
Volume 4 • Issue 1 • 1000197
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

Open AccessReview Article

Shao, J Appl Computat Math 2014, 4:1 

DOI: 10.4172/2168-9679.1000197

Keywords: Mixed initial-boundary value problem; Global classical 
solution; Quasilinear hyperbolic; systems of balance laws; Weakly 
linearly degenerate characteristics

Introduction and Main Result
Consider the following quasilinear hyperbolic system of balance 

laws in one space dimension: 

u f (u) Lu 0
t x

∂ ∂
+ + =

∂ ∂
(1.1)

where L>0 is a constant; u=(u1,…., un)T is the unknown vector function 
of (t, x), f(u) is a given C3 vector function of u.

It is assumed that system (1.1) is strictly hyperbolic, i.e., for any 
given u on the domain under consideration, the Jacobian A(u) f(u)= ∇  
has n real distinct eigenvalues.

1 2 n(u) (u) ... (u)λ < λ < < λ (1.2)

Let T
i i1 in i i inl (u) (l (u),...l (u)) (resp.r (u) (r (u),..., r (u)) )= =  be a left

(resp. right) eigenvector corresponding to i(u)(i 1,..., n)λ =  

i i i i i il (u) A(u) (u) l (u) (resp.A(u) r (u) (u) r (u))= λ = λ (1.3)

then we have

ijdet | l (u) | 0≠  (Equivalently, ijdet | l (u) | 0≠ ).    (1.4)

Without loss of generality, we may assume that on the domain 
under consideration

i j ijl (u) r (u) (i, j 1,..., n)≡ δ = (1.5)

And
T
i ir (u) r (u) 1 (i 1,...., n)≡ = (1.6)

Where ijδ stands for the Kronecker's symbol.

Clearly, all i ij ij(u), l (u) and r (u)(i, j 1,..., n)λ =                 (1.7)

have the same regularity as A(u), i.e., C2 regularity.

We assume that on the domain under consideration, each 
characteristic with positive velocity is weakly linearly degenerate and 
the eigenvalues of A(u) f(u)= ∇  			              (1.8)

satisfy the non-characteristic condition.

r(u) 0 s(u) (r 1,....,m;s m 1,..., n)λ < < λ = = +				                   (1.9)

r(u) 0 s(u) (r 1,....,m;s m 1,..., n)λ < < λ = = +   (1.10)

We are concerned with the existence and uniqueness of global C1 
solutions to the mixed initial-boundary value problem for system (1.1) 
in the half space

D {(t, x) | t 0, x 0}= ≥ ≥ (1.11)

with the initial condition:
t 0 : u (x)(x 0)= = ϕ ≥ (1.12)

and the nonlinear boundary condition:

s s sx 0 : v G ( (t), v1...vm) h (t),s m 1,..., n(t 0)= = α + = + ≥    (1.13)

Where

i iv l (u) u(i 1,..., n)= = (1.14)

And

1 k(t) ( (t),...., (t))α = α α

Here, T
1 n s s( ,...., ) , ,G and h (s m 1,...., n)ϕ = ϕ ϕ α = +   are all C1 

functions with respect to their arguments, which satisfy the conditions 
of C1 compatibility at the point (0; 0). Also, we assume that there exists 
a constant µ >0 such that

x 0 t 0
max{sup(1 x)1 (| (x) | | (x) | sup

(1 t)1 (| (t) | | h(t) | | (t) | | (t) | | h (t) |)}
≥ ≥

′θ + +µ ϕ + ϕ

′ ′+ +µ ϕ + + α + α + < +∞



  (1.15)

 in which

m 1 nh(t) (h (t),...., h (t))+=
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degenerate. This result is also applied to the flow equations of a model class of fluids with viscosity induced by fading 
memory.
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Without loss of generality, we assume that

sG ( (t),...,0) 0(s m 1,..., n)α ≡ = +                                                            (1.16)

For the special case where (1.1) is a quasilinear hyperbolic system 
of conservation laws, i.e., L=0, such kinds of problems have been 
extensively studied (for instance, [1-8] and the references therein). 
In particular, Li and Wang proved the existence and uniqueness of 
global C1 solutions to the mixed initial boundary value problem for 
first order quasilinear hyperbolic systems with general nonlinear 
boundary conditions in the half space {(t, x | t 0, x 0 |)}≥ ≥ . On the 
other hand, for quasilinear hyperbolic systems of balance laws, many 
results on the existence of global solutions have also been obtained 
by Liu, et al., (for instance, see [8-14] and the references therein), and 
some methods have been established. So the following question arises 
naturally: when can we obtain the existence and uniqueness of semi-
global C1 solutions for quasilinear hyperbolic systems of balance laws? 
It is well known that for first-order quasilinear hyperbolic systems of 
balance laws, generically speaking, the classical solution exists only 
locally in time and the singularity will appear in a finite time even if 
the data are sufficiently smooth and small [15-20]. However, in some 
cases global existence in time of classical solutions can be obtained. In 
this paper, we will generalize the results in [21] to a nonhomogeneous 
quasilinear hyperbolic system, the analysis relies on a careful study of 
the interaction of the nonhomogeneous term. Our main results can be 
stated as follows: 

Theorem 1.1. Suppose that the non-characteristic condition 
(1.10) holds and system (1.1) is strictly hyperbolic. Suppose 
furthermore that for j = m + 1,…., n; each j-characteristic field 
with positive velocity is weakly linearly degenerate. Suppose finally 
that s s, ,G ,h (s m 1,..., n)ϕ α = +  are all C1 functions with respect to 
their arguments, satisfying (1.15)-(1.16) and the conditions of C1 
compatibility at the point (0; 0). Then there exists a sufficiently small 

0 0θ >  such that for any given 0[0, ]θ∈ θ  the mixed initial-boundary 
value problem (1.1) and (1.12)-(1.13) admits a unique global C1 
solution u=u(t; x) in the half space {(t, x) | t 0, x 0}≥ ≥ .

The rest of this paper is organized as follows. In Section 2, we give the 
main tools of the proof that is several formulas on the decomposition of 
waves for system (1.1). Then, the main result will be proved in Section 
3. Finally, an application is given in Section 4 [22]. 

Decomposition of Waves
Suppose that on the domain under consideration, system (1.1) is 

strictly hyperbolic and (1.2)-(1.6) hold.

Suppose that kA(u) C∈  where k is an integer ¸ 1. By Lemma 2.5 in 
[23], there exists an invertible k 1C +  transformation u u(u)(u(0) 0)= =  
such that in u -space for each i = 1,…, n, the ith characteristic trajectory 
passing through u 0=  coincides with the iu -axis at least for i| u |  
small, namely,

i i ir (u e ) ei, | ui |≡ ∀    small (i = 1,…., n);                                              (2.1)

Where
(i)

T
ie (0,...,0, 1,0,...,0)=

This transformation is called the normalized transformation, and 
the corresponding unknown variables Tu (u1,..., un)=    are called the 
normalized variables or normalized coordinates [24-28].

Let 

wi = li(u)ux (i = 1,…, n);

where

li(u) = (li1(u); : : : ; lin(u))

denotes the ith left eigenvector.

By (1.5), it follows from (1.14) and (2.2) that
n

k k
k 1

u v r (u)
=

=∑                                                                                             (2.3)

And
n

x k k
k 1

u w r (u)
=

=∑                                                                               (2.4)

Let

i
i

d (u)
d t t x

∂ ∂
= + λ
∂ ∂                                             	              (2.5)

be the directional derivative along the ith characteristic. Our aim in this 
section is to prove several formulas on the decomposition of waves for 
system (1.1), which will play an important role in our discussion.

