alexa Gravity and Electromagnetism | Open Access Journals
ISSN: 2476-2296
Fluid Mechanics: Open Access
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Gravity and Electromagnetism

Paul TE Cusack*

Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

*Corresponding Author:
Cusack P
Independent Researcher, BSc E
DULE, 1641 Sandy Point Rd, Saint John
NB, Canada E2K 5E8, Canada
Tel: (506) 214-3313
E-mail: [email protected]

Received Date: December 10, 2016; Accepted Date: March 18, 2017; Published Date: March 28, 2017

Citation: Cusack PTE (2017) Gravity and Electromagnetism. Fluid Mech Open Acc 4: 155. doi: 10.4172/2476-2296.1000155

Copyright: © 2017 Cusack PTE. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Fluid Mechanics: Open Access

Abstract

Here is a paper that uses the theory of electromagnetism to model gravity and the universe. The standard magnetic flux, capacitance, conductivity, dielectrics are considered. The mathematics includes the golden mean parabola, Euler’s Identity, Matrices, Eigenvectors, and Differential equations

Keywords

Gravity; Magnetic flux; Capacitance dielectric; Permeability; Mass gap

Introduction

Here we provide a solution to the physical universe that shows that it can be modelled as an electromagnetic flux using well know electrical engineering mathematics. The Then gravity is modelled as an eigen vector. The standard Golden Mean parabola and the derivative equals the function is used once again to help solve the problem of why gravity exists. We begin with magnetism and flux.

Magnetic flux density

L=μ0 N²A/l 0.666=1.15 * n² *0.1646/0.8415=√3

B=μ0N i/l=1.15*√ 3 *1.3/0.8415=3.05=c=Mρ

1/L=B/[∂E/∂t]∂M/∂t

∂E/∂t=BL (∂M/∂t]

2t-1=BL (2)

t=5/2=2.5b=T=PERIOD

x³-x-1=2²-2-1=1=E.

Conductivity

R=ρ * l/A

1.618=ρ *0.8415/0.1646

ρ=0.316

σ=1/ρ=3.14=π=E

d=0.8415

d/2=0.42=π-e

Ln e=1

π-Ln e=2.14

2* ∂M/∂t=1 *2=2.

Universal capacitor resistance

Q=1/[ωCRc]

1.3=1/[0.8415 *1.48*Rc]

Rc=1.619 cf 1.618.

Euler's identity

A=E*t=E²=t²=1

i *∫ sin θ -∫cos θ=A=1=-eπ

i* cos π -sin π=1

θ=π=180°

This is half a cycle.

Area Under cosine=0

Area Under sine=π=E.

Capacitance continued

C=q/V

1.5=q/0.86

q=1.3=∂i/∂t where t=1

Now, C=er=e0 A/d

1.5=0.86 (8.854)(A/d)

A/d=√3/8.854

d=0.86 because sin θ=0.86/1

A=0.1956 (0.8415)

A=0.1646

√A=0.4057=t

d0=1/2

0.4057/2=0..2028=Y=E cf Y=0.203 [Dampened Cosine Curve]

t=s-c

t=s-∂s/∂t

Integrate (Time is a Constant with respect to t)

1=s²/2-s

s²-s-1=0

x²-x-1=0

t=s-c

t=s- ∂s/∂t

Integrate: t²/2=s²/2-s.

t=1

t²/2=s²/2-s

2=s²-s

s²-s-2=0

Quadratic: (s-2)(s+1)=0.

s=2, -1

-∂s/∂t=-1

∂s/∂t=1

∂t/∂t=1

∂s/∂t=s

y=y'

The Derivative Equals the Function

d=vit+1/2 at² (same equation)

d=si+s/2

d=d/2+d/2

si=d/2

The initial distance=1/2

∂E/∂t=2t-1

∂E/∂t=2(1/2)-1=0 (Minimum)

F=v

M=R

V=L ∂i/∂t F=V=v

0.86=0.666 ∂i/d∂t

3/2 *0.666=∂i/∂t

1.3=∂i/∂t

1-∂i/∂t=1-1.3=-0.3=-c/10=-∂s/∂t

current i=speed of light c.

s=t-i 0.1334=t-1.3

t=1.16666

E=1/t=1/1.166=0.86

1-∂i/∂t=∂s/∂t

t-i=s

t-c=s

s=t-c

t=s-c

time=distance-speed of light

distance=time-speed of light/10

distance=0.4+0.3=0.7

1/s=1.4285

s=0.85

V=L ∂i/∂t

But F=G M1M2/R²

∂i/∂t=M1M2/R²

when M1 is very large and M2 is very small,=1/R².

