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Introduction
Randomized clinical trials are the gold standard for comparing a 

new therapy to a standard treatment. However, when randomization 
is not feasible because of ethical concerns, patient preference, or 
regulatory acceptability, comparing data from patients receiving a new 
therapy to those from patients previously treated by standard treatment 
(historical control) is an alternative. If patients enrolled in the current 
trial are similar to those in the historical study, clinical trials with a 
historical control improve the reliability of testing results of single-arm 
phase II trials by including the variation of the null parameter, which 
is usually estimated from historical data. Compared with randomized 
phase III trials, clinical trials with a historical control require a much 
smaller sample size, and are therefore easier to conduct and save time 
and patient resources [1].

Despite the practical and statistical issues associated with historical 
control trials [2-6], they have been appropriately used in many clinical 
practices. Sample size calculations to design such trials have been 
discussed by Makuch and Simon [7] for binary endpoints and by Dixon 
and Simon [8] and Emrich [9] for exponential survival endpoints. These 
methods have been widely used in oncology trial designs. However, 
Korn and Freidlin [10] reported that these popular methods do not 
preserve the power and type I error when considering the uncertainty 
in the historical control outcome data. Recently, several studies have 
discussed sample size calculations for historical control trials by taking 
into account the uncertainty in historical control outcome data [11-
13].

Clinical trials with historical controls are often monitored by pre-
planned interim analyses to stop accrual if patients in the current 
trial have poorer outcomes than those in the historical control. The 
monitoring of clinical trials with historical controls poses a statistical 
problem of comparing two outcomes in a situation wherein data from 
the current study are sequentially collected and compared with all data 
from historical controls at each interim analysis. Few studies have 
discussed the monitoring of clinical trials against historical controls. 
For example, Chang et al. [11] proposed a two-stage design for binary 
outcome and Xiong et al. [12] developed a multistage group sequential 
procedure for monitoring historical control trials with binary, 
continuous, and survival endpoints.

In this study, we propose a multistage group sequential procedure 
to de-sign survival trials against historical controls under the Weibull 

model. In Section 2, two sequential parametric tests are proposed 
for the trial design under the Weibull model. In Section 3, formulas 
for the number of events required for the current study are derived. 
In Section 4, a multistage group sequential procedure based on the 
sequential conditional probability ratio test (SCPRT) by Xiong [1] is 
proposed. In Section 5, simulation studies to calculate the empirical 
power and type I error of the proposed tests are described. In Section 6, 
an example is given to illustrate the proposed methods. The discussion 
and concluding remarks are given in Section 7.

Sequential Test Statistics
Two parametric sequential test statistics are discussed in this 

section to provide group sequential design of survival trials against 
historical controls under the Weibull model. Assume that the failure 
time variable Tj of a subject from the jth group follows the Weibull 
distribution with a common shape parameter κ and a scale parameter 
ρj, where j=1 for the historical control group and j=2 for the current 
study group. That is, Tj has survival distribution function

( )( ) jt
jS t e

κρ−=

and hazard function
1( ) .j jh t tκ κκρ −=

The shape parameter κ indicates the degree of acceleration (κ>1), 
constant (κ=1), or deceleration (κ<1) of the hazard over time. In a 
cancer trial, the median survival time is an intuitive endpoint for 
clinicians. The median survival time of the jth group for the Weibull 
distribution can be calculated as { }1/1 (2) .j jm log κρ −=  Therefore, the 
Weibull survival distribution can be expressed as

(2)

( ) , 1,2.j

tlog
m

jS t e j

κ
 
 −  
 = =

The one-sided hypotheses of a historical control trial defined by 
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median survival times can be expressed as a two-sample test of the 
following:

0 2 1 1 2 1: . : .H m m vs H m m≤ ≤

For notational convenience, we convert the scale parameter ρj to a 
hazard parameter (2) / .j j jlog mκ κλ ρ= =  Then the survival distribution 
is ( ) jt

jS t e
κλ−= with hazard function 1( ) ,j jh t tκκλ −=  in which κ is taken 

as a known constant. In this case, the above hypotheses on median 
survival times are equivalent to

