alexa Genetic Differentiation of Carassius auratus and C. cuvieri by the Cytochrome C Oxidase I Gene Analysis | Open Access Journals
ISSN: 2155-9546
Journal of Aquaculture Research & Development
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Genetic Differentiation of Carassius auratus and C. cuvieri by the Cytochrome C Oxidase I Gene Analysis

Jung-Ha Kang*, Eun-Soo Noh, Jae-Hyun Lim, Hyeung-Kyun Han, Bong-Seok Kim, and Sang-Ku Lim

Biotechnology Research Division, NFRDI, Busan 619-705, Republic of Korea

*Corresponding Author:
Jung-Ha Kang
Biotechnology Research Division
NFRDI, Busan 619-705
Republic of Korea
Tel: 82-51-720-2462
E-mail: [email protected]

Received Date: March 18, 2014; Accepted Date: April 21, 2014; Published Date: May 03, 2014

Citation: Kang JH, Noh ES, Lim JH, Han HK, Kim BS, et al. (2014) Genetic Differentiation of Carassius auratus and C. cuvieri by the Cytochrome C Oxidase I Gene Analysis. J Aquac Res Development 5:231 doi:10.4172/2155-9546.1000231

Copyright: © 2014 Kang JH, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Aquaculture Research & Development


It is estimated that 27 bony fish species have been introduced into Korean freshwaters for aquaculture and the enhancement of fishery resources. Among them, Carassius cuvieri has completely adapted and is widely distributed throughout Korean freshwater ecosystems. In this study we investigated the genetic relationship between C. cuvieri and the closely related native crucian carp species Carassius auratus. Nucleotide sequence variation within the mtDNA cytochrome c oxidase I (COI) gene was used to study the genetic divergence and phylogenetic relationships among the species and to identify their taxonomic status in the family Cyprinidae. We compared partial COI gene sequences (630 base pairs) from three populations of C. auratus and three populations of C. cuvieri. A total of 46 variable sites were identified from 163 individuals, yielding 23 haplotypes. The two species showed very close genetic relationship with 95% sequence identity in the COI gene, the frequency and distribution of haplotypes showed clear separation, suggesting divergent evolution of these two species. Therefore, despite the morphological similarity and phylogenetic closeness, the populations of these two species should be regarded as separate management units in the ongoing recovery program.


Carp; CO1; Genetic differentiation; Hybrid; Triploid


Although the introduction of exotic species to aquatic ecosystems can result in many problems, including habitat alternation, the introduction of diseases and parasites, and hybridization with native species, 27 bony fish species have been introduced into Korean freshwaters for aquaculture and the enhancement of fishery resources. Among them, the Japanese crucian carp Carassius cuvieri, also known as the white crucian carp, was introduced from Japan in 1972. C. cuvieri has since completely adapted and is now widely distributed throughout the domestic freshwater ecosystems of Korea [1].

The classification of species in the genus Carassius is highly controversial due to the morphological similarity of the different species; as a result, crucian carp are classified into either two or five species [2,3]. The species and their distributions in the five species system are as follows: Carassius throughout most of Europe and western Asia; Carassius langsdorfii and C. cuvieri in Japan; Carassius auratus in China; and Carassius gibelio in Europe, Siberia, and East Asia [2,4-6]. C. carassius is the only species that can be identified easily by its morphological characteristics [7]. The two-species system includes C. carassius, and many subspecies of C. auratus in different habitats and in geographical isolation: C. auratus auratus in China; C. auratus gibelio in Europe and China; and another four subspecies, C. auratus cuvieri, C. auratus grandoculis, C. auratus buergeri, and C. auratus langsdorfii in Japan [8,9]. In addition, many geographic populations have been reported in China [10-12].

In addition to the morphological similarity and the presence of subspecies, the identification of Carassius species is further complicated by the occurrence of specimens with different ploidy levels. It was long believed that C. gibelio and C. langsdorfii were triploid, in contrast to the other species, which were believed to be diploid, and ploidy level was used as an important characteristic in species identification [13]. However, diploidy has been observed within C. gibelio and C. langsdorfii, and triploidy has recently been observed in C. auratus [3,14,15]. Also, the existence of hybrids between various Carassius species, such as hybrids between C. carassius and C. auratus, further complicates species identification [16].

