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Abstract

Background
A number of different approaches aimed at broadening the cross-protective ability of seasonal influenza

vaccines are being explored today. Priming a seasonal vaccine with three administrations of DNA encoding H1
HA corresponding to the HA in the seasonal vaccine has been shown to confer protection against heterologous
H1N1 influenza. Here we evaluated the heterosubtypic protection induced by a seasonal influenza vaccine when
primed with H1 HA DNA and, in parallel, when given as a homologous prime/boost regimen.

Methods
Balb/c mice were immunized three times with vaccine homologous H1 HA DNA prior to a boost with seasonal

influenza vaccine (season 2009/2010; Northern Hemisphere), or immunized three times with the seasonal
influenza vaccine. To assess cross-protection, mice were subsequently challenged with either heterologous H1N1
or heterosubtypic H5N1 influenza virus.

Results
The level of heterologous H1N1 protection elicited by the seasonal influenza vaccine was enhanced by priming

with H1 HA DNA. In contrast, priming with H1 HA DNA did not enhance the level of heterosubtypic H5N1
protection. The heterologous prime boost regimen showed to be less efficient than multiple immunizations with
seasonal vaccine in conferring protection against H5N1. Neither the DNA-priming vaccination regimen, nor the
homologous prime/boost regimen induced detectable H5N1 cross-reactive anti-HA or anti-NA antibodies.
Homologous prime /boost vaccination did induce higher levels of anti-NP antibodies.

Conclusion
Here we demonstrate that priming a seasonal influenza vaccine with vaccine homologous H1 HA encoding

DNA enhances the level of heterologous H1N1 but not heterosubtypic protection induced by the vaccine alone.
Homologous prime/boost vaccination resulted in higher levels of heterosubtypic protection. Of the
immunogenicity parameters tested for both heterologous and homologous prime/boost regimens only anti-NP
responses follow the same pattern as heterosubtypic protection.

Keywords: Influenza; Seasonal influenza vaccine; prime boost; HA
DNA; Protection; H5N1; NP

Introduction
Annual influenza epidemics are responsible for up to 5 million cases

of severe illness and 250 000 to 500 000 deaths as reported by the world
health organization (WHO) [1]. Seasonal influenza vaccines are the
most effective way to reduce the impact of influenza epidemics. To
keep pace with the genetically drifted circulating strains the

composition of seasonal influenza vaccines must be updated almost
annually [2]. The development of an influenza vaccine which confers
protection against a wide range of influenza viruses is therefore of great
importance.

The efforts to generate broadly protective influenza vaccines have
largely focused on designing vaccine compositions and regimens able
to induce immune responses, either humoral, cellular or a combination
thereof, against proteins that are conserved across divergent strains of
influenza [3,4]. Novel influenza vaccines that aim to elicit cross-
protective T-cell responses are often based on highly conserved viral
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proteins such as nucleoprotein (NP) [5-7] and matrix protein 1 (M1)
[8], while vaccines that aim to induce broad humoral immunity have
largely focused on surface exposed viral proteins such as
hemagglutinin (HA) [9-13], neuraminidase (NA) [14,15] or matrix
protein 2 (M2) [16-18]. Though HA and NA are highly variable
proteins, they contain conserved epitopes that can elicit broadly
protective antibodies [19-24], and as such are very interesting targets
in the quest for universal influenza vaccines. B cells producing HA-
specific broadly neutralizing antibodies (bnAbs) have been isolated
from human volunteers after vaccination with seasonal vaccines
[21,25,26], indicating that HA in seasonal vaccines can form the basis
for developing a broadly protective immune response. While HA is the
key immunogen in all current seasonal vaccines, and is used for
vaccine dosing and evaluation of the seasonal vaccine potency, the
majority of current vaccines also contain other viral proteins, such as
NA, M2 and NP [27,28], albeit amounts thereof are neither quantified
nor standardized. The immune response to these proteins may
potentially contribute to cross-protective ability of seasonal influenza
vaccines.

Different approaches aimed at broadening cross-protective ability of
seasonal influenza vaccines are being explored [29-31]. We reported
previously [32] that multiple immunizations with seasonal influenza
vaccine of season 2011-2012 can enhance the heterosubtypic (H5N1)
protection in mice. In other approaches, seasonal influenza vaccine has
been administered together with adjuvants [31,33,34] or primed with
DNA vectors [30]. Wei et al. [30] demonstrated that heterologous
H1N1 protection can be induced in both mice and ferrets by priming a
seasonal vaccine with three administrations of DNA encoding H1 HA
corresponding to the H1 present in the seasonal influenza vaccine (H1-
DNA). The safety and efficacy of this vaccination regimen, expanded to
include DNAs encoding H3 and B HA, is being further explored in
healthy human volunteers [35].

In the current study, we expanded the evaluation of a heterologous
prime/boost vaccination regimen (H1-DNA, followed by seasonal
influenza vaccine) to induce heterosubtypic protection against H5N1.
In parallel, we assessed the breadth of protection and immunogenicity
induced by a seasonal influenza vaccine of season 2009/2010 when
given in a homologous (e.g., 3x seasonal vaccine) [32] or heterologous
prime/boost vaccination regimen.