* *
0 1: 1 . : 1,H vs Hδ δ≤ >

where the hazards ratio 1 2 2 1/ ( / ) .m m κδ λ λ= =

Now, suppose there are n1 subjects on the historical control group 
and let Ti1 and Ci1 denote, respectively, the failure time and censoring 
time of the ith subject of the historical control group. Further assume 
that during the accrual phase of the current trial, n2 subjects are enrolled 
in the study, and let Ti2 and Ci2 denote, respectively, the failure time and 
censoring time of the ith subject of the current study group, with both 
being measured from the time of study entry Yi2. We assume that the 
failure time Tij is independent of the censoring time Cij and entry time Yi2, 
and {(Tij,Cij,Yi2); i=1,···, nj} are independent and identically distributed. 
When the current study data are examined at calendar time t ≤ τ, where 
τ is the study duration, we observe the time to failure 1 1 1i i iX T CΛ=
and the failure indicator 1 1 1 1),( 1, ,i i i iT C nI ≤ = ⋅⋅⋅∆ = for the historical 
control, and the time to failure 2 22 2(( ) ) ( )i i i iX T C Yt t +Λ Λ −=  and the 
failure indicator 2 22 22( ) ( ) ), 1, ,( +≤ Λ= − = ⋅⋅⋅∆i i i it t iT C Y nI for current 
study group up to time t. We assume that survival data remain the same 
(no further follow-up) for the historical control during the process of 
the current trial, whereas survival data are updated for the current study 
from one look to the next in the trial. On the basis of the observed data 
{ }1 1 2 2, , ( ), ( )i i i iX X t t∆ ∆ at interim look time t, the observed likelihood 
function is proportional to ([14], Chapter 3)

1 2 1 1 2 2( ) ( )
1 2 1 2( , ; ) ,d d t U U tL t e λ λλ λ λ λ − −=

where 1

1 11

n
ii

d κ
=

= ∆∑  is the total number of events of the historical 

control; 1

1 11

n
ii

U X κ
=

= ∑ is the cumulative follow-up time of 

historical controls penalized by the Weibull shape parameter κ; 
2

2 21
( ) ( )n

ii
d t t

=
= ∆∑ is the total number of events observed in the 

current group by time t; and 2

2 21
( ) ( ).n

ii
U t X tκ

=
= ∑  The maximum 

likelihood estimates of λ1 and λ2 can be derived as

1 1 1 2 2 2
ˆ ˆ/ and ( ) / ( )d U d t U tλ λ= =

with variances 2 2
1 1 2 2
ˆ ˆ/ and ( ) / ( ),d t d tλ λ  respectively. Therefore, under 

the null hypothesis, the Wald statistic of the log-hazard ratio log(δ) at 
calendar time t is given by

1 1 1/2
1 2 2 1 1 2( ) { ( ) / ( ) }( ( )) ,Z t log d U t d t U d d t− − −= +                               (1)

which has approximately a standard normal distribution. To derive the 
group sequential design, let

1 1 1
1 2 2 1 1 2( ) { ( ) / ( ) }( ( )) ;U t log d U t d t U d d t− − −= +                                  (2)

then under the alternative of δ=λ1/λ2>1, the statistic 
1 1 1/2

1 2( ) ( ) / ( ( ))U t Z t d d t− −= + is approximately normal with mean log(δ)V(t) 
and variance V(t) and has an independent increment structure, where 

1 1 1
1 2( ) ( ( )) .V t d d t− − −= +  The above results can be derived from Tsiatis et 

al. [15], who reported similar results for general parametric survival 
models. Because

1 1 1
1 2( ) ~ ( ) ( ( )) ,V t D t D D t− − −= + 			                    (3)

where D1 is the total number of events in the historical control and

2 2 2 2 12( ) ( ) ( ( ) 1)D t n p t n P t= = ∆ =  is the number of events in the current 
study up to time t. Thus, 1/2 * *

* ( ) / ( ) ~ ( , )tB U t D N t tτ θ=  is approximately 
a Brownian motion with drift parameter 1/2( ) ( )log Dθ δ τ= and 
information time * ( ) / ( ),t D t D τ=  where D(τ) is the value of D(t) at t=τ.

Sprott [16] showed that the distribution of 1/3
1 1
ˆ ˆφ λ= and 

1/3
2 2
ˆ ˆ( ) ( )t tφ λ= in small samples is much more closely approximated by a 

normal distribution. Then 1/3
1 1
ˆ ˆφ λ= and 1/3

2 2
ˆ ˆ( ) ( )t tφ λ= are approximately 

normal with mean 1/3, 1,2j j jφ λ= =  and variance estimate 2
1 1
ˆ / (9 )dφ

and 2
2 2
ˆ ( ) / (9 ( ))t d tφ  [17]. Therefore, the test statistic

1 2
2 2 1/2

1 1 2 2

ˆ ˆ ( )( ) ,ˆ ˆ{ / (9 ) / (9 ( ))}
tS t

d d t
φ φ

φ φ
−

=
+

is an approximately standard normal distribution under the null 
hypothesis.