Lemma 2.1.
Lt n n

Lt Lti
ijk j k ijk j k

j,k 1 j,k 1i

d(e w ) e (u) w w e (u) v w (i 1,..., n)
d t = =

= γ + γ =∑ ∑        (2.6)

Where
T

ijk k j j i k i j ik(u) ( (u) (u) r (u) l (u) r (u) (u) r (u) )γ = λ −λ ∇ −∇λ δ             (2.7)

T
ijk j i k(u) Lr (u) l (u) r (u)γ = − ∇                                                                                                      (2.8)

Hence, we have

ijk (u) 0, j i(i, j 1,...., n)γ ≡ ∀ ≠ =                                                        (2.9)

iii i i(u) (u) r (u)(i 1,...., n)γ = −∇λ =                                              (2.10)

Moreover, in the normalized coordinates,

ijj j j j(u e ) 0, | u | small, i, j;γ ≡ ∀ ∀                                              (2.11)

while, when the ith characteristic i (u)λ  is weakly linearly degenerate, 
in the normalized coordinates,

iii i i i(u e ) 0, | u | small, i .γ ≡ ∀ ∀                                                                         (2.12)

Lemma 2.2.
Lt n n

Lt Lti
ijk j k ijk j k

j,k 1 j,k 1i

d(e v ) e (u) v w e (u) v v (i 1,...., n)
d t = =

= β + β =∑ ∑     (2.13)

Where
T

ijk i j k(u) ( (u)) r (u) li(u) r (u)β = λ ∇                                                  (2.14)

T
ijk j k(u) L r (u) li(u) r (u)β = − ∇                                                               (2.15)

Thus, we have

ijk (u) 0, i, j(i, j 1,..., n)β ≡ ∀ =                                          (2.16)

Moreover, by (2.1), in the normalized coordinates we have
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ijk j j j(u e ) 0, | u | small, i, jβ ≡ ∀ ∀                                    (2.17)

And

ijk j j j(u e ) 0, | u | small, i, jβ ≡ ∀ ∀                                   (2.18)

The proofs of Lemmas 2.1-2.2 can be found in [29].

Similarly, we have

Lemma 2.3. In the normalized coordinates, it follows that

Lt n
Lti

ijk j k
j,k 1i

d(e u ) e p (u) u w (i 1,...., n)
d t =

= =∑                                   (2.19)

Where

ijjp (u) 0, i, j= ∀                                                                              (2.20)

And
1

ki
ijj k k 1, k 1 n0

j

rp (u) ( (u)) (Tu1,......,Tu u ,...,Tu )dT
u − +

∂
= λ

∂∫   (2.21)

Hence,

ijjp (u) 0, i, j≡ ∀                                                                                  (2.22)

Proof. By (1.1), (2.4) and (2.5), it is easy to see that
n

i k k k
k 1i

du ( (u) (u))w r (u) Lu
d t =

= λ −λ −∑                                           (2.23)

On the other hand, we have
T

i iu (t, x) u (t, x)e=                                                                     (2.24)

Thus, noting (2.1), in the normalized coordinates, it follows from 
(2.23)-(2.24) that

n n
T T Ti

i k k k i i i k k k k k k i i
k 1 k 1i

du ( (u) (u))w r (u)e Lu ( (u) (u))w [r (u) r (u e )]e Lu
d t = =

= λ −λ − = λ −λ − −∑ ∑     (2.25)

By Hadamard's formula, we have
T1T T k

k k k k 1 k 1 k k 1 n j0
j k j

rr (u) r (u e ) (Tu ,...Tu ,u ,Tu ,...,Tu ) u ds
u − +

≠

∂
− =

∂∑∫    (2.26)

Therefore, from (2.25)-(2.26) we immediately get (2.19)-(2.22). The 
proof of Lemma 2.3 is finished.

For any given y 0≥  on the existence domain of C1 solution, let 

ix x (t, y)=   be the ith characteristic passing through point (
y
a

; y)(a 
> 0, constant): 

i
i i

dx (t,y) (u(t,x (t,y)))
dt
yxi( ,y) y
a

{
=λ

=







                                       		             (2.27)

Lemma 2.4. Let qi(t; x) be defined by i
i i i i

x (t, y)q (t, x (t, y)) w (t, x (t, y))
y

∂
=

∂


   

Then along the ith characteristic

ix x (t, y)=   we have

Lt n n
Lt Lti i i

ijk j k j k
j,k 1 j,k 1i

d(e q ) x (t, y) x (t, y)e (u) w w e ijk(u) v w
d t y y= =

∂ ∂
= Γ + γ

∂ ∂∑ ∑ 

   (2.28)

Where ijk(u)γ  is given by (2.8) and

T
ijk k j j i k(u) ( (u) (u)) r (u) l (u) r (u)Γ = λ −λ ∇                                       (2.29)

Hence,

ijk (u) 0Γ =                          i, j∀                                                                       (2.30)

Proof. Differentiating the first equation of (2.27) with respect to y 
gives

i i
i i i

x (t, y) x (t, y)d u( ) (u(t, x (t, y))) (t, x (t, y))
dt y x y

∂ ∂∂
= ∇λ

∂ ∂ ∂
 

      (2.31)

Then, noting (2.6), it follows from (2.31) that
Lt Lt

Lti i i i
i

i i i
n

Lt Lt i
ijk j k ijk j k i i x

j,k 1

d(e q ) d(e w ) x (t, y) x (t, y)de w ( )
d t d t y d t y

x (t, y)( e [ (u) w w (u) w w ] e w (u) u )
y=

∂ ∂
= + =

∂ ∂

∂
γ + γ + ∇λ

∂∑

 





   (2.32)

Thus, from (2.4), (2.7) and (2.32), we immediately get (2.28)-(2.30). 
The proof of Lemma 2.4 is finished.

Similarly, noting (2.4), by (2.13) and (2.31), we have

Lemma 2.5. Let pi(t; x) be defined by i
i i i i

x (t, y)p (t, x (t, y)) v (t, x (t, y))
y

∂
=

∂


           
Then along the ith

Characteristic ix x (t, y)=   we have
Lt n n

Lt Lti i i
ijk j k ijk j k

j,k 1 j,k 1i

d(e p ) x (t, y) x (t, y)e B (u) v w e (u) v v
d t y y= =

∂ ∂
= + β

∂ ∂∑ ∑ 

     (2.33)

Where ijk (u)β  is given by (2.15) and

ijk ijk i k ij(u) (u) (u) r (u)β = β +∇λ δ                                                 (2.34)

By (2.16), it is easy to see that

ijiB (u) 0≡               i j(i, j 1,..., n)∀ ≠ =                                            (2.35)

iji i iB (u) (u) r (u)≡ ∇λ                  i(i 1,..., n)∀ =                          (2.36)

Moreover, by (2.17), in the normalized coordinates we have

iji j jB (u e ) 0≡                 
6

| uj | small, j i∀ ∀ ≠                          (2.37)

while, when the ith characteristic iλ (u) is weakly linearly degenerate, 
in the normalized coordinates,

iii i i iB (u e ) 0 | u | small i≡ ∀ ∀                                              (2.38)

Lemma 2.6. Let zi(t; x) be defined by i
i i i i

x (t, y)Z (t, x (t, y)) u (t, x (t, y))
y

∂
=

∂


   

Then along the ith characteristic

ix x (t, y)=   we have

Lt n
Lti i

ijk j k
j,k 1

d(e Z ) x (t, y)e F (u) u w
dit y=

∂
=

∂∑                                                (2.39)

Where

ijk ijk i k ijF (u) p (u) (u) r (u)= +∇λ δ                                                  (2.40)

By (2.20) and (2.22), it is easy to see that

ijjF (u) 0, i j(i, j 1,..., n)≡ ∀ ≠ =                                         (2.41)

ijiF (u) 0, i j(i, j 1,..., n)≡ ∀ ≠ =                                      (2.42)
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and for i = m + 1; : : : ; n; let

T
0 i m 1

i 0 n

D {(t, x) | 0 t T, [ n( (0) (0))] t
x (0) t [ n( (0))] t}

+= ≤ ≤ − δ + λ −λ
≤ −λ ≤ δ + λ

                        (3.10)

where n>0 is suitably small (Figure 1).

Noting that n > 0 is small, by (3.3), it is easy to see that
T T
i j iD D , j∩ =∅ ∀ ≠                                                                        (3.11)

And
n

T T
i

i m 1
D D

= +
⊂                                                                                    (3.12)

By the definitions of Di
T and DT , it is easy to get the following 

lemma. Lemma 3.1. For each i = m + 1,…, n, on the domain DT /Di
T  

we have

i ict | x (0) t | Ct, cx | x (0) t | Cx≤ −λ ≤ ≤ −λ ≤                                 (3.13)

where c and C are positive constants independent of T.

