.

In particular, if the constant in (4.14) becomes zero, then we have 
µ=3p and hence the following:

Corollary 4.5. Suppose a perfect fluid space-time satisfies the 
Einstein’s field equa- tions without cosmological term, and has divergence 
free W1-curvature tensor, then it is filled with radiation. 

From (4.12), we have

Tji;k=(µ+p);kujui+p;kgji+(µ+p){uj;kui+ujui;k}.		             (4.15)

We consider that the W1-curvature tensor is divergence free on the 
perfect fluid, then the Theorem 4.2 says that the energy momentum 
tensor to be of Codazzi type and then the equation (4.15) leads to

Tij;k−Tik;j=(µ+p);kujui+p;kgji+(µ+p){uj;kui + ujui;k}−(µ+p);jukui− p;jgik−
(µ+p){uk;jui + ukui;j}=0.  				            (4.16)

Multiplication of (4.16) with uk gives

(µ+p)ujui +p gji+(µ+p){ujui + ujui}+(µ+p);iuj−p;juj+(µ+p)uj;i =0,(4.17)

Here overhead dot represents the covariant derivative along the 
fluid flow vector ui (uiui=−1, ukui;k = ui). It is obvious that the divergence 
equation Tij

ij= 0

gives 

(µ+p)ui=−p;i − pui,				                 (4.18)

µ=(µ+p)ui
;i =−(µ + p)ϑ,				                (4.19)

where ϑ is the expansion scalar. The equations (4.18) and (3.20) 
represent the force equation and the energy equation, respectively. 
Also, we have [34]

( ) ,; 3
u g u u u ui j ij i j i j ij ij

J
s w= + - + +            	           (4.20)

where ui is the acceleration vector, σij, a symmetric shear tensor and ωij, 
the vorticity or rotation tensor. Using (4.17) and (4.19), we get

(µ−p) ujui+(µ−p);iuj−p;jui+p gji+(µ+p)uj;i=0.		            (4.21)

After multiplication with uj, it reduces to

(µ−p);i=−(µ−p) ui.				              (4.22)

The equation (4.18) along with (4.22) give

(µ+p)ui=µ ui−µ;i.				              (4.23) 

In consequence of (4.22), equation (4.21) assumes the form
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−p;jui+pgji+(µ+p)uj;i=0.				               (4.24) 

The contraction of (4.24) with gji gives

p=− 1

3
(µ+p)ϑ.					               (4.25)

Equation (4.25) together with the energy equation (4.19) becomes

3p=µ.						               (4.26)
From force equation, p;i=pui-(µ+p)ui and hence the equation (4.24) 

takes the form

p(ujui+gji)+(µ+p)ujui+(µ+p)uj;i=0, 

which, with the help of (4.25), leads to

(µ+p){−
3

J
(ujui+gji)+ujui+uj;i}=0.		   	             (4.27)

Hawking [35] listed in his book that µ>0, µ+p¹0 and therefore by 
equation (4.27) we get 

uj;i= 3

J (ujui+gji)−ujui.				                (4.28)

In view of (4.26), we have

3p−µ=constant. 
Next, we suppose that µ+p¹0 and the equation (4.28) is satisfied. 

The equations (4.20) and (4.28) give

σij+ωij=0,

which holds if σij=0 and ωij=0. With the help of (4.16), (4.18), (4.22), 
(4.23) and (4.28), it is no hard to get

(µ+p)uk=0,

which gives uk=0 and hence the equation (4.28) takes the form

uj;i = 3

J
(ujui+gji).

This shows that the unit timelike vector field ui is a torse-forming 
vector field. In consequence of (4.1) and (4.5), we get the following 
expression for the Ricci tensor in index free notation as: 

( ) ( ) ( ) ( ) ( ), ,
2

) .(
r

S U V p g U V µ p A U A Vk k= + + + 	            (4.29)

Setting V=ρ in (4.29), we get

 S(U,ρ)=
1

2
(r−2κµ)g(U,ρ).

This implies that the unit time like torse-forming vector field ρ 

is an eigen vector of S corresponding to the eigen value ( )1

2
2r µk- . 

Thus the Theorem 2.7 shows that the space-time under consideration 
is a GRW space-time. To prove the converse part, we suppose that the 
perfect fluid space-time satisfies the equation (4.28) and µ + p¹0. If 
the perfect fluid is shear-free, rotation-free, and acceleration-free and 
the energy density and pressure are constants, then we can notice that 
the energy momentum tensor is of Codazzi type and hence the W1-
curvature tensor is divergence free. Thus we have the following:

Theorem 4.6. A perfect fluid space-time satisfying the Einstein’s field 
equations without cosmological term has divergence free W1-curvature 
tensor if and only if the space-time is a GRW space-time.
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