Let

1 2
2 2

2 1 2 1 2

ˆ ˆ3( ( ))( ) ,ˆ ˆ ˆ( )(( / ( )) / 1 / ( ))
tU t

t t d d t
φ φ

φ φ φ
−

=
+

then under the alternative, the statistic 2 2 1 1 1/2
1 2 1 2
ˆ ˆ( ) ( ) / (( / ( )) ( ))U t S t t d d tφ φ − −= +

is approximately normal with mean 1/33( 1) ( )V tδ − and variance V(t), 
where 2 2 1 1 1

1 2 1 2
ˆ ˆ( ) (( / ( )) ( )) ,V t t d d tφ φ − − −= +  and U(t) has an independent 

increment structure. Because 

2/3 1 1 1
1 2( ) ( ) ( ( )) ,V t D t D D tδ − − −= +                                                       (4)

1/2 * *
* ( ) / ( ) ~ ( , )tB U t D N t tτ θ=  is approximately a Brownian motion 

with drift parameter 1/3 1/23( 1) ( )Dθ δ τ= − and information time 
* ( ) / ( ).t D t D τ=

Sample Size for Fixed Sample Test
Because historical control data are obtained from previous trials, 

sample size n1 and total number of events D1 for the historical control 
group are known. Therefore, we only need to calculate the sample size 
for the current study for a fixed sample test at the end of the study. On 
the basis of the test statistic Z(t) at t=τ , under the null hypothesis,

1 1 1/2
1 2 2 1 1 2( ) { ( ) / ( ) }( ( ))Z log d U d U d dτ τ τ τ− − −= +

has an approximately standard normal distribution. To calculate the 
power under the alternative δ=λ1/ λ2(> 1), Z(τ) is an approximately 
normal distribution with mean log(δ)D1/2(τ) and unit variance. 
Therefore, given a significance level α, the power (1−β) of the Z(τ) test 
under the alternative is given by

1 1 1/2
1 2 11 { ( )( ( )) },log D D z αβ δ τ− − −

−− Φ + −

where ( )Φ ⋅  is the standard normal distribution function and 
1

1 (1 ).z α α−
− = Φ −  Thus, the number of events required for the current 

study based on the Z(τ) test can be calculated by
1

2
1

2 12
1 1

[ ( )]( ) ,
( )

logD D
z zα β

δτ
−

−

− −

  = − +  
 			                 (5)

where δ=(m2/m1)
κ and D1 is the total number of events observed in 
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where I = D2(t)/ D2(τ) is the information time for the current study and 
R=D2(τ)/D1 is the ratio of the number of events of the current study to 
the historical control for the Z(t) test, and 2/3

2 1( ) /R D Dδ τ= for S(t) 
test. This is called the transformed information time [12]. Because D1 
is known from historical control data, thus, under the Weibull model, 
the information time t* can be obtained by calculating D2(t)=n2p2(t), 
which is the expected number of events in the current study up to time 
t, where p2(t)=P(Δ12(t)=1) can be calculated as

2 20

1( ) {1 ( )} ,at t

a

p t S t u du
t

Λ
= − −∫   			              (11)

where 2
(2)

2 ( ) .
ulog

mS t e

κ
 

−   
 =  When t=τ, equation (11) is identical to 

equation (7).

For a maximum information trial where the trial continues until a 
pre- specified number of events D2(τ) observed for the current study, 
the information time at the kth look planned at number of events D2k 
for the current study can be calculated by * (1 ) / (1 ),k k kt R I DI= + +

where Ik=D2k/D2(τ), R=D2(τ)/D1 and 2/3
2 1( ) /R D Dδ τ=  for Z(t) and 

S(t), respectively.

Group Sequential Procedure
In this section, we will apply an SCPRT procedure [1] to the 

test statistics Z(t) and S(t). The SCPRT has two unique features: (1) 
the maximum sample size of the sequential test is not greater than 
the size of the reference fixed sample test; and (2) the probability of 
discordance, or the probability that the conclusion of the sequential 
test would be reversed if the experiment were not stopped according to 
the stopping rule but continued to the planned end, can be controlled 
to an arbitrarily small level [12]. Furthermore, the power function of 
the SCPRT is virtually the same as that of the fixed sample test [1]. The 
SCPRT boundaries derived in our study have analytical solutions. All 
these features make the SCPRT attractive and simple to use.

Now we apply the SCPRT to the test statistic 

*
1/2 * *( ) / ( ) ~ ( , ),

t
B U t D N t tτ θ=  which is a Brownian motion in information 
time * ( ) / ( )t D t D τ= on [0, 1], and drift parameter 1/2( ) ( )log Dθ δ τ=

for Z(t) and 1/3 1/23( 1) ( )Dθ δ τ= − . Therefore, the conditional density 
* 1( | )

t
f B B is the normal density of * * *

1( , (1 ) ).N B t t t−  Let 0 1s z α−=  be 
the critical value of B1 to reject the null for the fixed sample test. Then 
the conditional maximum likelihood ratio for the stochastic process on 
information time t* (see, [1,19]) is

*0
*

*0

{ } 1*
1

{ } 1

max ( | )
( , || ) .

max ( | )
s s t

t
s s t

f B B s
L t B z

f B B sα
>

−
≤

=
=

=

Taking the logarithm, the log-likelihood ratio can be simplified as
*

*

* 2
1*

1 * *

( )
( ( , || )) ,

2(1 )
t

t

B z t
log L t B z

t t
α

α
−

−

−
= ±

−
which has a positive sign if *

*
1t

B z tα−> and a negative sign if 
*

*
1 .

t
B z tα−< Suppose kth interim looks are planned at calendar time tk, 
k=1,...,K. Then on the basis of the SCPRT procedure presented above, 
the lower and upper boundaries for *

kt
B at the kth look are given by

( ){ } ( ){ }1/2 1/2
* * * * * *

1 12 1 ; 2 1 ,k k k k k k k ka z t at t b z t at tα α− −= − − = + −  (12)

for k=1,...,K, where * ( ) / ( )k kt D t D τ− is the information time at the kth 
look at calendar time tk. The a in (12) is the boundary coefficient, and 
it is crucial to choose an appropriate a for the design such that the 

historical control data. Therefore, the sample size for the current group 
is given by

2 2 2( ) / ( ),n D pτ τ=

where p2(τ) is the probability of a subject from the current group having 
an event during the study. Similarly, the number of events required for 
the current study based on the S(τ) test can be calculated by

1
1/3 2

2/3 1
2 12

1 1

[9( 1)]( ) ,
( )

D D
z zα β

δτ δ
−

−

− −

 − = − +  
 		                (6)

and the sample size is given by 2 2 2( ) / ( ).n D pτ τ=

To calculate the number of subjects required for the study, we 
need to calculate p2(τ), the probability of a subject in the current group 
having an event during the study. Typically, we assume that subjects are 
accrued over an accrual period of length ta with an additional follow-
up period of length tf. A subject enters the study at time u, the entry 
time is uniformly distributed on [0,ta], and no subject is lost to follow-
up during the study. Then the probability of a subject having an event 
during the study under the Weibull model can be calculated by [18]

2
(2)

2
1( ) 1 .a f

f

ulogt t m

t
a

p e du
t

κ

τ
 

−  +  
 = − ∫  			                 (7)

Therefore, given the design parameters δ (or κ), m1,m2, α, β, tf and 
ta, the number of subjects n2 required for the current study can be 
calculated by 

2 2 2( ) / ( )n D pτ τ= and using the formula in equation (5) 
or (6).

In designing an actual trial, given the accrual time ta, calculating the 
sample size is often impractical because it may be not possible to enroll 
the total number of subjects as planned in the given accrual duration. It 
is more practical to design the study starting with the accrual rate r and 
then calculate the required accrual time ta. This can be accomplished 
under the Weibull model assumption. First, the integration in the 
probability formula (7) can be simplified by approximation, using the 
Simpson rule

{ }2 2 2 2
1( ) 1 ( ) 4 (0.5 ) ( ) .
6 f a f a fp S t S t t S t tτ = − + + + +                       (8)

Then, combining the sample size formula based on equations (5) 
or (6) with equation (8), we can define a root function of the accrual 
time ta

1
2

1
1 22

1 1

[ ( )]root( ) = / ( ).
( )a a a f

logt rt D p t t
z zα β

δ
−

−

− −

  − − + +  
                          (9)

Now the accrual time ta can be obtained by solving the root 
equation root(ta)=0 numerically in Splus using the uniroot function. 
The total sample size required for the current study is approximately 
n2=[rta]

+, where [x]+ denotes the smallest integer greater than x.

Once the number of events or sample size is calculated for 
the fixed sample test, we can calculate the information time at the 
planned calendar time t for the interim analysis by * ( ) / ( ).t D t D τ= For 
example, if we plan K interim analyses at calendar time tk, k=1,...,K, 
then the information time at calendar time tk can be calculated by 

* ( ) / ( ),k kt D t D τ= where D(t) is given by equations (3) and (4) for Z(t) 
and S(t), respectively. After some simplifications, the information time 
t* = D(t)/ D(τ) can be rewritten as

* (1 ) ,
1

R It
RI

+
=

+
 				                (10)
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probability of conclusion by the sequential test being reversed by the 
test at the planned end is small but not unnecessarily too small. The 
larger the a, the smaller is the discordance probability and the wider 
apart are the upper and lower boundaries, making it harder for the 
sample path to reach boundaries and stop early and resulting in larger 
expected sample sizes. Thus, an appropriate a can be determined by 
choosing an appropriate discordance probability [1,19]. The nominal 
critical p-values for testing H0 are

* *1 ( / ); 1 ( / ).
k ka k k b k kP a t P b t= −Φ = −Φ  		                  (13)

The observed p-value at the kth look is

**

*1 ( / ).
ktk

B kt
P B t= −Φ

The stopping rule for monitoring the trial can be executed by 
stopping the trial when, for the first time, 

* ktk
B bP P≥  (accept H0 and stop 

for futility) or 
* ktk

B bP P≤  (reject H0 and stop for efficacy). Because Z(tk) 

or S(tk) has the same asymptotic distribution as the *
*/

k
kt

B t under the 

null hypothesis, the observed p-value at the kth stage can be calculated 
from the test statistic Z(tk) or S(tk) by applying all observations up to 
stage k.

Simulation Studies
In this section, we conducted simulation studies to compare the 

power and type I error of the proposed parametric test statistics Z(t) 
and S(t) under various scenarios. In the simulations, the survival 
distribution of the jth group was taken as (2)( / )( ) ,jlog t m

jS t e
κ−=  which is 

the Weibull distribution with shape parameter κ and median survival 
time mj, j=1,2, where j=1 and j=2 represent the historical control and 
current study, respectively. The shape parameter κ was taken as 0.5, 1, 
and 2.0 to reflect cases of decreasing, constant, and increasing hazard 
functions, respectively. We assume a median time-to-event m1=3.4657 
and a sample size n1=140 for the historical control. The null hypothesis 
was set to H0 : m1=m2, and the hazard ratio δ=(m2/m1)

κ under the 
alternative was taken as 1.5-2.0. Furthermore, we assumed that subjects 
of the current study were recruited with a uniform distribution over the 
accrual period ta=4 (years) and followed for tf=1 (years), and no subject 
was lost to follow-up during the study period τ=ta + tf=5. Therefore, a 
subject was censored at calendar time t if his/her event time was longer 
than t−u, where u is the time when the subject entered the current 
study.

In Table 1, the sample sizes required for the current study were 
calculated by equations (5) and (6) for test Z(t) and S(t), respectively. 
Furthermore, in each design parameter configuration, 100,000 
observed samples of censored event times were generated from the 
Weibull distribution to calculate the test statistics under the null or 
alternative hypothesis. The nominal significance level and power were 
set to 0.05 and 80%, respectively. Two simulation studies were done. 
The first simulation was done to study the empirical type I error and 
power for the fixed sample tests. The second simulation was done to 
study the empirical type I error and power for a two-stage SCPRT 
design at calendar times t1=3 and t2=5. The simulated empirical type 
I errors and powers in various scenarios for the fixed sample tests and 
two-stage SCPRT tests are summarized in Tables 1 and 2, respectively. 
The results of the fixed sample tests showed that the S(τ) test needs 
a slightly larger sample size for a small δ and smaller sample size for 
a large δ compared with the Z(τ) test. The simulated empirical type 
I errors and powers were close to the nominal levels for the S(τ) test, 
and the Z(τ) test was somewhat overpowered for a large δ. For the 
two-stage design S(t) had adequate empirical power and type I error 

whereas the Z(τ) test was conservative and under-powered for a large 
δ in the first stage. Overall, the test statistic S(t) performed better than 
Z(t) and is recommended for use in the trial design. By the way, to show 
if the sample size formula (5) and information time (10) developed for 
the Z(t) test also work for the non-parametric log-rank test L(t), the 
empirical type I errors and powers were simulated for the log-rank test 
too (Tables 1 and 2). The results showed that both sample size formula 
(5) and transformed information time (10) worked well for the log-
rank test. A rigorous derivation of these results for the log-rank test will 
be the future research.

An Example
Between January, 1974 and May, 1984, the Mayo Clinic conduct 

a double- blind randomized trial in primary biliary cirrhosis (PBC), 
comparing the drug D-penicillamine (DPCA) with a placebo (Fleming 
and Harrington, 1991). PBC is a rare but fatal chromic liver disease 
of unknown cause, with a prevalence of about 50-cases-per-millian 
population. The primary pathologic event appears to be the destruction 
of interlobular bile ducts, which may be mediated by immunologic 
mechanisms. A total of 65 had died among 158 patients treated with 
DPCA. The median survival time was 9 years. Suppose a new treatment 
is now available and investigators want to design a new trial using Mayo 
Clinic patients treated with DPCA as the historical control group. The 
survival distribution of DPCA data were estimated by Kaplan-Meier 
method and the Weibull model. The Weibull distribution fitted the 
survival distribution well with shape parameter κ=1.22 and scale 
parameter ρ=11.8−1. Thus to design the study, we can assume that 
the failure time of a patient on the current study follows the Weibull 
distribution with shape parameter κ=1.22 and median survival time m2. 
Let δ=(m2/m1)

κ be the hazard ratio, where m1 is the median survival time 
of the historical control. Our aim is to test the following hypotheses:

0 0: 1 : 1H vs Hδ δ≤ >

with significance level of α=0.05 and power of 1-β=90% to detect an 

Design δ=1.5 δ=1.6 δ=1.7
κ Test *n2  α 1 - β n2  α 1 - β n2  α 1 - β

0.5 Z(τ) 262 0.052 0.795 152 0.051 0.804 108 0.049 0.817
S(τ) 285 0.051 0.799 149 0.05 0.802 100 0.051 0.804
L(τ) 262 0.053 0.795 152 0.051 0.804 108 0.049 0.818

1 Z(τ) 305 0.053 0.793 170 0.05 0.807 118 0.049 0.813
S(τ) 344 0.052 0.799 168 0.05 0.802 111 0.052 0.806
L(τ) 305 0.053 0.793 170 0.05 0.807 118 0.049 0.813

2 Z(τ) 367 0.054 0.795 191 0.053 0.803 130 0.05 0.811
S(τ) 445 0.049 0.801 195 0.051 0.8 124 0.051 0.802
L(τ) 367 0.054 0.794 191 0.053 0.802 130 0.05 0.81

Design δ=1.8 δ=1.9 δ=2.0
κ Test n2  α 1 - β n2  α 1 - β n2  α 1 - β

0.5 Z(τ) 84 0.049 0.823 70 0.047 0.833 60 0.046 0.84
S(τ) 75 0.05 0.806 61 0.051 0.813 51 0.051 0.815
L(τ) 84 0.049 0.823 70 0.048 0.834 60 0.047 0.842

1 Z(τ) 92 0.048 0.823 75 0.046 0.828 65 0.046 0.838
S(τ) 82 0.051 0.807 66 0.05 0.812 55 0.051 0.814
L(τ) 92 0.049 0.823 75 0.047 0.828 65 0.047 0.839

2 Z(τ) 99 0.048 0.817 81 0.047 0.825 69 0.047 0.833
S(τ) 90 0.051 0.805 71 0.051 0.806 59 0.051 0.812
L(τ) 99 0.048 0.815 81 0.048 0.824 69 0.048 0.832

Table 1: Sample size and simulated empirical type I error (α) and power (1-β) 
based on 100,000 simulation runs for the Weibull distribution for fixed sample Z(τ) 
test, log-rank test L(τ) and S(τ) test with a nominal type I error of 0.05 and power 
80% (one-sided test).
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alternative δ=1.714, which is calculated from by increasing 5 years 
median survival times of the historical control (m1=9) to the current 

study (m2=14). Given type I error α=.05, power of 90%, number of 
deaths of the historical control D1=65, effect size δ=1.714, and the 
Weibull shape parameter κ=1.22, the number of events required for the 
current study for the Z(τ) test is calculated by

12
1

2 2

[log(1.714)]( ) 65 54
(1.645 1.282)

D τ
−

− 
= − = + 

The number of events required for the S(τ) test is calculated by
11/3 2

2/3 1
2 2

9 (1.714 1)( ) 1.714 65 53.67,
(1.645 1.282)

D τ
−

− × −
= − × = + 

which is 54 events too. Assume that the lengths of accrual and follow-
up for the current study are ta=5 and tf=3, respectively, and the study 
duration is τ=8. Then the probability of having an event during the 
study for a subject on the current study can be calculated by numerical 
integration

2
(2)

2
1( ) 1 0.1985,a f

f

ulogt t m

t
a

p e du
t

κ

τ
 

−  +  
 = =∫

Type 1 error Power
Design κ Test At kth interim look k=1 k=2 total k=1 k=2 total
δ=1.5 0.5 Z(t) Empirical 0.0067 0.0457 0.0524 0.3659 0.4293 0.7952

S(t) Empirical 0.0082 0.0435 0.0517 0.4104 0.3887 0.7992
L(t) Empirical 0.0066 0.046 0.0526 0.3545 0.4402 0.7947

Nominal 0.0068 0.0435 0.0503 0.3686 0.4311 0.7997
1 Z(t) Empirical 0.0052 0.0484 0.0535 0.2874 0.5062 0.7936

S(t) Empirical 0.0066 0.0454 0.0521 0.3397 0.4594 0.799
L(t) Empirical 0.0058 0.0483 0.0541 0.2674 0.5245 0.7918

Nominal 0.0055 0.045 0.0505 0.2912 0.5083 0.7995
2.0 Z(t) Empirical 0.0037 0.0503 0.054 0.185 0.6096 0.7946

S(t) Empirical 0.0054 0.0448 0.0502 0.2541 0.547 0.801
L(t) Empirical 0.0043 0.0498 0.0541 0.1655 0.6257 0.7912

Nominal 0.0045 0.0463 0.0508 0.1997 0.5994 0.7991
δ=1.7 0.5 Z(t) Empirical 0.0037 0.0457 0.0494 0.2611 0.556 0.8171

S(t) Empirical 0.0059 0.0455 0.0514 0.3054 0.4989 0.8043
L(t) Empirical 0.0041 0.0457 0.0497 0.2708 0.5467 0.8176

Nominal 0.0054 0.0451 0.0505 0.2851 5144 0.7995
1 Z(t) Empirical 0.0023 0.047 0.0493 0.1612 0.6522 0.8134

S(t) Empirical 0.0052 0.0479 0.0531 0.2259 0.5806 0.8065
L(t) Empirical 0.0029 0.0466 0.0495 0.1753 0.5245 0.7918

Nominal 0.0045 0.0462 0.0508 0.2049 0.5943 0.7992
2 Z(t) Empirical 0.0014 0.0486 0.0499 0.0607 0.7496 0.8104

S(t) Empirical 0.0046 0.0477 0.0523 0.1366 0.704 0.8031
L(t) Empirical 0.0024 0.0486 0.051 0.0858 0.7227 0.8085

Nominal 0.0043 0.0471 0.0514 0.1259 0.6726 0.7985
δ=1.9 0.5 Z(t) Empirical 0.0022 0.0452 0.0474 0.2041 0.629 0.833

S(t) Empirical 0.0051 0.0465 0.0516 0.2732 0.5402 0.8135
L(t) Empirical 0.003 0.0449 0.0479 0.2326 0.6015 0.8341

Nominal 0.005 0.0455 0.0505 0.2574 0.542 0.7994
1 Z(t) Empirical 0.0011 0.0453 0.0464 0.0947 0.733 0.8276

S(t) Empirical 0.0046 0.0472 0.0518 0.1883 0.6239 0.8122
L(t) Empirical 0.003 0.0449 0.0479 0.2326 0.6015 0.8341

Nominal 0.004 0.0465 0.0509 0.1803 0.6187 0.799
2 Z(t) Empirical 0.0002 0.047 0.0472 0.0067 0.8168 0.8235

S(t) Empirical 0.005 0.0484 0.0533 0.1005 0.704 0.8045
L(t) Empirical 0.0017 0.0468 0.0485 0.0513 0.771 0.8224

Nominal 0.0044 0.0473 0.0516 0.1084 0.6899 0.7983

Table 2: Simulated empirical type I error and power of the two-stage SCPRT designs based on 100,000 simulation runs for sequential Z(t), log-rank L(t) and S(t) tests with 
a nominal type I error of 0.05 and power 80% (one-sided test).

At kth interim look k=1 k=2 k=3 total
Type I error
         Empirical of S(t) 0.0028 0.0047 0.0422 0.0496
         Nominal 0.0024 0.0046 0.0436 0.0506
Power
        Empirical of S(t) 0.171 0.2994 0.3886 0.8389
        Nominal 0.1204 0.2533 0.4257 0.7994
Probability of stopping under null
        Empirical of S(t) 0.2574 0.3907 0.3519 1
        Nominal 0.2626 0.3916 0.346 1
Probability of stopping under alternative
        Empirical of S(t) 0.1756 0.315 0.5094 1
        Nominal 0.1315 0.28 0.5885 1
Table 3: Operating characteristics of the three-stage SCPRT design for test statistic 
S(t)based on 100,000 simulation runs under the Weibull distribution with uniform 
censoring distribution on [tf ,ta+ tf], and nominal type I error of 0.05 and power 80% 
for the example in Section 6.
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where κ=1.22 and m2=14. Thus the number of patients required for 
the current study is 2 2 2( ) / ( ) 54 / 0.1985 273.n D pτ τ= = =  Suppose that 
the test statistic S(t) will be used to monitor the trial, and 3 interim 
looks are planned at calendar times t1=4, t2=6 and t3=8 years. Then the 
transformed information times can be calculated by

* ( ) / ( ) (1 ) / (1 ),k k k kt D t D R I DIτ= = + +  (14)

where 2 2( ) / ( )k kI D t D τ=  and 2/3
2 1( ) / ,R D Dδ τ= with D1=65, 2 2 2( ) ( )k kD t n p t=

and

2 20

1( ) {1 ( )} ,at t

a

p t S t u du
t

Λ
= − −∫ (15)

where 2
(2)

2 ( ) .
tlog

mS t e

κ
 

−   
 =  Thus, the information time calculated 

by equations (14) and (15) is t*=(0.436, 0.773, 1), the lower and 
upper boundaries calculated by equation (12) are (a1,a2,a3)=(-0.425, 
0.307, 1.645) and (b1,b2,b3)=(1.859, 2.236, 1.645), respectively, 
and the nominal critical p- values calculated by equation (13) are 

1 2 3
( , , ) (0.7398, 0.3634, 0.05)a a aP P P = and 

1 2 3
( , , ) (0.0024, 0.0055, 0.05)b b bP P P =  

for the lower and upper boundaries, respectively. To monitor the trial 
at kth interim look, the survival data collected up to calendar time tk 
from the current study combined with all data of the historical control 
to calculate the sequential test statistic S(tk) as described in Section 2, 
and the observed p-values

( ) 1 { ( )}, 1,2,3.
kS t kP S t k= −Φ =

At kth stage, we stop the trial for futility if ( ) ,
k kS t aP P≥ and stop the 

trial for efficacy if ( ) .
k kS t bP P≤  The operating characteristics of the 

sequential test S(t) for this example are given in Table 3.

Conclusion
We proposed two parametric sequential tests for group sequential 

trial de-sign against historical controls. Simulation results showed 
that the empirical power and type I error of the S(t) test are close to 
those of the nominal levels, and it outperforms the Z(t) test. Hence, 
we recommend using the S(t) test for historical control trial designs 
under the Weibull model. We derived transformed information times 
t*=(1+R)I/(1+RI) for both test statistics Z(t) and S(t). It is simple and 
convenient to use the transformed information time t* to derive the 
sequential monitoring rule for the historical control trial design based 
on the SCPRT procedure. With this monitoring procedure, data from 
the current study are sequentially collected and com-pared with data 
from the historical control. This allows investigators to monitor the 
trial at any calendar time of enrollment or at a pre-specified number 
of events of an interim look. The number of events required for the 
current study can be calculated by a simple formula. Therefore, the 
study design is much simpler than that of the method for survival 
data proposed by Xiong et al. [12], in which information times of the 
sequential test statistic are random and depend on data instead of 
being predetermined. The maximum sample size of the sequential test 
is the same as that for the fixed sample test and the group sequential 
boundaries have analytical solutions. Therefore, the proposed group 
sequential procedure is effective and simple to use. For the study design 
purpose, we need the number of events from the historical control data 
only. However for the trial monitoring and final data analyses, we 
need full failure time data from the historical control study to calculate 
the sequential test statistic Z(tk) or S(tk). In practice, the historical 
control data are often available from previous trials done by the same 
institution or by the same sponsor. If there is no such historical control 
data available from the same institution, then we need to extract the 
relevant data from published literatures. Recently, Guyot et al. [20] 

have proposed a method to reconstructing the survival data from 
published Kaplan-Meier survival curves. Thus designing survival 
trials with historical controls are feasible by using control data from 
published literatures.

Finally, even though the sample size formula (5) and transformed 
information time (10) were derived for the Z(t) test under the Weibull 
model, our simulation results showed that they also work well for the 
nonparametric log-rank test under the proportional hazard models. 
A rigorous derivation of these results for the log-rank test will be the 
future research.
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