Medical, Pharma, Engineering, Science, Technology and Business

**Haile Arefayne Shishaye ^{*}**

Haramaya University, Dire Dawa, Ethiopia

- Corresponding Author:
- Haile Arefayne Shishaye

Haramaya University, Dire Dawa, Ethiopia

**Tel:**+251942124463

**E-mail:**[email protected]

**Received date:** January 20, 2016;

**Citation:** Shishaye HA (2016) Groundwater Flow Modeling in Coastal Aquifers: The Influence of Submarine Groundwater Discharge on the Position of the Saltwater–Freshwater Interface. J Coast Zone Manag 19:419. doi: 10.4172/2473-3350.1000419

**Copyright:** © 2016 Shishaye HA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Visit for more related articles at** Journal of Coastal Zone Management

An investigation of the impact of submarine groundwater discharge on the position of saltwater-freshwater interface is presented in this manuscript. Two conceptualizations were considered and analyzed using both analytic and numerical techniques, for comparison purposes. The first conceptualization assumes that the tip of the saltwaterfreshwater interface occurs at the shoreline, and the second conceptualization allows for the tip to extend off-shore. Analytic solutions exist for both conceptualizations. Results from both analytic and numeric analysis for the two conceptualizations are presented. Results from the first conceptualization were found to overestimate the inland distance to the interface toe, compared to the second conceptualization, for it ignores the influence of submarine groundwater discharge on the interface location. Moreover, results from the analytic solutions as a whole were found to overestimate the interface location compared to the numerical modeling results, for analytic solutions are based on the sharp interface approximations. Therefore, an empirically derived dispersion factor should be used to correct the analytic solution results so as to compare them with the numerically simulated values. Furthermore, offshore model extents should be incorporated when modeling coastal aquifer systems to include the influence of submarine groundwater discharge on the saltwater-freshwater interface position.

Groundwater flow modelling; Seawater intrusion;
Submarine groundwater discharge; Seawat; Analytic solution; **Numerical modelling**

Seawater intrusion is the migration of saline water into freshwater in
coastal aquifers. Saline water is denser than freshwater, for it has higher
mineral contents. Consequently, it forms a wedge beneath freshwater in
coastal aquifers (**Figure 1**). **Seawater intrusion** can occur naturally owing
to the connectivity between seawater and groundwater, and due to
certain human activities. Therefore, modeling the coastal groundwater
flow system enables the evaluation of the potential for seawater intrusion
into aquifer systems as a result of different factors. However, modeling **saltwater** intrusion is considered difficult. Factors such as heterogeneity
of the aquifer hydraulic properties, the complicated aquifer geometries
and the temporal and spatial variability in groundwater density make it
difficult to model seawater intrusion [1].

The accuracies of model outputs are strongly based on the
assumptions made on the model input parameters. Seawater intrusion
model results for the saltwater-freshwater interface position, for
example, are strongly affected by different factors such as boundary
conditions, initial (head and concentration) conditions and aquifer
hydraulic properties. Furthermore, nowadays, **Submarine** Groundwater
Discharge (SGD) is also becoming an important issue to be considered
in modeling coastal groundwater systems. Owing to seawater intrusion,
the land driven fresh groundwater can discharge to the seafloor through
the leaky confining unit and the process is called SGD [2-4]. This kind
of discharge decreases with the increase in distance offshore and is zero
where the tip of the interface touches the leaky confining unit [5].

Several authors have studied seawater intrusion and the position of the saltwater-freshwater interface owing to different factors in coastal aquifers. Strack [6] developed an analytic solution for the regional interface problems in coastal aquifers based on the single-valued potentials, the Dupuit assumption and the Ghyben-Herzberg formula for the steady state flow conditions. The Strack [6] analytic solution has been widely used by different researchers to explore seawater intrusion in coastal aquifers [1,5,7-10]. Different seawater intrusion assessment methods have also been developed based on the Strack [6] analytic solution [11,12].

Other authors like Huyakorn et al. [13], who presented a numerical model based on the sharp interface approach and taking into account the flow dynamics of saltwater and freshwater, Motz [14], who proposed an analytic solution for calculating the critical pumping flow rate in an artesian aquifer, and Bower et al. [15], who modified the critical interface rise based on the analytic solution which allows the critical pumping rate to be increased are also some of the well-known studies conducted on seawater intrusion in costal aquifers.