∫ ∂i/∂t=i=∫1/R²=-1/R

i=-1/R

F²/2=-1/R

1/2R² * R=-1

1/2 vM=K.E.=1

Therefore, F=v R=M.

 

Dielectric Constant and Permeability

 

L'C'=ε μ

(0.666)(1.5)=1 1=ε(15%)

ε=1/1.15=0.86

Capitance=1.48

C*M=1.5*2=3=Mρ

Mass Gap

L=1/1.5=0.6666=G.

So the inductance of our universe is G. The energy of the mass with velocity is converted to a Gravitational field. G=0.666 is the result. Gravity is modelled like a magnetic field. Like magnets, matter is attracted to matter. We call it gravity. The Earth has a magnetic field because it has matter or mass. The magnetic field is proportional to g=9.81.

5.972/9.81=0.609=1/1.642

(The Mass of the Earth is closer to 6.060108)

Better still

1/1.618=0.618 0.618*9.806=6.06=2.02*3=Y*c=Ec

But E=Mc²

So Ec=Mc³=g/M

M²c³=g

(This is why g=9.81m/s)

g=M²Mρ³

g=M² * (∂M/∂t)³

g=E * Mc

a=E *M ∂s/∂t

a=E*M v

a/v=1=E*M

E*M=1=t

M=t².

Conservation of Momentum

Mv1=Mv2

v=sin θ

M v1=M sin 1

∂M/∂t *v1=M 0.8415

2 *v1=0.8415M

v1=0.8415/2 *M

=0.4207M

=cuz M

0.8415/cuz=M

M=2

E=Mc²

π=2 c²

c=√(π/2)

c=1.2533=MINIMUM OF THE ENERGY PARABOLA

2t-1=0

t=1/2

P=Mv=2 (0.866)=1.73=√3

K.E.=1/2 Mv²

1=1/2 M (0.86)²

M=2.666

M=-∂M/∂t+G

And

M=F=26.666

Now,

K.E.=1/2 Mv²

Pi=1/2 (2) v²

v²=π

v=√π=1.77

Bernoulli: mgh +1/2mv²+p

0.666b h +1/2 (1.77)²+0

1/h=0.4240=cuz

E/h=cuz Hooke's Law.

limy→0∫xedx=y

limy→0exdy=y

ex=y

y=y'=ex

y=y'=y''=y'''...=ex

lim y==> ∞=ex

eInfinity

x=Ln ∞

y=y'=y''=.....=e^x=∞

The universe is robust [1-4].

Similar Matrices

B=S-1 A S

ΩA=√(3/2)

√3/√ 4=[2 0, 0 2]=[√3 v0 0 √3][|A|=3

det |A-1|=1/[det |A|.

equation

|D|=1/4

So, eigenvalues equation

x²-x+ 1/4=4

Quadratic (Note the √(-1)=0.618)

√3=|A|, 0.7360=√0.858=√Ω A.

Mass Gap

E x t x s=E/t

t Ets/E=√3/√4

t²s=√ 3/2

(t²s)²=(√3/√4)²

t4s²=3/E

Et4s²=c

But E=Mc²

M=1/[E t4s²]=1/{√3 * t² s]=1.5 MASS GAP

Aside: E x t x s]/E/t=t²s=(0.4083)(0.866)=0.1444=0.856

C. G. E.=Cusack Gravitational Equation

1/G=M ρ/E ρ+ ∂M/∂t

The mass and energy density is wrt time, not space.