In order to overcome the limitations in the morphological identification of Carassius species, molecular genetic markers, such as random amplified polymorphic DNA [17], microsatellite DNA [18,19], and partial sequences of mitochondrial DNA [20-22] have been used for the identification of species, ploidy, clonal lineages, and phylogenetic relationships. Because of its small size, maternal inheritance, and rapid rate of evolution, mtDNA is often used as a genetic marker in phylogenetic and evolutionary studies in vertebrates, including fish [23]. Within mtDNA, the control region (D-loop), cytochrome b gene, and cytochrome c oxidase subunit I (COI) gene are most frequently used in animal molecular taxonomy and bioidentification studies [24].

Japanese crucian carps into two species, C. cuvieri and C. auratus were classified [2], and others have confirmed this classification using molecular markers [19,20,21]. Similarly, C. auratus, the species endemic to Korea, and C. cuvieri, the exotic species, are two distinct species that live in Korean freshwaters. However, there has been no study of the genetic diversity and phylogenetic relationships among populations of the latter two species. Therefore, we investigated the patterns of sequence variation in the mtDNA COI gene region in the crucian carp population to describe the genetic diversity and genetic structure of the C. cuvieri and C. auratus populations.

Materials and Methods

Sampling and DNA extraction

C. auratus and C. cuvieri samples were collected from the Yeongsan, Geum, and Nakdong rivers. Fishes were collected using nets and identified by morphology by a specialist. Among the fishes collected from the Yeongsan, Geum, and Nakdong rivers, the C. auratus individuals numbered 45, 20, and 29, and the C. cuvieri individuals numbered 28, 16, and 23, respectively. Fin tissues were preserved in 100% ethanol at the sampling site, and then transported to the laboratory for DNA extraction. Tissue (20 mg) was lysed in lysis buffer (MFX-2000, Toyobo, Osaka, Japan) containing 20 mg/ml of proteinase K, and then total DNA was extracted using a Mag Extractor MFX-6100 automated DNA extraction system (Toyobo).

mtDNA COI gene sequence amplification and analysis

The HCO2198 and LCO1490 primers were used for the amplification of a partial sequence of the COI gene [25]. PCR amplification was performed in 30-μl reaction mixtures containing 3 μl template DNA, 1 μl (10 pM/μ1) each of forward and reverse primers, 3 μl of 10× Taq PCR buffer, 2.4 μl of dNTP mixture (2.5 mm each), and 0.6 μl of Taq DNA polymerase (5 U/μl) using a thermo cycler (PTC-220, Bio-Rad, USA). The PCR conditions were as follows: 10 min at 94°C; 35 cycles of 1 min at 94°C, 1 min at 51°C, and 1 min at 72°C; and a final extension of 5 min at 72°C. After confirmation of the PCR products on an agarose gel, DNA fragments of approximately 630 base pairs were extracted from the gel using the QIA quick PCR Purification Kit (Qiagen) and sequenced with a 3130XL Genetic Analyzer (Applied Bio systems, Foster City, CA, USA) using the Prism Big Dye Terminator Cycle Sequencing Kit.

Data analysis

DNA sequences were determined using DNA Sequencing Analysis Software (Applied Bio systems) and assembled using SeqMan software (DNASTAR Laser gene 8 package). Haplotype diversity and nucleotide diversity were calculated using Dna SP ver. 4.0 [26]. Population structures were investigated using analysis of molecular variance (AMOVA), and a possible geographical pattern in the distribution of genetic variability was analyzed through Fst estimates using Arlequin 3.0 [27]. Genetic distance matrices were used to construct an unweighted pair group method with arithmetic mean (UPGMA) genetic population relation tree with the POPULATION 1.2.30