However, none of the above papers consider the influence of SGD
on the seawater-freshwater interface position. There is no possibility to
simulate the offshore groundwater discharges using the above analytic
solutions, unless modifications are made to include the offshore outflow
zone of the land driven fresh groundwater through the **seafloor** by
taking model extent offshore into consideration. Recently, Bakker [16]
has modified the Strack solution so as to include the offshore freshwater
outflow zone. It is a solution for a steady interface flow in confined
coastal aquifers discharging to a semi-confined section below the ocean.
Bakker has shown that the tip of the saltwater-freshwater interface can
perhaps touch the leaky confining unit at some distance offshore, and this depends on the head of the land driven fresh groundwater and the
leakage factor of the seafloor. Hence, the decision on how long a model
should be extended offshore for accurate simulations of the interface
position is also an important consideration when modeling coastal
groundwater flow systems [17]. In general, to identify the knowledge
gap in our current advances in seawater intrusion and the influence
of submarine groundwater discharge on the position of the saltwater–
freshwater interface, a comparison among the previously developed
and widely in use analytical and numerical models on the area is very
crucial. Such a comparison can show the gaps within the developed
models and can also give directions to fill the knowledge gaps in the
area.

The objective of this manuscript is therefore to investigate the influence of SGD on the position of saltwater-freshwater interface. To do so, comparing the steady state interface location when two conceptualizations are used in both analytic and numerical modeling techniques could be very important. The first conceptualization is based on the Strack [6] analytic solution, assuming that the tip of the interface lies at the shoreline; while, the second conceptualization is based on the Bakker [16], taking the distance offshore into consideration.

**Common parameters and values used**

A homogeneous and isotropic coastal aquifer with confined and
semi-confined sections and of constant thickness H [L] was considered
in this generic research. A Steady state condition is assumed and
pumping is not considered. The inflow to the aquifer at the inland
boundary is Q_{0} [L T^{−1}] (**Figure 1**). The confining unit has a thickness H_{V} [L] and resistivity factor c [T]. The aquifer bottom has a depth H_{b}[L]
below sea level, while the bottom of the confining unit is H_{l} [L] below
sea level. A dimensionless density factorδ is given by (ρ_{s} -ρ_{f})/ρ_{f}, where
ρ_{s} [M/L^{3}]is the saltwater density and ρ_{f} [M/L^{3}] is freshwater density. The
following parameter values were taken from the study conducted in
Madras aquifer (in the city of Madras, now called Chennai, India) by
Sherif et al. [18]. These values were then used in both conceptualisations
of the analytic and numerical modellings.

**Analytical modelling**

**Strack [**6**] analytic solution:** Strack has developed an equation
for the continuous discharge potential (Ф) within the multiple
zones of the aquifer based on the Girinski equations. He added
a constant to the Girinski equation for the discharge potentials.
i.e,

where, and is a constant

Substituting in place of will give the following:

(1)

The discharge potential is given by , where Q_{0} is the inflow to the confined aquifer and X_{i} is the onshore distance. If the toe
of the interface is assumed to be located at X = d , then, where, Ф_{d} is the discharge potential at a distance ofd from the coast.

(2)

**Bakker [**16**] analytic solution:** The vertically integrated freshwater
discharge of the confined aquifer in the horizontal-direction is given in
the Bakker (2006) analytic solution by:

(3)

where, is the thickness of the freshwater zone. From this, the following procedures were followed to derive simplified equations, based on the Bakker [16], for the discharge potential at the toe (where the thickness of the freshwater zone is equal to the thickness of the aquifer, i.e., ), lengths onshore and offshore and the interface heads

As described above, the thickness of the freshwater zone is equal to the thickness of the aquifer i.e., at the toe of the interface. Substituting by H, both sides of equation (3) were integrated with respect to x and h, respectively and yielded the following equation.

The discharge potential at any distance is given by the product of the vertically integrated discharge in the confined aquifer and the distance from the shoreline. The value of X is 0 at the shoreline. Therefore, if it is assumed that the toe of the interface is at a distance from the shoreline, then the discharge potential at the toe will be given by Thus, because of

(4)

In this case, if it is assumed that the tip of the interface lays at the coastline, the distance of the toe from the shoreline will be given by:

(5)

However, Bakker [16] has taken the distance offshore into consideration. Thus, the place where the discharge potential values become zero will not necessarily be at the coordinate where X = 0. Therefore, the point where the discharge potential becomes zero lies where the tip of the interface touches the confining unit. So, the procedure to develop an equation for the discharge potential at the shoreline based on the Bakker (2006) analytic solution is similar to that of followed above, but with different head value. The interface head at the shoreline lies at a depth below the sea level or () below the bottom of the confining unit alt="image"/> is the depth of the confining unit below the sea level. Therefore, substituting in place of in equation (4) above will give the following equation for the discharge potential at the shoreline.

(6)

The discharge potential ( ) is zero and when the tip of the interface lays at the shoreline. From here, the equation for the distance of the interface toe from the shoreline might be different from equation (5), if the tip of the interface lays at some distance offshore. i.e,

(7)

The model extent offshore (L) is given in the Bakker (2006) analytic solution as:

(8)

Where, and The equations for and are also given as and respectively.

Therefore, equation (8) has been re-written as follows to develop
an expression for the distance offshore (L) in terms of the parameters
given in (**Table 1**). So,

Parameter symbol | Parameter description | Values | Unit |
---|---|---|---|

Q_{o} |
Inflow rate to the confined aquifer | 1.0 | m^{3}/day |

K |
Hydraulic conductivity of the confined aquifer | 260.0 | m/day |

C |
Vertical resistance of the leaky layer | 12.5 | day |

H_{v} |
Thickness of the confining unit | 5 | m |

H_{l} |
Depth of the leaky confining unit below sea level | -10 | m |

H |
Thickness of the confined aquifer | 20 | m |

h_{s} |
Sea level | 0.0 | m |

H_{b} |
Depth of the confined aquifer bottom below sea level | -30 | m |

δ |
Dimensionless density factor | 0.025 | - |

ρ_{s} |
Density of saltwater | 1025 | kg/m^{3} |

ρ_{f} |
Density of freshwater | 1000 | kg/m^{3} |

**Table 1:** SWI simulation parameters, values and units.

(9)

Bakker has also developed an equation relating the distance offshore (L) and the dimensionless head (Φ), i.e., , where u is a coordinate,

According to Bakker (2006), and when the toe lies at the intersection point of the confined and semi-confined sections. Substituting these values will then give us:

(10)

Therefore, the interface head at the toe is calculated as follows:

The depth of the interface Z_{0} is based on the freshwater head at the
shore line. In this case, H represents the depth of the interface below the
bottom of the confining unit (thickness of the freshwater head). This
can also be written as:

(11)

Thus, the depth of the interface below sea level (Z_{0}) is calculated as
follows:

Hence, the plotting plane can be divided into two zones, the offshore and onshore zones. The saltwater-freshwater interface heads along the two zones can be plotted against the offshore and onshore distances. For example, let “X1”represents the list of equally spaced 100 numbers from 0 to –d and “X2”represents the list of equally spaced 100 numbers from 0 to L. It is also possible to increase or decrease the list of numbers within the range to increase the plotting accuracy. Therefore, in this case, plotting can be completed within two steps. Step 1 is to plot X1 against (Z1 +30) and step 2 is to plot X2 against (Z2 + 30), where,“30” is the depth of the bottom of the aquifer below sea level and Z1 and Z2 are calculated as follows.

From equation (4),

Form this, , and because of H is equal with at the toe,

(12)

Therefore, to derive an equation for the depth of the interface below the confining unit at any distance X1(), we need to calculate the total discharge potentials at any distance X1. The value of Ф at a distanceX1 is given by . Moreover, the total discharge potential at a distance of X1 is . But because of that X1 represents a list of 100 numbers from 0 to –d, a negative sign should be included within the equation Q0X1.Therefore, substituting in place of Фd in equation (12), the depth of the interface ()below the confining unit at any distance of X1 is given by:

The depth of the interface below sea level is, therefore, calculated as

(13)

Further, the depth of the interface () at any distance offshore (X2) can also be calculated from eqn. (10). The point where the interface tip touches the leaky confining unit is when Hl is equal with Z2. This point is located at a distance where .Therefore, because of that X2 has 100 list of values, substituting L2 by (X2-L)2 would help to calculate the depth of the interface below the confining unit at the 100 different X2 values. Hence, the depth of the interface below the leaky confining unit () will be given as:

(14)

The depth of the interface below sea level can then be calculated as:

(15)

The depth from the sea level to the bottom of the aquifer is 30 (i.e.,
H_{b} = -30). Furthermore, the depth to the interface locations offshore
is represented by Z2 and to that of onshore is represented by Z1.
Therefore, Z1 + 30 will result the hydraulic heads of the interface all
along 0 to d, and Z2 + 30 will give the interface hydraulic heads all along
0 through – L. Remember that, the values for Z1 and Z2 are based on X1
and X2 (from equations 13 and 15), respectively. Therefore, Z1 and Z2
will represent a list of 100 numbers each. This implies that we have 100
points onshore and 100 points offshore to plot.

**Numerical modeling:** In addition to their use as planning tools
for improving water supply and management, numerical models of
groundwater systems are also useful for understanding groundwater
flow processes. In terms of the use of modeling packages, groundwater
flow systems can be divided into two, i.e., **groundwater flow** processes
with constant density and the one with variable density. Simulating the
groundwater systems in coastal aquifers which include saltwater and
freshwater requires the use of a numerical modeling code that solves
the variable-density flow equation (examples and perhaps widely used
packages are **SEAWAT** and SUTRA).

SEAWAT is a generic MODFLOW/MT3DMS based computer program designed to simulate three-dimensional variable-density groundwater flow coupled with multi-species solute and heat transport. While, SUTRA is a general-purpose, density-dependent, fluid flow and mass-transport numerical model that applies a finite element and integrated finite-difference hybrid method, which is mainly used to model both the coastal surficial and confined aquifers [17]. In this case, the model used to investigate the impact of SGD on the position of saltwater-freshwater interface is the three dimensional SEAWAT model. SEAWAT has been used widely for groundwater studies including saltwater intrusion in coastal aquifers.

The type of aquifer considered in this paper is a confined coastal
aquifer which is hydrogeologically connected with the seawater.
Similar to what was done in the analytic modeling section, numerical
modeling was conducted based on the Strack [6] and Bakker [16] **analytic solution**s for the interface problems. The other consideration,
in this simulation was that the confining unit offshore (the sea floor) is
assumed to be a leaky confining unit. The common parameters used in
both simulation cases are listed in **Table 1**.

**Case 1- Modeling with no distance offshore: **To obtain a steady
state solution, the simulation run was divided into 10 stress periods,
which in turn are divided into 10,000 time steps and 70,000 days of
period length each, which corresponds to a total simulation period
of 700,000 days. Modeling was conducted for case-1 by constructing
a three dimensional SEAWAT model with an inland distance of 2600
meters, based on the Strack [6] analytic solution.

The SEAWAT model was used to simulate variable density
groundwater flow in a three-dimensional cross section with 1 row, 130
columns, and 20 layers. The size of each model cell was set to 20 m
horizontal by 1 m vertical. The top and bottom sides of the model were
set to no-flow boundaries. The left side boundary is occupied by the
seawater column with a constant head of 30 m and constant density
of 35 kg/m^{3}; while, the right side boundary was set to a constant flux
freshwater with an inflow rate of 1 m^{3} and density of 0 kg/m^{3}.

The model was initially run for 50,000days in a steady state
simulation flow type. Then, the initial and prescribed head was taken
from the steady state simulation as an input for the transient simulation
flow type. Therefore, the initial and prescribed head used in this
simulation was 30m. The initial concentrations were based on seawater
concentrations, 35 kg/m^{3} for columns 2 to 129 in all layers; while,
column 1 (seawater column) was fixed to a concentration of 35 kg/m^{3}.
The concentration for column 130 (freshwater column) was also set to
0. A uniform and isotropic value for hydraulic conductivity was set to
260 m/d, the porosity was set to 0.35, and the values for longitudinal
and transverse dispersivities were set to 0.1m each. The specific storage
was also set to 0.0001.

The SIP package of MODFLOW and the GCG package with the
finite-difference option of MT3DMS/SEAWAT were used to solve
systems of the flow and transport equations, respectively. The SIP solver
was used with a head convergence criterion of 1 x 10^{-4} m to solve the
flow equation. Furthermore, the GCG solver was used with a courant
number (number of cells or fraction of a cell that a parcel of water
can advect during one time-step) of 0.75 to solve the solute-transport
equation.

**Case 2- Modeling with distance offshore:** Modeling was conducted
for case-2 by constructing a three dimensional SEAWAT model with an
inland and offshore distances of 2600m and 400m, respectively, based
on the Bakker [16] analytic solution.

The same dimensions, initial conditions, solver packages and aquifer
properties to that of used in case-1 were used in case-2. However, the
boundary conditions were different between the two cases. The left,
bottom, and from column 21 to 149 of the top layer were set to no flow
boundaries. The right hand side (column 150) was set to constant flux
with a constant inflow rate of 1 m^{3} and density of 0 kg/m^{3}. From column
1 to 20 of the top boundary, a general head boundary was applied with
an external head of 10 m, conductance of 2 m^{2}/d and density of 35 kg/
m3. This indicates that the model takes the SGD into consideration over
the offshore distance specified above.

In this case, the impact of the seawater is through the general head boundary (the seafloor leakage). The vertical seawater column simulated in case-1 is now neglected. However, when considering a long model extent offshore, up to the end of the continental shelf, the vertical constant head and density seawater column should be taken into account. The only reason for neglecting the vertical seawater column and simulating only the impact of the seawater through the leaky confining unit (General head boundary) in our case is because of that the offshore model extent considered is very short (400 m). Otherwise, both the vertical constant head and density seawater column and the leakage through the seafloor (in a semi confined scenario) should be taken into account during actual simulations.

**Analytic solution**

**Case 1: **The Strack [6] analytic solution is based on the use of
the single potential which is defined throughout the multiple
zones of an aquifer. Refer to Strack [6] to look at the assumptions
based on which he developed his analytic solution.

However, this conceptualization only works in coastal aquifers with no SGD. Furthermore, the solution neglects the mixing factor, for it is based on the sharp interface approximation. Nevertheless, Strack’s solution has been widely used in the area of coastal groundwater flow modeling.

Therefore, taking the above assumptions into consideration and
using the common parameter values listed in **table 1**, and equations 1
and 2, a python script of this conceptualization was developed, which
has yielded the graph shown in **Figure 2**. In this case, the graph is
showing that there is no offshore out flow zone included in the Strack’s
solution. The tip of the interface is located exactly at the shoreline;
while, the toe was found at a distance of 1300m inland.

**Case 2:** As indicated in the methodology part above, a python script
was developed based on the Bakker [16] analytic solution. Common
parameter values were also used with the Strack [6] analytic solution for
comparison purposes. Similar to case-1, the interface heads vs. distance
graph was plotted using the python package (**Figure 3**).

Bakker’s analytic solution was developed for steady interface flow in
aquifers consisting of confined and semi-confined sections. According
to Bakker [16], the integrated discharge from all layers is constant in
the confined section and is directed towards the semi-confined section,
which is bounded on top by a leaky seafloor. The land driven fresh
groundwater flows up through the leaky confining unit (seafloor).
This discharge is, therefore, totally based on the freshwater-saltwater
head differences, hydraulic properties of the aquifer materials and
the leakage factor of the seafloor. Using the common values (**Table 1**),
the toe of the interface in this case was found at an inland distance of
1222.97 m; while, the tip was found at an offshore distance of 308.11 m.

**Plotting the two cases on one graph: **The main difference between
the two well known analytic solutions for the interface problems, Strack
[6] and Bakker [16], is the distance offshore. Bakker [16] has taken the
distance offshore into consideration to include the influence of SGD
on the seawater-freshwater interface position; while, Strack [6] has not.
This difference has created a difference on the position and shape of the
interfaces developed using the two solutions.

As shown in **Figure 4**, the toe of the interface was found at a distance
of 1222.97 m from the coastline using the Bakker [16] analytic solution,
while it was found at a distance of 1300m using the Strack [6] analytic
solution. In this case, the SGD has created (1300 m-1222.97 m), 77.03
m, gap in the location of the toe of the interface. In other words, the
Strack [6] analytic solution has overestimated the location of the toe of
the interface, for it doesn’t consider the model extent offshore.

It is highly unlikely to find the saltwater column vertically fixed at the shoreline. Even though it varies from place to place, the continental shelves can perhaps be extended to hundreds and/or thousands of kilometers offshore. There are plenty of scientific evidences for the availability of SGD [2-4,19-23]. Therefore, it is important to consider the model extent offshore for accurate simulations of the position of saltwater-freshwater interface.

As shown in **Figure 4**, the length of the outflow zone was found
to be 308.11 m, using the Bakker [16] analytic solution; while, there is
no outflow zone considered in the Strack [6] analytic solution. In fact,
the gap between the simulated interface locations using the Bakker and
Strack analytic solutions is getting wider from the toe to the tip. And
this is because of the leakage factor included in the Bakker [16] analytic
solution. The Bakker [16] analytic solution assumes two sections
within the aquifer system, the confined and semi-confined conditions.
Therefore, the appearance of the interface can possibly vary based on
the values used for the leakage factor.

Thus, according to the simulation results, errors can be caused by ignoring the SGD during simulations. The extent of errors in confined aquifers may be greater than that of unconfined aquifers, for the flow systems in equilibrium in confined aquifers may discharge hundreds of meters or even kilometers offshore depending on the hydraulic gradient and the geology of the formation [24]. However, regardless of whether conditions are confined or unconfined, error occurs in Strack’s solution because it ignores the SGD.

**Numerical modeling**

**Case 1:** This conceptualization was based on the Strack [6] analytic
solution for the interface problems. In this case, the concentration
contour line at the 50% of the maximum concentration was chosen to
represent the interface location. Accordingly, the tip of the seawaterfreshwater
interface was found at the shoreline; while, the toe was found
at an inland distance of 880m (**Figure 5**). The distance to the toe location found in this case is shorter than the distance found in case-1 of the
analytic solution section. Both the analytic and numerical solutions
of this case (case-1) were applied for the same conceptualization.
However, the analytic solution has overestimated the interface location,
for it ignores the mixing factor. As it is shown in **Figure 6**, the saline
water (dark brown color) is overlaid by the mixing zone which in turn is
overlaid by the land driven fresh groundwater discharge. However, this
structure is missed on the analytic solution.

**Case 2:** This conceptualization was based on the Bakker [16]
analytic solution for the interface problems. Similar to case-1 above, the
concentration contour line at the 50% of the maximum concentration
was chosen to represent the interface location. Accordingly, the tip of
the seawater-freshwater interface was found at an offshore distance of
300m; while, the toe was found at an inland distance of 700m (**Figures
7** and **8**). Similar to case-1, the distance to the toe location found in this
case is shorter than the distance found in case-2 of the analytic solution
section.

**Comparison between case-1 and case-2 results of the numerical
modeling:** Similar to the analytic solution, the numerically simulated
results for case-1 and case-2 are also different. Furthermore, the
locations and shapes of the interfaces in these two cases are different.
The main reason for this situation is, therefore, the SGD incorporated
in case-2. Therefore, ignoring the influence of SGD on the interface
position when modeling coastal groundwater systems, especially those
with confined and semi-confined sections, overestimates the interface
location.

**Comparison between analytic and numerical modeling results:** Analytic solutions for the position of the saltwater-freshwater interface
are based on the sharp interface approximations. The advantages of
analytic solutions are that they are considerably less computationally
intensive and require less data [11]. However, sharp interface
approximations can only be used in areas where the mixing zone can
be ignored; while, in reality, mixing between freshwater and saltwater
occurs in all coastal aquifers as a result of dispersion, changes in head,
changes in hydraulic conductivity and tides [25]. In fact, the extent of
mixing varies from a few tens of centimeters in tight clays or sandstone
to several tens of meters in karstic limestone [26]. But mixing is always
there, regardless of its extents. Therefore, analytic solutions obviously
overestimate the extent of saltwater penetration further inland.

In reality, freshwater overlies the mixing zone which in turn overlies saline water. It is not, therefore, possible to provide stable and accurate results using analytical solutions, unless a correction factor is incorporated to include the influence of mixing. However, the complex density-dependent groundwater flow and solute transport models provide stable and convincing results when employed with proper spatial and temporal discretisations.

In this case, simulation results for the interface heads from the two
analytic solutions were corrected by the empirically derived dispersion
factor developed by Pool and Carrera [12] to include the
influence of mixing on the interface location, where α_{T} is transverse
dispersivity and b is aquifer thickness. While, simulation results for
the saltwater-freshwater interface position from the density-dependent
Solute Transport Numerical Model (SEAWAT), which includes
advection and dispersion, are believed to be accurate.