Let

T
T 1

vi L (D )i 1,...,n
V(D ) max || (1 x) (t, x) ||

+

+µ
+ ∞=
= +                                       (3.14)

T
T 1

wi L (D )i 1,...,n
W(D ) max || (1 t) (t, x) ||

+

+µ
+ ∞=
= +                                         (3.15)

T
T 1

wi L (D )i 1,...,n
V(D ) max || (1 t) (t, x) ||

−

+µ
− ∞=
= +

                                         (3.16)

T
T 1

wi L (D )i 1,...,n
W(D ) max || (1 t) (t, x) ||

−

+µ
− ∞=
= +                                      (3.17)

T

T T
S

c 1
rr 1,...,m (t,x) D

1
s ss m 1,...,n (t,x) D \D

V (T) max{max sup (1 T) | V (t, x) |

max sup (1 | x (0) t |) | v (t, x) |}

+µ
∞ = ∈

+µ

= + ∈

= +

+ −λ

                                  (3.18)

T

T T
S

c 1
rr 1,...,m (t,x) D

1
s ss m 1,...,n (t,x) D \D

W (T) max{max sup (1 T) | W (t, x) |

max sup (1 | x (0) t |) | W (t, x) |}

+µ
∞ = ∈

+µ

= + ∈

= +

+ −λ
                                           (3.19)

T

T T
S

c 1
rr 1,...,m (t,x) D

1
s ss m 1,...,n (t,x) D \D

U (T) max{max sup (1 t) | u (t, x) |

max sup (1 | x (0) t |) | W (t, x) |}

+µ
∞ = ∈

+µ

= + ∈

= +

+ −λ                             (3.20)

jj

1 iCi m 1,...,n j 1 c
V (T) max max sup | v (t, x) | dt

= + ≠
= ∫







                                           (3.21)

And

iji i iF (u) (u) r (u) i(i 1,..., n)= ∇λ ∀ =                                          (2.43)

Proof. Differentiating the first equation of (2.27) with respect to y 
gives

i i
i i i

x (t, y) x (t, y)d u(u(t, x (t, y))) (t, x , (t, y))
dt y x y
 ∂ ∂∂

= ∇λ ∂ ∂ ∂ 

 

      (2.44)

Then, noting (2.19), it follows from (2.44) that

Lt Lt
Lti i i i

i
i i i

n
Lt Lt i

ijk j k i i x
j,k 1

d(e Z ) d(e Z ) x (t, y) x (t, y)de Z
d t d t y d t y

x (t, y)e p (u) u w e Z (u) u
y=

 ∂ ∂
= + = ∂ ∂ 

  ∂
+ ∇λ  ∂ 

∑

 



                   (2.45)

Thus, from (2.4), (2.20)-(2.22) and (2.45), we immediately get 
(2.39)-(2.43). The proof of Lemma 2.6 is finished.

Proof of Theorem 1.1
By the existence and uniqueness of a local C1 solution for 

quasilinear hyperbolic systems  [22], there exists T0>0 such that the 
mixed initial-boundary value problem (1.1) and (1.12)-(1.13) admits a 
unique C1 solution u=u(t, x) on the domain

{ }
def

0 oD(T ) (t, x) | 0 t T , x 0= ≤ ≤ ≥                                                   (3.1)

Thus, in order to prove Theorem 1.1 it suffices to establish a uniform 
a priori estimate for the C0 norm of u and ux on any given domain of 
existence of the C1 solution u = u(t; x). 

Noting (1.2) and (1.10), we have

1 m m 1 n(0) ... (0) (0) ... (0)+λ < < λ < λ < < λ                                                      (3.2)

Thus, there exist sufficiently small positive constants δ  and 0δ  
such that

i 1 i 0(u) (v) 4 | u |,| v | (i 1,..., n 1)+λ −λ ≥ δ ∀ ≤ δ − −                         (3.3)

0
i i(u) (v) | u |,| v | (i 1,..., n)

2
δ

λ −λ ≤ ∀ ≤ δ −                       (3.4)

And

i 0| (0) | (i 1,..., n)λ ≥ δ =                                                                (3.5)

For the time being it is supposed that on the domain of existence of 
the C1 solution u = u(t; x) to the mixed initial-boundary value problem 
(1.1) and (1.12)-(1.13), we have

| u(t, x) |≤ δ                                                                                            (3.6)

At the end of the proof of Lemma 3.3, we will explain that this 
hypothesis is reasonable. Thus, in order to prove Theorem 1.1, we only 
need to establish a uniform a priori estimate for the piecewise C0 norm 
of v and w defined by (1.14) and (2.1) on the domain of existence of the 
C1 solution u=u(t; x). 

For any fixed T > 0, let
T

n 0D {(t, x) | 0 t T, x ( (0) ) t}+ = ≤ ≤ ≥ λ + δ                                                                (3.7)

T
m 1 0D {(t, x) | 0 t T,0 x ( (0) ) t}− += ≤ ≤ ≤ ≤ λ + δ                       (3.8)

T
m 1 0 n 0D {(t, x) | 0 t T, ( (0) ) t x ( (0) ) t}+= ≤ ≤ λ −δ ≤ ≤ λ + δ        (3.9) Figure 1: Where n>0 is suitably small.
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jj

1 iCi m 1,...,n j 1 c
W (T) max max sup | w (t, x) | dt

= + ≠
= ∫







                                           (3.22)

jj

1 iCi m 1,...,n j 1 c
U (T) max max sup | U (t, x) | dt

= + ≠
= ∫







                               (3.23)

Where jC  denotes any given jth characteristic in 

T
iD (j i, i m 1,.., n)≠ = +                                        

T
i

iD (t)i m ,...,n 0 t T
V1(T) max sup | v (t, x) | dx

= + ≤ ≤
= ∫                                                          (3.24)

T
i

1 iD (t)i m ,...,n 0 t T
W (T) max sup | w (t, x) | dx

= + ≤ ≤
= ∫                                                     (3.25)

T
i

1 iD (t)i m ,...,n 0 t T
U (T) max sup | u (t, x) | dx

= + ≤ ≤
= ∫                                                      (3.26)

Where T
iD (t)(t 0)≥  denotes the t-section of T

iD
T T
i iD (t) {(t, x) | T t, (t, x) D }= = ∈                                                         (3.27)

ii 1,...,n 0 t T x 0
V (T) max sup | v (t, x) |

= ≤ ≤ ≤ ≥
∞ =                                                        (3.28)

And

ii 1,...,n 0 t T x 0
V (T) max sup | w (t, x) |∞ = ≤ ≤ ≤ ≥

=                                                    (3.29)

Clearly, V (T)∞  is equivalent to

ii 1,...,n 0 t T x 0
U (T) max sup | U (t, x) |∞ = ≤ ≤ ≤ ≥

=                                                    (3.30)

In the present situation, similar to the corresponding result in 
[24,30-33], we have

Lemma 3.2. Suppose that in a neighborhood of u=0; 2A(u) C∈  
system (1.1) is strictly hyperbolic and (1.10) holds. Suppose furthermore 
that (x)ϕ  satisfies (1.15). Then there exists a sufficiently small 0 0θ >  
such that for any fixed 0 0[0, ]θ ∈ θ  on any given existence domain 
{(t, x) | 0 t T, x 0}≤ ≤ ≥  of the C1 solution u = u(t; x) to the mixed initial-
boundary value problem (1.1) and (1.12)-(1.13), we have the following 
uniform a priori estimates:

T T
1V(D ), W(D ) k+ + ≤ θ                                                                     (3.31)

where here and henceforth, ki(i=1; 2,….) are positive constants 
independent of θ  and T.

Proof. We first estimate TW(D )+

(i) For i = 1,…,m, let ix (s, y)ξ =  be the ith characteristic passing 
through any fixed point T(t, x) D+∈  and intersecting the x-axis at a 
point (0; y). Noting (3.6), by (3.3)-(3.4), it is easy to see that the whole 
characteristic

 ix (s, y)(0 s t)ξ = ≤ ≤  is included in TD+

Noting (3.6), by (3.4) we get

i 0 iy ( (0) / 2)s x (s, y) y s [o, t]+ λ −δ ≤ ≤ ∀ ∈                            (3.32)

By (3.4), it is easy to see that

0s t t≤ ≤                           				                (3.33)

where t0 denotes the t-coordinate of the intersection point of the straight 
line n 0x ( (0) ) t= λ + δ  with the straight line 

i 0x y ( (0) / 2) t= + λ + δ  
passing through the point (0; y). Clearly,

0
n i 0

yt
(0) (0) / 2

=
λ −λ + δ

                                                                    (3.34)

Therefore it follows from (3.32)-(3.34) that

n
i

n i 0

(0) y x (s, y) y, s [0, t]
(0) (0) / 2

λ
≤ ≤ ∀ ∈

λ −λ + δ
             (3.35)

By integrating (2.6) along this ith characteristic, we have
ntLt L(t s)

i i ijk j k0
j,k 1

n

ijk j k i
j,k 1

w (t, x) e w (o, y) e [ (u) w w

(u) v w ](s, x (s, y))ds

− − −

=

=

= + γ

+ γ

∑∫

∑ 

               (3.36)

Thus, noting (3.6) and the fact that L > 0, using(3.33)-(3.35), it 
follows from (3.36) that

1 1 (1 ) T T T
i 1 i(1 x) | w (t, x) | C {(1 y) | w (0, y) | (1 y) t[(W(D )) W(D ) V(D )]}+µ +µ − +µ

+ + ++ ≤ + + + +

                    
T T T

2C { (1 y) W(D )[W(D ) V(D )]}−µ
+ + +≤ θ+ + +

                                   
T T T

2C { W(D )[W(D ) V(D )]}+ + +≤ θ+ +                                                (3.37)

where here and henceforth, Ci(i = 1; 2,….) will denote positive constants 
independent of  and T.

(ii) For i = m + 1; : : : ; n; let 
ix (s, y)ξ =  be the ith characteristic 

passing through any fixed point T(t, x) D+∈  and intersecting the x-axis 
at a point (0; y). Noting (3.6), by (3.3)-(3.4), it is easy to see that the 
whole characteristic ix (s, y)(0 s t)ξ = ≤ ≤  is included in TD+

Noting (3.6), by (3.4) we get

i i 0y x (s, y) y ( (0) / 2)s s [0, t]≤ ≤ + λ λ + δ ∀ ∈                               (3.38)

By (3.4), it is easy to see that

0s t t≤ ≤                                                                                                  (3.39)

where t0 denotes the t-coordinate of the intersection point of the straight 
line n 0x ( (0) ) t= λ + δ  with the straight line i 0x y ( (0) / 2) t= + λ + δ  
passing through the point (0; y). Clearly,

0
n i 0

yt
(0) (0) / 2

=
λ −λ + δ

                                                                                     (3.40)

Therefore it follows from (3.38)-(3.40) that

n 0
i

n i 0

(0)y x (s, y) y, s [0, t]
(0) (0) / 2
λ + δ

≤ = ∀ ∈
λ −λ + δ                                                      (3.41)

Then, similar to (3.37), we have 

1 T T T
i 3(1 x) | w (t, x) | C { w(D )[W(D ) V(D )]}+µ

+ + ++ ≤ θ+ +                             (3.42)

Combining (3.37) and (3.42), we obtain
T T T T

4W(D ) C { W(D )[W(D ) V(D )]}+ + + +≤ θ+ +                                         (3.43)

Similarly, we have

T T T T
4V(D ) C { V(D )[W(D ) V(D )]}+ + + +≤ θ+ +                    	             (3.44)

By (3.43) and (3.44), it is easy to prove that for µ > 0 suitably small, 
there exists a positive constant k1 independent of θ  and T, such that 
for any fixed 0 0T (0 T T)< ≤  if
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0 0T T
1W(D ),V(D ) 2k+ + ≤ θ                                                                    (3.45)

Then

0 0T T
1W(D ), V(D ) k+ + ≤ θ                                                                     (3.46)

Hence, noting (1.15), by continuity we immediately get (3.31). The 
proof of Lemma 3.2 is finished. 2 Lemma 3.3. Under the assumptions 
of Lemma 3.2, suppose furthermore that system (1.1) is weakly 
linearly degenerate. Then in the normalized coordinates there exists a 
sufficiently small 

0 0θ >  such that for any fixed 0[0, ]θ∈ θ  on any 
given existence domain {(t, x) | 0 t T, x 0}≤ ≤ ≥  of the C1 solution 
u=u(t; x) to the mixed initial-boundary value problem (1.1) and (1.12)-
(1.13), we have the following uniform a priori estimates:

T
2W(D ) k− ≤ θ         			                             (3.47)

T
3V(D ) k− ≤ θ          			                              (3.48)

c
4U (T) k∞ ≤ θ        				                 (3.49)

c c
5W (T),V (T) k∞ ∞ ≤ θ            			              (3.50)

1 1 1 1 1 1 6W (T), W (T),V (T), V (T), U (T), U (T) k≤ θ                           (3.51)

7U (T),V (T) k∞ ∞ ≤ θ                        		            (3.52)

And

8W (T) k∞ ≤ θ             				               (3.53)

Proof. We first estimate  TW(D )−

For j = 1; : : : ;m, passing through any fixed point T(t, x) D−∈  we 
draw the jth characteristic j jC : (s, t, x)ξ = ξ  which must intersect the 

boundary T
n 0x ( (0) ) t of D= λ + δ  at a point (t0; y).

Proposition 3.1. On this jth characteristic j jC : (s, t, x)ξ = ξ  it follows 
that

0
j

0
0

n j

(0)
2t t t

(0) (0)
2

δ
−λ −

≥ ≥
δ

λ −λ +

                                                            (3.54)

Proof. Noting (3.4), it is easy to see that

0 0
j j 0x ( (0) ) t y ( (0) ) t

2 2
δ δ

− λ + ≤ − λ +                                        (3.55)

On the other hand, from (3.8), we have

x 0≥                    				               (3.56)

Since

n 0 0y ( (0) ) t= λ + δ           				              (3.57)

we conclude from (3.55)-(3.57) that
0

j

0
0

n j

(0)
2t t

(0)
2

δ
−λ −

≥
δ

λ λ −

                   			              (3.58)

Noting the fact that 0t t≥  we immediately get (3.54).

By integrating (2.6) along j (s; t, x)ξ = ξ  and noting (2.9) and (2.11), 
we have

0

0

0

(t t )
j j 0

m nt L(t s)
jil i l jt

i,l 1 i {1,...,m} l {1,...,m} i,l m 1
l {1,...,m} i {1,...,m} i l

nt L(t s)

t
i {1,...,m} l {1,...,m} i,l m 1
l { i {1,...,m} i l

w (t, x) e L w (t , y)

e ( ) (u) w w (s, (s; t, x))ds

e (

−

− −

= ∈ ∈ = +
∉ ∉ ≠

− −

∈ ∈ = +
∉ ∉ ≠

= −

+ + + + γ ξ

+ + + +

∑ ∑ ∑ ∑∫

∑ ∑∫

0

m

jil i l j
i,l 1

1,...,m}

nt L(t s)
jil jil l l l l jt

l m 1

) (u) w w (s, (s; t, x))ds

e [ (u) (u e )) v w ](s, (s; t, x))ds

=

− −

= +

γ ξ

+ γ − γ ξ

∑ ∑

∑∫



 

    (3.59)

By using Lemma 3.2 and noting (3.54) and (3.57), it is easy to see that
(1 ) (1 ) (1 )

j 0 1 6 0 7| w (t , y) | k (1 y) C (1 t ) C (1 t)− +µ − +µ − +µ≤ θ + ≤ θ + ≤ θ +     (3.60)

By Hadamard's formula, we have

n1 jll
jll jll l l 1 l 1 n k T0

k 1 k
k l

(u) (u e ) (tu ,...,Tu ,...,Tu ) u d
u −

=
≠

∂γ
γ − γ =

∂∑∫


 

    (3.61)

Thus, noting the fact that L>0, and using (3.13) and (3.54), we 
obtain from (3.59) that

1 T 2 T T
j 8

c c c c
1 1 1

c c
1

(1 t) | w (t, x) | C { (W(D )) W(D ) V(D )

W (T)[W (T) W (T) V (T) V (T) U (T) V (T) U (T) V (T)]

W (T)[V (T) U (T) V (T)]}

+µ
− − −

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

+ ≤ θ+ +

+ + + + + +

+ +

  



   (3.62)

Similar to Lemma 3.2 in [21], differentiating the nonlinear 
boundary condition (1.13) with respect to t, we get

m
s s r

1 m
r 1 r

k
s

1 m i s
i 1 r

v G vx 0 : ( (t), v ,.., v )
t v t

G ( (t), v ,..., v ) (t) h (t)(s m 1,..., n)

=

=

∂ ∂ ∂
= = α

∂ ∂ ∂

∂ ′ ′+ α α + = +
∂α

∑

∑
                (3.63)

By (1.1), (1.3) and (2.4), it is easy to see that

n
T

i i i ik k i
k 1

vi (l (u) u) (u) w a (u) w Lu l (u) u(i 1,..., n)
t t =

∂ ∂
= = −λ + − ∇ =

∂ ∂ ∑    (3.64)

Where
T

ik k k ia (u) (u) r (u) l (u) u= −λ ∇                		            (3.65)

Therefore it follows from (3.63)-(3.65) that

m 1 1

n m 1 2 3

n m

w w
x 0 : (I B (u)) B B

w w

+

−

   
   = − = −   
   
   



 

                          (3.66)

where B1(u) is a matrix whose elements are all C1 functions of u, which 
satisfy

In-m - B1(u) is invertible; for sufficiently small |u|

B2 is an (n - m) × m matrix independent of wi (i = 1,…, n);                         (3.67)
k

s
1 m i s s

i 1 i
3 m 1 s n

s

G ( (t), v ,..., v ) (t) h (t) F (t, u) u
B ( )

(u)
=

+ ≤ ≤

∂ ′ ′α α + +
∂α

=
λ

∑
     (3.68)

in which Fs(s = m + 1,…,n) are continuous functions of t and u.

Thus, noting (3.6), for ∂ > 0 small enough, by (3.66)-(3.68) we 
easily get
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m k

sj j si i
j 1 i 1

n

sl l s
l m 1

x 0 : ws f (t, u) w f (t, u) (t)

f (t, u) h (t) f (t, u) u(s m 1,..., n)

= =

= +

′= = + α

′+ + = +

∑ ∑

∑
                         (3.69)

Where s sj si slf , f , f and f  are continuous functions of t and u.

For j = m+1; : : : ; n, passing through any fixed point T(t, x) D−∈  
we draw the jth characteristic j jc : (s; t, x)ξ = ξ  which must intersect the 
t-axis at a point (t0; 0). Then, we have

Proposition 3.2. On this jth characteristic j jc : (s; t, x)ξ = ξ  it follows 
that 

0
j m 1

0
0

j

(0) (0)
2t t t

(0)
2

+
δ

λ −λ +
≥ ≥

δ
λ −

                                                    (3.70)

Proof. Noting (3.4), it is easy to see that

0 0
j j 0x ( (0) ) t ( (0) ) t

2 2
δ δ

− λ − ≥ − λ −                                            (3.71)

On the other hand, by (3.8), we have

m 1 0x ( (0) ) t+≤ λ − δ                                                                          (3.72)

Therefore, it follows from (3.71)-(3.72) that

0
j m 1

0
0

j

(0) (0)
2t t

(0)
2

+
δ

λ −λ +
≥

δ
λ −

                  		              (3.73)

Noting the fact that 0t t≥  we immediately get (3.70).

By integrating (2.6) along j jc : (s; t, x)ξ = ξ  we have

0

ntL(t t 0) L(t s)
j 0 jkl k lt

k,l 1

jkl k l j

w (t, x) e wj(t ,0) e [ (u) w w ]

(u) v w ](s, (s; t, x))ds

− − − −

=

= + γ

+γ ξ

∑∫     (3.74)

By (3.69), we have

m k

j 0 jr 0 0 r 0 ji 0 0 i 0
r 1 i 1

n

jl 0 0 l 0 j 0 0 0
l m 1

w (t ,0) f (t , u(t ,0)) w (t ,0) f (t , u(t ,0)) (t ,0)

f (t , u(t ,0)) h (t ) f (t , u(t ,0)) u(t ,0)

= =

= +

′= + α

′+ +

∑ ∑

∑
    (3.75)

By employing the same arguments as in (i), we can obtain

1 T 2 T T
0 o 9

c c c c
1 1 1

c c
1

(1 t ) | wr(t ,0) | c { (W(D )) W(D ) V(D )

W (T)[W (T) W (T) V (T) V (T) U (T) V (T) U (T) V (T)]

W (T)[V (T) U (T) V (T)]}

+µ
− − −

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

+ ≤ θ+ +

+ + + + + +

+ +
   (3.76)

Thus, noting (1.15), (3.6) and (3.70), it follows from (3.75) and 

(3.76) that

1 1
0 j o 10 0 j 0

T 2 T T
11

c c c c
1 1 1

c c
1

(1 t ) | w (t ,0) | c (1 t ) | w (t ,0) |

c { (V(D )) W(D ) W(D )

W (T)[W (T) W (T) V (T) V (T) U (T) V (T) U (T) V (T)]

W (T)[V (T) U (T) V (T)]}

+µ +µ

− − −

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

+ ≤ +

≤ θ+ +

+ + + + + +

+ +

   (3.77)

Hence, noting the fact that L>0, we obtain from (3.74) that

1 T T 2 T T c

c c c
1 1 1

c c
1

(1 t) | wj(t, x) | C12{ V(D ) (W(D )) W(D ) V(D ) W (T)

[W (T) W (T) V (T) V (T) U (T) V (T) U (T) V (T)]

W (T)[V (T) U (T) V (T)]}

+µ
− − − − ∞

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

+ ≤ θ+ + + +

+ + + + +

+ +

   (3.78)

Combining (3.62) with (3.78), we get
T T T 2 T T c

13
c c c

1 1 1
c c

1

W(D ) C { V(D ) (W(D )) W(D ) V(D ) W (T)

[W (T) W (T) V (T) V (T) U (T) V (T) U (T) V (T)]

W (T)[V (T) U (T) V (T)]}

− − − − − ∞

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

≤ θ+ + + +

+ + + + +

+ +

   (3.79)

We next estimate 1W (T)  

Let

j j 1 2C : x x (t)(t t t )= ≤ ≤

be any given jth characteristic in T
iD (j i, i m 1,..., n)≠ = +  By (3.4), the 

whole ith characteristic x=xi(t) passing through O(0; 0) is included 
in T

iD  Let (t0; xj(t0)) be the intersection point of this characteristic 

with jC  Passing through any given point (t; xj(t)) on jC  we draw the 
ith characteristic ix (s, y)ξ =  which intersects one of the boundaries 
of DT , say 0x ( n(0) ) t= λ + δ  m 1 0(resp.x ( (0) ) t)+= λ − δ  at a point 

y n 0A (y/ ( (0) ), y)λ + δ  y m 1 0 0 2 1 0(resp.B (y/ ( (0) ) y) if t t t (resp. t t t )+λ − δ ≤ ≤ ≤ ≤  
Clearly, we have 

j(t, y) x (t)ix =                				              (3.80)

which gives a one-to-one correspondence t = t(y) between the segment 

2 1| (resp. )y yOA B O  and 0 2 1 0(t t t ) (resp (t t t ))j jC C£ £ £ £  . Thus, the 
integral on jC  with respect to t can be reduced to the integral with 
respect to y. Differentiating (3.80) with respect to t gives

i i i

(t, y)1
(u(t, x (t, y))) (u(t, x (t, y)))

i

j

xdt dy
yl l

¶
=

- ¶


 

                  (3.81)

in which t=t(y). Then, noting (3.3) and (3.6), it is easy to see that in 
order to estimate

0 2

1 0

0 2

1 0

i i j i j

i j i j

| w (t, x) | | w (t, x (t)) | dt | w (t, x (t)) | dt

| w (t, x (t)) | dt | w (t, x (t)) | dt

j

t t

c t t

t t

t t

dt = +

= +

ò ò ò

ò ò



 

              (3.82)

it suffices to estimate
1 2

i i i i0 0(y) (y)
| q (t, x (t, y)) | | q (t, x (t, y)) |

y y

t t t t
dy and dy

= =ò ò              (3.83)

We now estimate 
2

i i0 (y)
| q (t, x (t, y)) |

y

t t
dy

=ò 

By integrating (2.28) along (s, y)ixx =   and noting (2.30) and the 
fact that n 0(y/ (0) ), y) yix l d+ = we obtain

0
(t(y) )

(0) n 0
i t t(y)

0 0

(u(y/ ( (0) ), y)(t, x (t, y)) | ( , y){1 }
(0) (0)

n

yL
i

i i
n

yq e w
n

l d l l d
l d l d

- -
+

=

+
= -

+ +


(s,y)(t(y) s)(y)

i i/( n(0) 0) j,k 1 {1,...,m} {1,...,m} j,k 1
{1,...,m} {1,...,m}

(s,y)(t(y) s)(y)

/( n(0) 0) {1,.. j,k 1

( )T (u) w w (s, x (s, y))ds

(

xi m nLt
y

ijk kty j k m
k j j l

xi nLt
y

ty k m
j l

e

e

l d

l d

¶
- -

¶

+ = Î Î = +
Ï Ï ¹

¶
- -

¶

+ Î = +
¹

+ + + +

+ + + +

å å å åò

åò







i i
j,k 1 {1,...,m} .,m}

{1,...,m} {1,...,m}

(s,y)(t(y) s)(y)

j j i/( n(0) 0) 1

) (u) w w (s, x (s, y))ds

[ (u) v w ](s, x (s, y))ds

m

ijk k
j
k j

xi nLt
y

ijjty j m

e
l d

g

g

= Î
Ï Ï

¶
- -

¶

+ = +

+

å å å

åò






    (3.84)

By Hadamard's formula and (2.11), we have
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1

j j 1 j 1 j j 1 n 1 T0
(u) (u) (u e ) (Tu ,...,Tu ,u ,Tu ,...,Tu ) u dijj

ijj ijj ijj
l j lu

g
g g g - +

¹

¶
= - =

¶åò


     (3.85)

Noting (3.6), (3.11), (3.13) and the fact that L > 0 and 
(s, y) 0xi

y
¶

>
¶



 
obtain from (3.84) and (3.85) that
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(y)
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   (3.86)

Noting that the transformation { (s,y)ix x
t s
=
=
  gives the area element 

(s, y)ixdtdx dsdy
y

¶
=

¶
                       			            (3.87)

by Lemma 3.2, it easily follows from (3.86) that

2

i i 16 1 1 10 (y)

1 1

| q (t, x (t, y)) | { (T)[W (T) (T) (T) (T) (T) U (T) V (T)]
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y
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dy C W W W V V

U V U

q ¥ ¥ ¥ ¥ ¥
=

¥ ¥ ¥ ¥ ¥ ¥
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ò     (3.88)

Similarly, we have
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i i 17 1 1 10 (y)

1 1
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dy C W W W V V
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q ¥ ¥ ¥ ¥ ¥
=
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ò     (3.89)

Thus, we obtain

1 17 1 1 1

1 1
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(T) V (T)] W (T)] W (T)[V (T) (T) V (T)]]

T c c c c

c c c
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q - ¥ ¥ ¥ ¥ ¥

¥ ¥ ¥ ¥ ¥
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

   (3.90)

We next estimate W1(T).

For i = m+1,…, n, passing through any given point (t; x) (t)T
iDÎ  

we draw the ith characteristic (s, y)ixx = 
 which intersects one of the 

boundaries of DT , say n 0( (0) ) tx l d= +  m 1 0(resp.x ( (0) ) tl d+= -  at a 
point n 0 y m 1 0(y/ ( (0) ), y) (resp.B (y/ (0) ) y)yA l d l d++ -  Clearly, we have 

(t, y)ix x=   Therefore we obtain
1 2

i i i i i(t) 0 0
| w (t, x) | | q (t, x (t, y))dy | q (t, x (t, y))dy

T
i

y y

D
dx = +ò ò ò     (3.91)

where y1 and y2 are shown in Figure 2.

Similar to (3.90), it follows from (3.91) that

1 19 1 1 1

1 1

(T) { (D ) W (T)[W (T) (T) (T) (T) (T) U (T) V (T)]
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W C W W W V V
U U

q - ¥ ¥ ¥ ¥ ¥

¥ ¥ ¥ ¥ ¥

£ + + + + + + +

+ + + + +    (3.92)

We next estimate W (T)c
¥  

(i) For r = 1; : : : ;m, passing through any fixed point (t, x) DTÎ  we 
draw the rth characteristic : (s; t, x)r rC x x=  which must intersect 
the boundary 

n 0( (0) ) t of DTx l d= +  at a point (t0; y). Then, we have

Proposition 3.3. On this rth characteristic : (s; t, x)r rC x x= it follows 
that 

0
1 r

0
0
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3(0) (0)
2

(0) (0)
2
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d
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d
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                     		              (3.93)

Proof. By (3.4), it is easy to see that

0 0
r r 0( (0) ) t y ( (0) ) t

2 2
x d d

l l- + £ - +                                   (3.94)

On the other hand, from (3.9), we have

m 1 0( (0) ) tx l d+³ -                            		             (3.95)

Since

n 0 0( (0) ) ty l d= +                       			           (3.96)

we conclude from (3.94)-(3.96) that
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2
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n

t t

d
l l

d
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³
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 			               (3.97)

Noting the fact that 0t t³  we immediately get (3.93).

By integrating (2.6) along (s; t, x)rx x=  and noting (2.9) and (2.11), 
we have
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    (3.98)

By using Lemma 3.2 and noting (3.93) and (3.96), it is easy to see that

(1 ) (1 ) (1 )
r 0 1 20 21| w (t , y) | k (1 y) C (1 t) C (1 t)m m mq q q- + - + - +£ + £ + £ +   (3.99)

By Hadamard's formula, we have
1

1 1 l 10
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ru ru l l l l n k
k l k

uu TU TU U dT
u
g
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¹

¶
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¶åò


   (3.100)

Thus, noting (3.93) and the fact that L > 0, we obtain from (3.98) that

1
r 22 1 1 1

1

(1 t) | w (t, x) | C { (T)[W (T) W (T) V (T) V (T) U (T) V (T)

U (T) V (T)] W (T)[V (T) (T) V (T)]}
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W
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(3.101)

(ii) For i = m + 1; : : : ; n, for any fixed point (t, x) DTÎ  but (t, x) DT
iÏ  

by the definition of DT
i  for fixing the idea we may assume that 

 

Figure 2: Where y1 and y2 are shown in figure.
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0(0) [ ( (0) (0))]i n ix t tl d h l l- > + -              	        (3.102)

which implies i < n. Let (s; t, x)ix x=  be the ith characteristic passing 
through (t; x), which intersects the boundary n 0( (0) ) tx l d= +  of DT at 
a point (t0; y) (Figure 3).

Recalling (3.4), it is easy to see that

0 0
0( (0) ) ( (0) )

2 2i ix t y td d
l l- + £ - +              	          (3.103)

Since

0 0( (0) ) ,ny tl d= +             			         (3.104)

recalling (3.102) and the fact that 0t t³  it follows from (3.103) that

0 .t t th³ ³  					              (3.105)

By integrating (2.6) along (s; t, x)ix x=  and noting (2.9) and (2.11), 
we have
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(3.106)

By Lemma 3.2 and observing (3.104)-(3.105), it is easy to see that

(1 ) (1 ) (1 )
0 1 23 0 24| ( , ) | (1 ) (1 ) (1 )iw t y k y C t C tm m mq q q- + - + - +£ + £ + £ + (3.107)

By Hadamard's formula, we have
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10

(u) ( ) (Tu ,...,Tu , , ,...., )ill
ill ill l l l n k

k k
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u
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¶åò
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Thus, recalling (3.13) and (3.105), and noting the fact that L>0, it 
follows from (3.106) that
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 (3.109)

Next, we assume that

0 1(0) [ ( (0) (0))]i i mx t tl d h l l +- <- + -                 	           (3.110)

which implies i > m + 1. Let (s; t, x)ix x=  (t; x), which intersects the 

boundary m 1 0( (0) ) t of DTx l d+= - at a point (t0; y). 

Recalling (3.4), it is easy to see that

0 0
0( (0) ) ( (0) )

2 2i ix t y td d
l l- - ³ - -     		         (3.111)

Since

1 0 0( (0) )my tl d+= -      				           (3.112)

noting (3.110) and the fact that 0t t nt³  it follows from (3.111) that

0t t th³ ³       				                             (3.113)

By integrating (2.6) along (s; t, x)ix x=  and noting (2.9) and (2.11), 
we have 
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 (3.114)

By (3.113), it is easy to see that
(1 ) (1 )

0 26 0 27| ( , ) | ( )(1 ) ( )(1 )T T
iw t y C W D t C W D tm m- + - +

- -£ + £ +  (3.115)

Thus, using (3.13), (3.108) and (3.113), and noting the fact that L > 
0, it follows from (3.114) that

1
28 1 1

1 1

(1 | (0) |) | ( , ) | { ( ) ( )[W ( ) ( ) V (T) V (T)

U ( ) ( ) ( ) ( )] ( )[ ( )

(T) V ( )]}

T c c c
i i

c c

c

x t w t x C W D W T T W T

T V T U T V T W T V T
U T

ml +
- ¥ ¥ ¥

¥ ¥ ¥ ¥

¥ ¥

+ - £ + + + +

+ + +

+

 

 

(3.116)

Combining (3.101) and (3.109), (3.116), we obtain
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We next estimate (D )TV -  (i) For j = 1; : : : ;m, for any fixed point 
(t, x) DT

-Î similar to (3.59), by integrating (2.13) along (s; t, x)ix x=  
and noting (2.17)-(2.18), we have
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 (3.118)

By using Lemma 3.2 and noting (3.54) and (3.57), it is easy to see that Figure 3: At a point (t0; y).
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(1 ) (1 ) (1 )
0 1 30 31| ( , ) | (1 ) (1 0) (1 )jv t y k y C t C tm m mq q q- + - + - +£ + £ + £ +  (3.119)

By Hadamard's formula, we have
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And
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Thus, noting the fact that L>0, and using (3.13) and (3.54), we 
obtain from (3.118) that
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 (3.122)

For j = m + 1; : : : ; n, for any fixed point (t; x) TD-Î  similar to 
(3.74), we have
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Noting (1.16), by (1.13), it is easy to see that
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By employing the same arguments as in (i), we can obtain
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 (3.126)

Thus, noting (1.15), (3.6) and (3.70), it follows from (3.124)-(3.126) 
that
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 (3.127)

Hence, noting the fact that L > 0, we obtain from (3.123) that
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(3.128)

Combining (3.122) and (3.128), we get
2

37 1 1

1 1 1 1

1

( ) { ( ( )) ( ) ( ) ( )[W ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )] (T) V ( )[ ( ) ( ) ( )] (T)[V ( )

( ) ( )]}

T T T T c c c
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

(3.129)

We next estimate 1(T)V  and V1(T).

For i=m + 1,…, n, for any given jth characteristic (j i)T
j iC in D ¹  as 

in the proof of (3.90), in order to estimate 1(T)V  it suffices to estimate

1 2

( ) ( )
0 0

| ( , ( , )) | | ( , ( , )) |
y y

i i t t y i i t t yp t x t y dy and p t x t y dy= =ò ò   (3.130)

By integrating (2.33) along (s, y)ixx =   similar to (3.84), we have
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 (3.131)

Noting that il (u)(i = m + 1; : : : ; n) are weakly linearly degenerate, 
by (2.37) and (2.38), we have

j j(u e ) 0, jijjB º "            				             (3.132)

By Hadamard's formula, and noting (2.18) and (3.132), we have
Bijj(u) = Bijj(u) ¡ Bijj(ujej)

1

1 j 1 j j 1 n 10
( u ,...,Tu ,u ,Tu ,...,Tu )ijj

T
l j l

B
T u d

u - +
¹

¶
=

¶åò                (3.133)

And

j j

1

1 j 1 j 1 n 10

(u) (u) (u e )
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ijj ijj ijj

ijj
T

l j l

u d
u

b b b

b
- +

¹

= -

¶
=

¶åò

  

 (3.134)

Then, using Lemma 3.2, similar to (3.88), it follows from (3.131) that
2
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 (3.135)

Similarly, we have
2
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(3.136)

Thus, we obtain
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(3.137)

Similarly, we have

1 40 1 1

1 1 1

1 1
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 (3.138)

We next estimate (T)cV¥  

(i) For r=1; : : : ;m, for any fixed point (t; x) Î  DT, noting (2.17) and 
(2.18), similar to (3.98), we

Have
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 (3.139)

By using Lemma 3.2 and noting (3.93) and (3.96), it is easy to see that
(1 ) (1 ) (1 )

0 1 42 0 43| Vr(t , y) | K (1 y) (1 t ) (1 t)C Cm m mq q q- + - + - +£ + £ + £ + (3.140)

By Hadamard's formula, we have
1

l l 1 l 1 1 1 l n0
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rll rll k T
k l k

u d
u
b

b b - +
¹

¶
- =

¶åò  (3.141)

And
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u
b
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¶
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¶åò


   (3.142)

Thus, noting (3.93) and the fact that L > 0, we obtain from (3.139) that
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1 1
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 (3.143)

(ii) For i = m+1; : : : ; n, for any fixed point T(t, x) D (t, x) DT
ibutÎ Ï  

similar to (3.116), we have
1
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(3.144)

Then, it follows from (3.143) and (3.144) that
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(3.145)

We next estimate 1U  and U1(T).

For i = m + 1; : : : ; n, for any given jth characteristic (j i)T
j iC In D ¹  as 

in the proof of (3.90), in order to estimate 1U  (T) it suffices to estimate

1 2
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By integrating (2.39) along (s, y)ixx =   noting (2.41), similar to 
(3.84), we have
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 (3.147)

Since l i(u) is weakly linearly degenerate and u = (u1; : : : ; un)T are 
normalized coordinates, by (2.43),

we have

i i i(u e ) 0, | u |iiiF º "       			                            (3.148)

Then, using Hadamard's formula, we have
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Hence, noting (3.6), (3.11), (3.13) and the fact that 
(s, y)0 0ixL and
y
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> >
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  we obtain from (3.147) and (3.149) that
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 (3.150)

By Lemma 3.2, similar to (3.88), it follows from (3.150) that
2
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Similarly, we have
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 (3.152)

Thus, we obtain
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Similarly, we have
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We next estimate Uc
¥  

(i) For r = 1; : : : ;m, for any fixed point (t, x) DTÎ  noting (2.19) and 
(2.20), similar to (3.98), we have
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By using Lemma 3.2 and noting (3.93) and (3.96), it is easy to see that

(1 ) (1 ) (1 )
r 0 52 53 0 54| u (t , y) | C (1 y) (1 ) (1 t)C t Cm m mq q q- + - + - +£ + £ + £ + (3.156)

Thus, noting (3.93) and the fact that L>0, we obtain from (3.155) that
1
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¥ ¥ ¥ ¥+ £ + + =U    (3.157)

(ii) For i = m+1; : : : ; n, for any fixed point (t, x) DTÎ  but (t, x) DT
iÏ  

similar to (3.116), we have
1

r 56 1 1(1 | x (0) t |) | u (t, x) | C { W (T) (T) (T) W (T) W (T) U (T)}c c c c
i Uml q+
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Then, it follows from (3.157) and (3.158) that

57 1 1C { W (T) (T) (T) W (T) W (T) U (T)}c c c c cU Uq¥ ¥ ¥ ¥ ¥£ + + =U   (3.159)

We now estimate V¥  (T)

For i=m + 1; : : : ; n, passing through any given point (t, x) DTÎ  we 
draw the ith characteristic (s; t, x)ix x=  which intersects one of the 
boundaries of DT at one point. For fixing the idea, suppose that this 
characteristic intersects n 0( (0) ) tx l d= +  at a point n 0(y/ ( (0) ), y)l d+  
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By integrating (2.13) along this characteristic and noting (2.16)-(2.18), 
we have
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 (3.160)

Noting Lemma 3.1 and Lemma 3.2, and using Hadamard's formula, 
it follows from (3.160) that
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On the other hand, for i = m + 1; : : : ; n, for any fixed point 
(t, x) D(T) {(t, x) | 0 t T, x 0}Ï = £ £ ³  but i(t, x) D ,| v (t, x) |T

iÏ  

can be controlled by (T)or V(D )c TV¥ ±  Moreover, for i = 1; : : : ;m, for 

any fixed point (t, x) D(T) {(t, x) | 0 t T, x 0}Ï = £ £ ³  i| v (t, x) |  can be 
controlled by (T) or V(D )c TV¥ ±  as well. Thus, by using Lemma 3.2 again, 
we have
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We finally estimate  (T)W¥  

For i = m+ 1; : : : ; n, passing through any given point (t, x) DTÎ  
similar to (3.160), noting (2.9), (2.11)-(2.12) and the fact that (u)il  is 
weakly linearly degenerate, we have
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e w

e

l d

l d

g x

g x

g g

- -

+ = Î Î = +
Ï Ï ¹

- -

+ = +

+ + + +

+ -

å å å åò

åò



 

2
i i i(u e )) w ](s, (s; t, x))dsii i x

(3.163)

Noting Lemma 3.1 and Lemma 3.2, and using Hadamard's formula, 
it follows from (3.163) that

i 60 1 1

1

| w (t, x) | { W (T) U (T) U (T) W (T) W (T) U (T)

[W (T) U (T) U (T) W (T) U (T)]V (T)}

c c c c

c c c c

C q ¥ ¥ ¥ ¥

¥ ¥ ¥ ¥ ¥

£ + + +

+ + +
(3.164)

Thus, by using the definitions of (T), W(D )and W(D )c T TW¥ + -  and 
using Lemma 3.2, we have

61 1 1

1

(T) { (D ) W (T) U (T) U (T) W (T) W (T) U (T)

[W (T) U (T) U (T) W (T) U (T)]V (T)}

T c c c c

c c c c

W C Wq¥ - ¥ ¥ ¥ ¥

¥ ¥ ¥ ¥ ¥

£ + + + +

+ + + (3.165)

We now prove (3.47)-(3.53).

Noting (1.15), evidently we have

62(0),V (0), U (0) Cc c cW q¥ ¥ ¥ £     			            (3.166)

1 1 1 1 1 1(0) V (0) U (0) W (0) V (0) U (0) 0W = = = = = =   	          (3.167)

63(0),V (0) CW q¥ ¥ £         			           (3.168)

And

640 : (D ),V(D ) CT TT W q- -= £      			            (3.169)

Thus, by continuity there exist positive constants k2; k3; k4; k5; k6; 
k7 and k8 independent of µ, such that (3.47)-(3.53) hold at least for 
0 0T T£ £  whereT0 is a small positive number. Hence, in order to 
prove (3.47)-(3.53) it su±ces to show that we can choose k2; k3; k4; k5; 
k6; k7 and k8 in such a way that for any fixed 0 0(0 T)T T< £ .

0
2(D ) 2 kTW q- £          				          (3.170)

0
3V(D ) 2 kT q- £          				            (3.171)

0 4U (T ) 2kc q¥ £            				           (3.172)

0 0 5(T ),V (T ) 2 kc cW q¥ ¥ £     				           (3.173)

1 0 1 0 1 0 1 0 1 0 1 0 6(T ), W (T ), V (T ), V (T ), U (T ), (T ) 2 kW U q£    (3.174)

0 0 7V (T ), U (T ) 2k q¥ ¥ £        			         (3.175)

0 8W (T ) 2k q¥ £     				           (3.176)

we have 

0
2(D ) kTW q- £           				             (3.177)

0
3(D ) kTW q- £       				           (3.178)

0
4(D ) kTW q- £            				           (3.179)

0 0 5(T ),V (T ) kc cW q¥ ¥ £    			            (3.180)

1 0 1 0 1 0 1 0 1 0 1 0 6(T ), W (T ),V (T ),V (T ), U (T ), (T ) kW U q£    (3.181)

0 0 7(T ), U (T ) kV q¥ ¥ £           			            (3.182)

0 8(T ) kW q¥ £       				            (3.183)

To this end, substituting (3.170)-(3.176) into the right-hand sides 
of (3.79), (3.90), (3.92), (3.117), (3.129), (3.137)-(3.138), (3.145), 
(3.153)-(3.154), (3.159), (3.162) and (3.165)(in which we take T=T0 ), 
it is easy to see that, when 0 0q >  is suitably small, we have

0
13 3(D ) 2C (1 k )TW q- £ +          			            (3.184)

0
1 13 2(D ) 2C (1 k )TW q- £ +         			         (3.185)

1 0 19 2(T ) 2C (1 k )W q£ +        			           (3.186)

0 29 2(T ) 2C (1 k )cW q¥ £ +      			           (3.187)
0

37(D ) 2CTV q- £            				           (3.188)

1 0 40 3V (T ) 2C (1 k )q£ +         			           (3.189)

1 0 41 3V (T ) 2C (1 k )q£ +     			   	        (3.190)

0 46 3V (T ) 2C (1 k )c q¥ £ +          			           (3.191)

1 0 50 3U (T ) 2C (1 k )q£ +         			           (3.192)

1 0 51 3U (T ) 2C (1 k )q£ +         			           (3.193)

0 57 3U (T ) 2C (1 k )c q¥ £ +           			             (3.194)
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0 59 3 5V (T ) 2C (1 k k )q¥ £ + +          		            (3.195)

0 61 2 5(T ) 2C (1 k k )W q¥ £ + +           		         (3.196)

Hence, if k3≥2C37; k2≥2C13(1+k3); k4≥2C57(1+k3); k5≥2 
maxfC29(1+k2);C46(1+k3)g, k6 ≥2maxfC18(1+k2);C19(1+k2); C40
(1+k3);C41(1+k3);C50(1+k3);C51(1+k3)g, k7≥2C59(1+k3+k5) and 
k8≥2C61(1 + k2 + k5), then we get (3.177)-(3.183). This proves (3.47)-
(3.53).

Finally, we observe that when µ0 > 0 is suitably small, by (3.52) we 
have

7 7(T) k k
2

U d
q q¥ £ £ £                		            (3.197)

This implies the validity of hypothesis (3.6). The proof of Lemma 
3.3 is finished.

Proof of Theorem 1.1. It su±ces to prove Theorem 1.1 in the 
normalized coordinates. Under the assumptions of Theorem 1.1, by 
(3.52) and (3.53), we know that there is a su±ciently small 0 0q >  
such that for any fixed 0(0, ]q qÎ  on any given domain of existence 

(T) {(t, x) | 0 t T, x 0}D = £ £ ³  of the C1 solution u = u(t; x) to the 
mixed initial-boundary value problem (1.1) and (1.12)-(1.13), we have 
the following uniform a priori estimate for the C1 norm of the solution:

1 0 0
x 9|| (t,.) || c || (t,.) || c || u (t,.) || cu u k q+ £                   (3.198)

Thus we immediately get the conclusion of Theorem 1.1. The proof 
of Theorem 1.1 is finished.

Application
Consider the following mixed initial-boundary value problem for 

the system of the flow equations of a model class of °uids with viscosity 
induced by fading memory (cf. [7]):

0
( (w)) x v 0

wt vx w
vt s

ì - + =ïïíï - + =ïî
          			                (4.1)

with the initial condition

0 0 00 : (x), v v (x)(x 0)t w w v= = = + ³       	              (4.2)

and the boundary condition

0 : (t)(t 0)x v h= = ³         			              (4.3)

Here, w is the displacement gradient and v the velocity of a model 
class of fluids, the stress-strain function s (w) is a suitably smooth 
function of w such that

(0) 0s¢ >          				                 (4.4)

0V  is a constant, 1
0 o(W (x),V (x)) CÎ  and we assume that there 

exists a constant µ > 0 such that

1
0 0 0 0 0

0
{(1 x) (| w (x) |) | v (x) | | v (x) | | w (x) | | v (x) |)}

c
Sup m+

³

¢ ¢+ + + + + <+¥    (4.5)

In addition, we assume that 1(t) Ch Î  

1

0
{(1 ) (| h(t) | | h (t) |)}

c
Sup t m+

³

¢+ + <+¥         	               (4.6)

Moreover, the conditions of C1 compatibility are supposed to be 
satis¯ed at the point (0; 0).

Let

w
u

v
æ ö÷ç= ÷ç ÷ç ÷çè ø

        					                (4.7)

By (4.4), it is easy to see that in a neighborhood of 0
0

0
u

v
æ ö÷ç ÷=ç ÷ç ÷çè ø

 system 

(4.1) is strictly hyperbolic and has the following two distinct real 
eigenvalues:

1 2(u) (w) 0 (u) (w)l s l s¢ ¢=- < < =                                   (4.8)

The corresponding right eigenvectors are

T T
1 2(u) / /( (w)) , (u) / /(1 (w)))r rs s¢ ¢-    	               (4.9)

It is easy to see that in a neighborhood of 0
0

0
u

v
æ ö÷ç ÷=ç ÷ç ÷çè ø

 all characteristics 
are linearly degenerate,

then weakly linearly degenerate, provided that

(w) 0, | w |s¢¢ º "       small            			               (4.10)

The corresponding left eigenvectors can be taken as 

1 2(u) ( (w),1), l (u) ( (w),1)l s s¢ ¢= = -   		               (4.11)

Let

vi = li(u)u (i = 1; 2):          				               (4.12)

Then, the boundary condition (4.3) can be rewritten as

1 20 : v 2 (t) H(t)x v h= + =        			              (4.13)

By Theorem 1.1 we get

Theorem 5.1. Suppose that (4.4) and (4.10) hold. Suppose 
furthermore that w0(x); v0(x) are all C1

functions with respect to their arguments, for which there is a 
constant 0m>  such that

1
0 0 0 0

0

1

0

max{sup{(1 x) (| w (x) | | v (x) | | w (x) | | v (x) |),

sup(1 t) (| H(t) | | H (t) |)}
x

t

m

m

q +

³

+

³

¢ ¢+ + + +

¢+ + <+¥



    (4.14)

Suppose finally that 1(t) Ch Î  satisfies (4.14) and that the conditions 
of C1 compatibility are satisfied at the point (0; 0). Then there is a 
sufficiently small 0 0q >  such that for any given 0[0, ]q qÎ  the mixed 
initial-boundary value problem (4.1)-(4.3) admits a unique global C1 
solution u = u(t; x) in the half space {(t, x) | t 0, 0}x³ ³ .
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