Glucose-6-Phosphate Dehydrogenase Deficiency Unmasked by Hyperglycemia

Francesca Silvestri, Silvia Ortuso, Daniela Dicanio and Francesco Costantino

Department of Pediatrics, Sapienza University of Rome, Italy

Corresponding author: Francesca Silvestri, Department of Pediatrics, Unit of Pediatric Diabetology, Policlinico Umberto I Hospital, Sapienza University of Rome, Roma, Italy, Tel: 0039 0649979336; Fax: 0039 0649979335; E-mail: francesca.silvestri89@gmail.com

Rec date: Apr 14, 2015, Acc date: Apr 28, 2015, Pub date: Apr 30, 2015

Copyright: © 2015 Silvestri F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked disease responsible for moderate to severe hemolytic anemia. This is the most common erythrocyte enzyme disorder, often overpassed. A 14-year-old male patient was admitted to emergency department with hyperglycemia. He was treated initially with fluid therapy, after two hours with subcutaneous ultra-rapid insulin. After five days from hospitalization he showed scleral and skin jaundice were made diagnosis of hemolytic anemia by G6PD deficiency. There was no significant family or prior medical/ drug history. Interestingly, the hemolytic features were evidenced when blood glucose levels were returning to normal values. The insulin mediated NADPH loss may have resulted in increased erythrocyte oxidant sensitivity and a loss of sulfhydryl group’s availability, causing hemolysis to manifest.

G6PD deficiency is usually linked to drug which induced oxidative stress. Association with diabetes mellitus is infrequently reported. This case wants to emphasize that the G6PD deficiency has been unmasked by hyperglycemia until now unknown without signs and symptoms.

Keywords: Glucose 6 phosphate dehydrogenase deficiency; Diabetes mellitus type 1; Hyperglycemia; Hemolytic anemia

Case Report

A 14 years-old child was referred to Policlinic Umberto I emergency department, Rome with polyuria, polydipsia started 20 days before and hyperglycemia (494 mg/dl). He was in health until that episode. Firstborn of unrelated parents, born at 40 gestational weeks after an uncomplicated pregnancy his weight and length at birth were with 0.9% NaCl, intensive insulin therapy and potassium supplementation.

Second line examination revealed an HbA1c 9.9% while the other analyses were in the normal range of values. He started fluid therapy with 0.9% NaCl, intensive insulin therapy and potassium supplementation.

After the resolution of mild failure, diagnosis of diabetes mellitus type 1 was revealed by positivity for anti-Insula and anti-GAD antibodies.

Extended investigations have been performed on liver, kidney, coagulation and thyroid functions. Virological examinations were negative.

After five days by hospitalization, patient showed scleral and skin jaundice, urobilinurea and hypo chronic feces. Blood exam revealed signs of hemolysis: red blood counts 3.530,000, hemoglobin 10.7 g/dl, reticulocytes 4.05 %, total bilirubin 5.94 mg/dl, direct bilirubin 0.53 mg/dl, haptoglobin 10 mg/dl. Coombs test was negative.

Hemolytic episode was resolved without medical intervention. Was studied G6PD activity which revealed slight deficiency: G6PDH 39 mUI/10^6 GR (164-376 mUI/10^6), PK 29 UI/gr Hb (7.4-16.4 UI/gr), with abnormal erythrocyte osmotic resistance, until now unknown.

As regards diabetes, we had changed ultra-rapid insulin with regular one because of we thought there was an adverse reaction to ultra-rapid insulin. After reviewed literature we have linked the hemolysis to glycometabolic decompensation even if without diabetic ketoacidosis. After therapy, glycometabolic control was excellent without hypoglycemia. Last HbA1c was 5.4%, maybe for slight continue hemolysis without clinical signs.

Discussion

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency in the world. The disease prevalence is correlated with areas where malaria was and is endemic such as Africa, Mediterranean Europe, South-East Asia, and Latin America [1].

The G6PD is involved in the pentose phosphate pathway. It catalyzes the reaction that products NADPH, which represents the only erythrocytes protection from hemolysis caused by oxidative stress [2]. G6PD also regenerates the reduced form of glutathione which maintains hemoglobin and other proteins in their reduced form [3].

The gene encoding G6PD is found on the long arm of the X chromosome (Xq28), and consists of 13 axons with a length of 18 kb [4].

This gene is polymorphic, there are at least 400 allele’s variants [1]. They are subdivided into five classes based on the functional severity of the deficiency, with Class 1 characterized by severe deficiency
resulting in chronic non-spherocytic anemia ranging to Class 5 with
greater than 150% of normal activity [1].

Males expresses the deficiency while female are a mosaic due to the
random inactivation of one of the two X chromosome in each cell.

Neonatal jaundice and drug-induced hemolysis, which may follow
the ingestion of broad beans and agents with oxidant properties, such
as primaqine, sulfonamides, nitrofurantoin, and several anti-
inflammatory agents are the most frequent clinical manifestations.
Even if hemolysis is often self-limitant some patients requires blood
transfusion [2].

Type 1 diabetes (DM1) is an autoimmunity disease caused by a T-
cell mediated reaction against pancreatic β-cells. This reaction
carrieds out to insufficient and absent production of insulin [5]. DM1 is
characterized by the presence of autoantibodies (anti - Insula and anti-
GAD antibodies) that sometimes induce diabetes outset. The disease’s
etiology is still not clear but it is known that there is an interaction
between the environment and polygenic traits [6].

The correlation between diabetes and G6PD deficiency is still in
debate. A recent study proposes that alterations in gene controlling
both insulin secretion and G6PD-mediated antioxidant defenses may
contribute to a predisposition to diabetes [7].

Several clinical observations demonstrate that hypoglycemia can
promote the decrease of G6PD activity and also the reverse hypothesis
that correlates the presence of G6PD deficiency with the occurrence of
diabetes [8]. That is supported by the fact that there is an increased
prevalence of G6PD deficiency among diabetic patients [7]. It was
hypothesized that blood glucose normalization during treatment of
failure induced a stressing glucose deprivation for the energy-
dependent function of the red blood cells causing premature RBC
destruction [9].

The only characteristic that is common to all the cases of acute
hemolysis in diabetic patients is the fact that the hemolysis occurs after
diabetes decompensation, whatever the treatment is. This suggests that
hyperglycemia may induce hemolysis. Both post-translational
mechanisms and decreased gene expression appear to be involved in the
define of G6PD activity that was observed after exposure to high
levels of hyperglycemia [10].

Recently, it has been shown that high glucose also decreased G6PD

Patients with G6PD deficiency have lower HbA1c compared to the
normal one. In subjects, with DM1 and DM2 and no G6PD
deficiency have higher HbA1c than subjects with G6PD deficiency and
DM1 or DM2, because the average life of erythrocytes is reduced in the
latter patients and RBC are younger. So, we should speculate a G6PD
deficiency when patients have low HbA1c and any risk factors [12].

The child had never had clinical signs of jaundice until this episode
and neither his parents.

After the hospitalization we tested the patient’s parents for G6PD
deficiency and his mother resulted positive. The patient’s G6PD
deficiency is classified as a third type defect: 39% (10-60%) of
enzymatic activity that doesn’t manifest clinical signs.

Conclusion

Our case report would underline and demonstrate the association
between G6PD deficiency and diabetes type 1, until now incompletely
known.

In fact our patient, who was in mild glycometabolic decompensation,
manifested the hemolysis five days after the

diagnosis of DM1. During the first days of recovery he was in health
and he had no jaundice. After normalization of glycometabolic
parameters with subcutaneous insulin, he had signs and symptoms of
hemolysis probably due to the energy deprivation that erythrocytes
suffered during hyperglycemia with consequent destruction. Usually
hemolysis is showed when associated with diabetic ketoacidosis. In our
case hemolysis appeared with hyperglycemia without acidosis.

Until today our patient has good glycometabolic control, last
HbA1c: 5.4 %. Although the enzyme remaining activity was low, after
a year from the episode we reported, he showed no clinical signs and
symptoms of hemolysis.

References

global prevalence of glucose-6-phosphate dehydrogenase deficiency: A
dehydrogenase deficiency and diabetes mellitus with severe retinal
complications in a Sardinian population, Italy. Int J Med Sci 10:
1907-1913.
Dehydrogenase Deficiency Diagnosed in an Adolescent with Type 1 Diabetes
Mellitus and Hemoglobin A1c Discordant with Blood Glucose
human glucose-6-phosphate dehydrogenase cloned in plasmids and a
yeast artificial chromosome. Genomics 10: 792-800.
5. Dave S (2014) Mesenchymal stem cells derived in vitro
transdifferentiated insulin-producing cells: A new approach to treat type
Linking chronic infection and autoimmune diseases: Mycobacterium
avium subspecies paratuberculosis, SLC11A1 polymorphisms and type-1
phosphate dehydrogenase deficiency unmasked by diabetic ketoacidosis: an
Hemolysis during diabetic ketoacidosis treatment in two girls without
incomplete glucose 6phosphate dehydrogenase deficiency. Acta Biomed
80: 69-72.
mellitus and glucose 6-phosphate dehydrogenase deficiency: from one
crisis to another. Diabetes Metab 37: 79-82.
glucose inhibits glucose-6-phosphate dehydrogenase, leading to
increased oxidative stress and beta-cell apoptosis. FASEB J 24: 1497-1505.
Hemoglobin A1 in subjects with G-6-PD deficiency during and after