So, ∂²E/∂t²=dE/dt/dM/dt+1/∂M.∂t

(∂E/∂t)²=[∂E/∂t +1]/∂M/∂t

x² ∂M/.∂t -x-1=0

∂M/∂t=2

[∂M/∂t]/2=1

E=Mc²

Mass=T. E=P.E.+K. E..+18=2(3²)

(0.618)³=0.2303

1/(0.618³)=4.236=cuz *10

cuz=π-e.

Eigenvalues and Eigenvectors

Eigenvalue of the

equation

4-4λ+λ ²=0

x²-4x-4=0

(x-2)(x-2)=0

x=2=λ

A=[2 0, 0 2]

|A|=4=Eρ

equation

∂²E/∂t²=E ρ

∂E²/∂t²-E-E ρ=0=Ln t

t=1 or x=1 radian

Now, going back: [2 0, 0 2][x y]=[λ [x y]

[G 0, 0 G] [t E]=G [t E]

Multiply by the diagonal of the unit cube √3/G==1.73/2=0.86

0.86 [2 0 0, 0 2 0, 0 0 2] [1 1 1]]=G [t s E]

√3=2t

t=√3/2=0.86

s=√3/2=0.86

E=√3/2=0.86

∂²E/∂t²- E=Ln t

2-1=Ln t

e2/e1=t

t=et

Ln t=t

Ln t=et

Derivative

1/t=et

So

Ln t=1/t Or the derivative=the function

y=y'

M=mgh+1/2 mv²

1=gh+1/2v²

If v=a

1/2a²+2a-2=0

(a-1)(a-1)=0

a=1

M=P.E.+K. E.

M=mgh+1/2mv²

v=1=a

But a=E=2G

g=1/2

2=2(1/2)(1)+1/2(2)(1²) 2=1+1.

G=2

∂²E/∂t²=2=∂M/∂t

∫∂²E/∂t²=M

∂E/∂t=M

∫∂E/∂t=∫M

E=M²/2

E=1/2 bM²

1/2M²=Mc²

1/2M=c²

M=2c²=18=P.E. +K.E.

1-0.1415=0.8575=0.

y''+y'+y=0

∂²E/∂t²+y'+ E=Ln t

y'=Ln t

y=1/t

E=1/t

d2E/dt2(Ln t)^2/2

dE2/dt2=y''.

So,

(Ln t)²/2+ Ln t+1/t=0

When a=v, this is

1/2 a²+ a+v=0

a²+2a+2v=0

(y'')²+2y''=2y'=0

G²/2+ 2G+2(E')=0

2(2G-1)=-G²/2+2G

4G-2=G²/2+2G

8G-4-4G=G²

4G-4=G²

G²-4G+4=0

(G -2)(G-2)=0

(G -2)^2=0

G=2=∂²E/∂t².

Second Order Liners Equations

ay''+by'+cy=0

∂²E/∂t²- (1) E=Ln t

by'=Ln t 0=Ln t

t=1

ar²+br+ c=0

(1)r²=0r+ (-1)=0

r²=1

r=±1

(1)(1)=0(1)=(-1)=0

0=0 true

The Material Universe Exists Where the Gravity Eigenvector.

Eigenvector=1/1.5=0.667 i.e.

1/(3/2) G=E/(Mρ ∂M∂t)

∂²E/∂t²=E/[M ρ/(∂M/∂t)]

where E=x²-x-1

Why does E=1?

2x-1=∫x²-x-1

2x-1=x³/3-x²/2-x-1-C

C=-1 @ x=0

E=(-1)^2-(-1)-1

E=1

E=x^2-x-1=∫ E

E=E'

x²-1=x³/3-1.5x²-x-1=3/2

x³-2.5x²-x-0=1.5

x³-2.5x²-x-1.5=0

x=3=M ρ=c

x=t

This is the solution to our physical universe.

Conclusion

We see that the physical universe can be thought of as an electrical flux and gravity as an eigenvector.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Recommended Conferences

Article Usage

  • Total views: 295
  • [From(publication date):
    April-2017 - Aug 24, 2017]
  • Breakdown by view type
  • HTML page views : 244
  • PDF downloads :51
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords