Case Report

Giant Infective Endocarditis of Native Aortic Valve with Secondary Mitral Kissing Vegetation

Andrea Cardona*, Giuseppe Vittorio De Socio2, Ketty Savino1, Stefano Pasquino2 and Giuseppe Ambrosio1

1Department of Cardiology and Cardiovascular Pathophysiology, University of Perugia, Italy
2Department of Infectious Diseases, Santa Maria della Misericordia Hospital, Perugia Italy
3Department of Cardio surgery, Santa Maria della Misericordia Hospital, Perugia Italy

Abstract

Secondary involvement of the mitral valve is well documented in primary aortic valve endocarditis. An important causative mechanism, involving both left-sided valves, is 'mitral kissing vegetation'. This results from large aortic vegetations prolapsing into the left ventricular outflow tract and "kissing" with the ventricular surface of the anterior mitral leaflet thus causing secondary infection.

Keywords: Endocarditis; Echocardiography; Cardiac valve disease; Vegetation; Aortic valve; Mitral valve

Case Report

A previously healthy 50-year-old male was admitted to the hospital because of acute congestive heart failure and fever. He reported a long history of illness with fever round to 38.2°C, began two months before. Hypertension and mild dyslipidemia were the only cardiovascular risk factors to note. Physical examination revealed tachycardia, a grade 3/6 diastolic aortic murmur, 2/6 systolic mitral murmur, pulmonary congestion and peripheral hypoperfusion. Laboratory exams showed leukocytosis, anemia, microhematuria, elevated erythrocyte sedimentation rate and C-reactive protein. Three sets of blood culture showed Streptoccus mutans. The isolate was susceptible to penicillin with minimal inhibitory concentration of 0.016 mg/L. Transthoracic echocardiography was then performed showing multiple areas of increased echogenicity both on the aortic and mitral valve. Biventricular function was preserved. The patient was treated with standard doses of intravenous antibiotic regimen of ceftriaxone and gentamycin for 21 days.

Transthoracic echocardiography, showed secondary involvement of mitral valve [2]. Intraoperatively, massive aortic valve incompetence due to rupture of left and non-coronary leaflets at the base was evident. Aortic cusps were thickened; irregular and friable "kissing" the ventricular surface of the anterior mitral leaflet, and thus causing secondary infection. This is not a common phenomenon; in fact, although extremely rare, left ventricular valve involvement. In fact, although relatively rare, "mitral kissing vegetation" can lead to an increased risk of complications and worse outcome. In fact patients with aortic valve endocarditis plus "mitral kissing vegetation" show higher prevalence of embolic events, renal failure and have larger aortic valve vegetations (>6 mm) as compared to patients with aortic valve endocarditis alone [2-4]. Of note, not only primary aortic endocarditis may be the causative mechanism for secondary mitral valve involvement. In fact, although extremely rare, left ventricle outflow tract, and "kissing" of the ventricular surface of the anterior mitral leaflet (figure, panels a-b-c). The 5-chamber view (Figure 1c) showed multiple, highly mobile vegetations involving anterior and posterior mitral leaflets (white arrows, Figure 1c), spreading along subvalvular apparatus. Despite adequate antimicrobial therapy, an emergency surgical intervention was performed due to rapidly deteriorating hemodynamics [1]. Intraoperatively, massive aortic valve incompetence due to rupture of left and non-coronary leaflets at the base was evident. Aortic cusps were thickened; irregular and friable (Figure 1d). Papillary muscles appeared pale and ischemic. Mitral and aortic valves were replaced by bio prosthesis. Postoperative course was uneventful.

Discussion

Secondary infection of the mitral valve, though uncommon, is a possible finding in primary aortic valve endocarditis. An important causative mechanism, involving both left-sided valves, is the "mitral kissing vegetation" [2]. This results from large aortic vegetation prolapsing, during diastole, into the left ventricular outflow tract, "kissing" the ventricular surface of the anterior mitral leaflet, and thus causing secondary infection. This is not a common phenomenon; in the study of Piper and colleagues, only 19 out of 192 patients with primary aortic valve endocarditis, studied by serial transeosophageal echocardiography, showed secondary involvement of mitral valve [2]. Although relatively rare, "mitral kissing vegetation" can lead to an increased risk of complications and worse outcome. In fact patients with aortic valve endocarditis plus "mitral kissing vegetation" show higher prevalence of embolic events, renal failure and have larger aortic valve vegetations (>6 mm) as compared to patients with aortic valve endocarditis alone [2-4]. Of note, not only primary aortic endocarditis may be the causative mechanism for secondary mitral valve involvement. In fact, although extremely rare, left ventricle outflow tract, and "kissing" of the ventricular surface of the anterior mitral leaflet (figure, panels a-b-c). The 5-chamber view (Figure 1c) showed multiple, highly mobile vegetations involving anterior and posterior mitral leaflets (white arrows, Figure 1c), spreading along subvalvular apparatus. Despite adequate antimicrobial therapy, an emergency surgical intervention was performed due to rapidly deteriorating hemodynamics [1]. Intraoperatively, massive aortic valve incompetence due to rupture of left and non-coronary leaflets at the base was evident. Aortic cusps were thickened; irregular and friable (Figure 1d). Papillary muscles appeared pale and ischemic. Mitral and aortic valves were replaced by bio prosthesis. Postoperative course was uneventful.

Received August 30, 2014; Accepted October 26, 2014; Published October 28, 2014


Copyright: © 2014 Cardona A. et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Corresponding author: Andrea Cardona, Department Cardiology and Cardiovascular Pathophysiology, University of Perugia, Ospedale Santa Maria della Misericordia, piazzale Menghini, 1-06129 Perugia, Italy, Tel: +39 075 585181; E-mail: andreacardona20@yahoo.it

*Corresponding author: Andrea Cardona, Department Cardiology and Cardiovascular Pathophysiology, University of Perugia, Ospedale Santa Maria della Misericordia, piazzale Menghini, 1-06129 Perugia, Italy, Tel: +39 075 585181; E-mail: andreacardona20@yahoo.it

Received August 30, 2014; Accepted October 26, 2014; Published October 28, 2014


Copyright: © 2014 Cardona A. et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
outflow tract endocarditis may represent the initial site of infection with possibility to spread by contiguity to both mitral and aortic valves [4].

References