The transverse dispersivity used in both of the two cases of the numerical modeling section was 0.1. Therefore, the correction factor (f) can be calculated as follows:

As shown in **Figures 9** and **10**, the analytic solution results for both case-1 and case-2 were corrected by the correction factor (f). Finally,
the corrected analytic solutions became very close to the numerically
simulated values. Initially, the location of the toe for case-1 was found
at an inland distance of 1300 m; while, it was found at a distance of 880
m from the numerical modeling. However, after correcting the analytic
solution result, the toe was found at an inland distance of 762.43 m
(**Figure 9**), which is very close to the numerically simulated value than
the initial one.

Similarly, the analytically calculated toe location for case-2 was
also corrected by the empirically derived dispersion factor (0.5865).
Initially, the location of the toe for case-2, was found at an inland
distance of 1222.97 m; while, it was found at a distance of 700 m from
the numerical modeling. However, after correcting the analytic solution
result, the toe was found at an inland distance of 717.25 m (**Figure 10**),
which is also very close to the numerically simulated value than the
initial one.

In conclusion, two inferences can be derived from this work. Firstly, SGD has an impact on the seawater-freshwater interface position. Hence, model extents offshore should be taken into account whenmodeling groundwater flow in coastal aquifer systems to incorporate the influence of SGD on the interface position. In this case, simulation results based on the Strack [6] analytic solution for the interface problems have overestimated the interface location, compared to the results based on Bakker [16] analytic solution. The reason for this situation is that the Strack [6] solution neglects model extents offshore. Thus, it needs to be modified to incorporate the influence of SGD on the interface position.

Secondly, analytic solutions overestimate the location of the seawater-freshwater interface, for they are based on the sharp interface approximations. Therefore, results from analytic solutions need to be corrected by the empirically derived dispersion factor (f) to include the mixing factor in the solution so as to compare results from numerical modelling with those from the analytical solutions.

- Morgan LK, Werner AD, Morris MJ, Teubner MD (2013) Application of a rapid assessment method of SWI: Willunga Basin, South Australia. In: Wetzelhuetter C (ed.) Groundwater in the Coastal Zones of Asia – Pacific. Coastal Research Library. Springer: 205-225.
- Post VEA,Groen J, Kooi H, Person M, Ge S, et al. (2013)Offshorefreshwater reserves as a global phenomenon. Nature review: 504.
- Moore WS (2009) Submarine Groundwater Discharge.University of South Carolina, Columbia, SC, USA.
- Church TM (1996)Anunderground route for the water cycle. Nature 380: 579-580.
- Beebe C, Ferguson G, Kennedy G (2011) Analytical modelling of saltwater intrusion: tests from Nova Scotia and the eastern United States, geohydro, Nova Scotia, Canada.
- Strack ODL (1976) A single-potential solution for regional interface problems incoastal aquifers. Water Resour Res 12: 1165-1174.
- Aharmouch A, Larabi A (2001) Numerical modeling of saltwater interface upconing in coastal aquifers, First international conference on saltwater intrusion and coastal aquifers–monitoring, modeling, and management, Essaouira, Morocco.
- Wriedt G, Bouraoui F (2009)Large scale screening of seawater intrusion risk in Europe, Methodological development and pilot application along the Spanish Mediterranean coast, European Commission, Joint Research Centre, Institute for Environment and Sustainability.
- Mazi A (2014) Seawater intrusion risks and controls for safe use of coastal groundwater under multiple change pressures, Doctoral thesis, Department of Physical Geography and Quaternary Geology, Stockholm University, Sweden.
- Naderi M, Kermani M, Barani G (2013) Possibility of groundwater operation in coastal aquifers for prevention of seawater intrusion. BEPLS2: 11.
- Werner AD, Ward JD, Morgan LK, Simmons CT, Robinson NI, Teubner MD (2012) Vulnerability indicators of seawater intrusion. Ground Water 50: 48-58.
- Pool M, Carrera J (2011)A correction factor to account for mixing in Ghyben-Herzberg and critical pumping rate approximations of seawater intrusion in coastal aquifers. Water Resour Res: 47.
- HuyakornPS, Wu YS, Park NS (1996) Multiphase approach to the numerical solution of a sharp interface saltwater intrusion problem. Water Resour Res 32: 93-102.
- Motz LH (1992) Saltwaterupconing in an aquifer overlain by a leaky confining bed. J Ground water 30: 192-198.
- Bower JW, Motz LH, Durden DW (1999) Analytical solution for determining the critical condition of saltwater upconing in a leaky artesian aquifer. J Hydrol 221: 43-54.
- Bakker M (2006) Analytic solutions for interface flow in combined confined andsemi-confined.Coastal aquifers. Elsevier Adv Water Resour 29: 417-425.
- Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, et al. (2013) Seawater intrusion processes, investigation and management: Recent advances and future challenges. Elsevier Advances in Water Resources 51: 3-26.
- Sherif M, Singh V (1999) Effect of climate change on seawater intrusion in coastal aquifers.Hydrol Process 13: 1277-1287.
- Johannes RE (1980)Theecological significance of the submarine discharge of groundwater. Mar EcolProgSer 3: 365-373.
- Fanning KA, Byrne RH, Breland JA, Betzer PR, Moore WS, et al.(1981) Geothermal springs of the west Florida continental shelf, Evidence for dolomitization and radionuclide enrichment. Earth Planet SciLett, 52: 345-354.
- Moore WS (1996)Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380: 612-614.
- Li L, Barry DA, Stagnitti F, Parlange JU (1999) Submarine groundwater discharge and associated chemical input into a coastal sea. Water Resour Res 35: 3253-3259.
- Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, et al. (2006) Quantifying submarine groundwater dischargein the coastal zone via multiple methods. Science of the Total Environment 367: 498-543.
- Kooi H, Groen J (2001)Offshore continuation of coastal groundwater systems; predictions using sharp-interface approximations and variable-density flow modeling. J Hydrol 246: 19-35.
- Shalev E, Lazar A, Wollman S, Kington S, Yechieli Y, et al. (2008) Biased monitoring of fresh water-saltwater mixing zone in coastal aquifers.Ground Water 47: 49-56.
- Dausman A, Langevin CD (2005)Movement of the saltwater interface in the surficial aquifer system in response to hydrologic stresses and water-management practices, Broward County, Florida,U.S. Geological Survey, Scientific Report: 1-69.

Select your language of interest to view the total content in your interested language

- Atmosphere
- Atmospheric Chemistry
- Atmospheric inversions
- Beach Evolution
- Beach Nourishment
- Beach Placers
- Biosphere
- Chemical Oceanography
- Coastal Anthropogenic Pressure
- Coastal Aquifer
- Coastal Bar/ Coastal Spit
- Coastal Deposition
- Coastal Development
- Coastal Dunes
- Coastal Engineering
- Coastal Erosion
- Coastal Geomorphology
- Coastal Irrigation
- Coastal Lagoon
- Coastal Mining
- Coastal Plain
- Coastal Ports
- Coastal Region/ Coastal Area
- Coastal Upwelling
- Coastal Waters
- Coastal Wetlands
- Crystallography
- Disaster Science
- Dynamical Oceanography
- Earth Science
- Ecology
- Environmental Oceanography
- Experimental Oceanography
- Fisheries Oceanography
- Fishery
- Gemology
- Geochemistry
- Geochronology
- Geomicrobiology
- Geomorphology
- Geosciences
- Geostatistics
- Glaciology
- Hydrologic
- Integrated Coastal Zone Management
- Limnology and Oceanography
- Marine Biotechnology
- Marine Chemistry
- Marine Ecosystem
- Marine Isotope Stage
- Marine Sediment
- Marine Spatial Planning
- Marine and Coastal Biodiversity
- Marine-Engineering
- Meridional Overturning Circulation
- Microbial Oceanography
- Mineralogy
- Oceanography and Marine Biology
- Operational Oceanography
- Physical Oceanography
- Sea Surface Salinity
- Shallow Water Equation
- Stratified Flow

- 7th International Conference on
**Biodiversity**Conservation and Ecosystem Management

July 26-27, 2018 Melbourne, Australia - 2nd International Conference on Natural
**Hazards**and Disaster Management

July 26-27, 2018 Melbourne, Australia - 4th World Congress on
**Climate**Change and Global Warming

August 06-07, 2018 Osaka, Japan

- Total views:
**8905** - [From(publication date):

February-2016 - Jul 21, 2018] - Breakdown by view type
- HTML page views :
**8613** - PDF downloads :
**292**

Peer Reviewed Journals

International Conferences 2018-19