Sequence analysis and variation among haplotypes

PCR products of approximately 630 base pairs were obtained by amplification with the primers HCO2198 and LCO1490. The sequence, with the variable sites in bold, is shown in Figure 1. In the 46 polymorphic sites, transitions were observed at 40 sites, whereas transversions were detected at 6 sites. Based on the 46 variable sites, 23 haplotypes were identified among the 163 individuals (Table 1). Haplotype 1 (Hap_1; GenBank number HQ960853) and haplotype 7 (Hap_7; GenBank number HQ536319.1) were the most frequently observed sequences among C. auratus (47.3%) and C. cuvieri (62.8%), respectively. In contrast, the frequencies of these two haplotypes in opposite species were very low with the haplotype I and haplotype 7 frequency of 4.5% and 4.4% in C. cuvieri and C. auratus, respectively. The Hap_1 sequences of C. auratus and the Hap_7 sequences of C. cuvieri share 95% sequence identity. There was a clear difference in the haplotype frequencies for each species. Haplotypes 1, 3, 5, 9, and 16 were dominant in C. auratus, each with frequencies above 10%. In contrast, in C. cuvieri, haplotypes 7, 11, and 13 had frequencies above 10%. Therefore, there was no overlap of frequent haplotypes between the two species. However, haplotype 3 and 5 which were the main haplotype in C. auratus were present as minor haplotype in C. cuvieri from Yeongsan River. Similarly, haplotype 7, the other main haplotype in C. cuvieri, was observed as a minor haplotype in C. auratus from Yeongsan River. Therefore, further investigation on the gene flow between Carassius species in Yeongsan River is necessary.


Figure 1: UPGMA tree of Carassiusauratus and C. cuvieri from six populations from Korea based on the mtDNA CO1 gene.

Species Carassiusauratus Carassiuscutieri
Population C.a- YoungsanC.a -NakdongCa- Geum C.c- Youngsan Cc- NakdongC.c- Geum
  Carassiusauratus Carassiuscccuucutiericutieri
Haplotwe Young= Gem Nakdong Young= Gem Nakdong
Hap_l 0.444 0.7 0.276 0.071 0.063  
Hap_2 0.022          
Hap_3 0.267 0.15 0.276 0.036    
Hap_4 0.022          
Hap_5 0.156     0.036    
Hap_6 0.022 0.05 0.034      
Hap_7 0.044     0.5 0.688 0.696
Hap_8 0.022          
Hap9   0.05 0.103      
Hap_10   0.05        
Hap_11       0.286   0.217
Hap_12       0.071    
Hap_13         0.125  
Hap_14         0.063  
H_15         0.063  
Hap_16     0.103      
Hap_17     0.034      
Hap_18     0.069      
Hap_19     0.034      
Hap_20     0.034      
Hap_21     0.034      
Hap_22           0.043
Hap_23           0.043
No. of individuals 45 20 29 28 16 23
Nucleotide diversity,(%) 0.0154 0.0024.002 0.0044.002 0.0234.014 0.0234.014 0.020±0.011
No. of Haplotype 8 5 10 6 5 4

Table 1: Summary of the distribution of haplotypes, nucleotide diversity, and number of polymorphic sites among populations of Carassiusauratus and C. cuvieri.

Population genetic structure and relationships

The genetic relationships among C. cuvieri and C. auratus populations from the Nakdong, Yeongsan, and Geum rivers were analyzed. As shown in Figure 1, the two species formed clearly separated clusters, each comprising three populations from different locations. Among the C. auratus populations, the populations from the Yeongsan and Geum rivers clustered together. Similarly, the C. cuvieri populations from the Nakdong and Geum rivers formed a subcluster. Genetic differentiation among populations was assessed using FST pairwise comparisons. The three populations of C. cuvieri from the three rivers showed no genetic difference in the COI gene. In contrast, the three populations of C. auratus showed significant genetic differences in this gene. Furthermore, the genetic differentiation between the two species was also significant, with high FST values ranging from 0.3347 to 0.7588. AMOVA results showed partitioning of the populations with significant variance (P<0.001). However, only 0.61% of the variation was attributed to the geographical separation of the populations; in contrast, 22.11% and 77.28% of the variations were attributed to variations between C. auratus and C. cuvieri (Table 2) and within the populations of each river, respectively.

Species Population Carassi us OR rants   Carassiuscusieri
C.a- YoungsanC.a -Nakdong C. a - Geuo2 C.c - Youngsan Cc- NakdongC.c - Geum
Ca- Youngsan 0 0.0177 0.0131 0.1945 0.4744 0.523
Ca- Nalcdong 0.0961* 0 0.0135 0.2394 0.5522 0.6356
Ca- Geum 0.0664* 0.2235* 0 0.2364 0.5442 0.6231
Cc - Youngsan 0.3347* 04710* 0.4427* 0 0.047 0.0731
C.c - Nakdorg 0.5305* 0.7246* 0.7074* 0.066 0 0.0106
C.c - Geum 0.5946* 03588* 0.7421* 0.0941 -0.0243 0

Table 2: Pairwise genetic distance (above diagonal) and Fst values (below diagonal) of Carassiusauratus and C. cuvieri.


Among the diverse species and subspecies that belong to the genus Carassius, the endemic species C. auratus and the exotic species C. cuvieri are present in the freshwater ecosystems of Korea. In this study, the phylogenetic relationships of populations of the two species from three major rivers were analyzed.

Among the 46 polymorphic sites identified from 163 individuals, transitions (40 sites) were more frequent than transversions (6 sites), which is similar to the results of other Carassius mtDNA gene studies [20,28]. Alignment of the 46 polymorphic sites produced a total of 23 haplotypes. In the analysis of the first third of the mtDNA control region (CR; 323 base pairs), 35 haplotypes from 528 individuals were identified [3]. In contrast, only 14 haplotypes in the same region from 47 individuals were identified [29]. In the analysis of the COI gene of 160 individuals of the Carassius genera, 22 haplotypes were identified [28]. Therefore, the number of haplotypes may be related to the number of samples rather than the sequence length of the selected region.

Despite controversy over the classification of Carassius spp., there have been several reports of the genetic separation of C. cuvieri and C. auratus [20,21,30,31]. In the analysis of the mtDNA cytochrome b (cyt b) and CR, it was demonstrated that C. cuvieri and C. alangsdorfii diverged later than the continental C. auratus forms (4.0–4.5 million years ago by molecular calibration) [30]. As expected, C. auratus and C. cuvieri in Korean freshwater systems also showed clear separation based on phylogenetic analysis of the COI gene (Figure 1).

Therefore, our results confirm previous findings [29,32], and support the current taxonomic treatment of C. cuvieri as a distinct species [2,33,34]. Although there have been many reports showing the genetic separation between C. auratus and C. cuvieri, there is no information on the genetic diversity among C. cuvieri populations in Japan, from which this species was introduced into Korea. In our analysis, the three populations of C. cuvieri from three rivers showed no genetic difference in the COI gene. Considering the geographical separation of the three river systems and the short time since the introduction of C. cuvieri, it seems likely that populations from the same origin in Japan were introduced into these rivers. Further study of C. cuvieri from Japan could better illustrate the genetic relationships among the C. cuvieri populations in Korea and Japan.

In contrast to the C. cuvieri populations, the three populations of C. auratus showed significant genetic distances. In phylogenetic analyses of a concatenated 4,669-base pair sequence containing the first third of the mtDNA CR, NADH dehydrogenase subunits 4 (ND4) and 5 (ND5), and cyt b gene sequences of the C. auratus complex, two old superlineages with high regional specificity, including one population on the Japanese main islands and the other consisting of populations distributed in various regions in and around the Eurasian continent were identified [3]. The molecular clock and fossil record of C. cuvieri suggested that these two superlineages separated between 4.01 and 0.39 Mya. Furthermore, seven clades representing the natural populations of each region were estimated by fossil records to have branched 0.2 Mya, and 1.0–1.9 Mya by molecular clock methods. Unfortunately, no sample from the Korean peninsula was included in their analysis. However, considering the origin of samples in their analysis, it is likely that C. auratus has branched and evolved over a long period of time as geographically separated populations in each river ecosystem.

Although C. auratus is currently one of the more abundant resources in Korean freshwaters, management is still necessary. For example, there have been several reports of recent dramatic decreases of Carassius fishes in Japan, which require special attention and management for recovery [35-37]. The introduction of related Carassius species, such as the case of the introduction of C. cuvieri into Korean freshwaters, can affect the ecology of endemic Carassius species. The possibility of hybridization among Carassius species in natural habitats [38] adds to the importance of resource management of these species. Our results indicate that each population of C. auratus in the different rivers of the Korean Peninsula needs to be managed as a separated genetic unit, whereas all C. cuvieri populations can be regarded as one genetic unit. However, further information with more samples will be necessary for the efficient management of these species.


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Article Usage

  • Total views: 11668
  • [From(publication date):
    July-2014 - Sep 21, 2017]
  • Breakdown by view type
  • HTML page views : 7870
  • PDF downloads :3798

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version