Material and Methods

Statement of ethics
All mouse experiments were performed in accordance with Dutch

legislation on animal experiments and approved by DEC Animal
Sciences Group, Wageningen UR when performed at CVI Lelystad and
an independent Animal Ethics Committee (TNO, Zeist, The
Netherlands) (permit number 3387) when performed at TNO
Triskelion. In all experiments six-to-eight-week-old female Balb/c
(H2d) mice (Charles River, Sulzfeld, Germany) were used. Mice were
kept under specific pathogen-free conditions.

Immunization and Influenza Challenge

Immunization
Groups of mice (n=10 or 8 for challenge studies, n=8 for

immunogenicity study) received either: 1x or 3× intramuscular (i.m.)
immunizations with Inflexal® V (Crucell, Bern, Switzerland), a trivalent

seasonal vaccine (SV) (composition for the 2009-2010 season: H1N1
A/Brisbane/59/07, H3N2 A/Brisbane/10/07 and B/Brisbane/60/08) (3
µg HA per strain per immunization); 3x i.m. immunizations with DNA
encoding RSV_F_A2 protein (15 µg per immunization) followed by an
i.m. immunization with SV; 3× i.m. immunizations with DNA
encoding HA of H1 A/Brisbane/59/07 (15 µg per immunization); 3×
i.m., immunizations with DNA encoding HA of H1 A/Brisbane/59/07
(15 µg per immunization) followed by one i.m., immunization with SV;
or 4× with PBS (Gibco®, Life TechnologiesTM, Paisley, UK).
Immunizations were scheduled at 3 week intervals. All final
immunizations with vaccine were performed at the same time. Mice
immunized only once with SV, received three immunizations with PBS
prior to vaccine. Mice immunized either 3× with SV or 3x with DNA
encoding H1 HA A/Brisbane/59/07 received one immunization with
PBS prior to vaccine.

Description
Vaccine group

Day

0 21 42 63 91d,e

PBS PBS PBS PBS PBS Challenge

SV09    SV09c Challenge

3xSV09  SV09c SV09c SV09c Challenge

H1-DNA  
H1-
DNAb

H1-
DNAb

H1-
DNAb Challenge

RSV-DNA/SV09
RSV-
DNAa

RSV-
DNAa

RSV-
DNAa SV09c Challenge

H1-DNA/SV09 H1- DNAb
H1-
DNAb

H1-
DNAb SV09c Challenge

aRSV-DNA: pcDNA2004(Neo-) containing RSV-F-A2 cDNA insert. Dose: 15 µg
i.m./immunization
bH1-DNA: pcDNA2004(Neo-) containing H1 A/Brisbane/59/07 cDNA insert.
Dose: 15 µg i.m./immunization
CSV09: Seasonal Influenza vaccine ,Inflexal® V, of season 2009-2010. Dose 3
µg HA/strain/ immunization
dFor immunogenicity experiments mice were sacrifised at day 91 and serum and
spleens were collected. For influenza
challenge experiments mice were challenged at day 91
eChallenge: 25xLD50 of H1N1A/Puerto Rico/8/34, H1N1 A/WSN/33 or H5N1 A/
Hong Kong/156/97

Table 1: A schematic overview of the immunization regimens for the
various vaccine groups is presented.

In immunogenicity experiments blood and spleens were harvested
four weeks after final immunization. Blood was collected via heart
puncture under isoflurane anesthesia (IsoFlo®, Abbott Park, IL, USA)
followed by cervical dislocation and collection of the spleen. Serum
was collected after centrifugation for 4 minutes at 1699× g followed by
1 minute at 20817× g. The serum was isolated and stored at -20°C.

Influenza challenge
For challenge experiments mice were infected with influenza virus 4

weeks after the final immunization. On the day of challenge a pre-
challenge blood sample (to assess pre-challenge antibody titers) was
obtained via submandibular bleeding. Mice were challenged
intranasally (i.n.) with 25 × LD50 of influenza virus (total 50 µl, 25 µl
per nostril) under anesthesia with ketamine/xylazine (100 mg/kg
ketamine (Nimatek® 100 mg/ml, Eurovet, Cuijk, the Netherlands); 20
mg/kg xylazine (Sedamun® 20 mg/ml, Eurovet, Cuijk, Netherlands)).
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Virus stocks of H1N1 A/Puerto Rico/8/34 (ATCC-VR-95, American
Type Culture Collection, Manassas, VA, USA), H1N1 A/WSN/33
(Central Veterinary Institute, Wageningen University, the Netherlands)
and wild-type H5N1 A/Hong Kong/156/97 (Central Veterinary
Institute, Wageningen University, the Netherlands) were grown on
embryonated chicken eggs. Groups of mice receiving 4× PBS i.m., were
used as negative control and groups receiving broadly protective
monoclonal antibody (CR6261, 15 mg/kg in PBS intravenously (i.v.) 24
hours prior to challenge) were used as positive control for the
challenge. After challenge mice were monitored daily for weight-loss
and clinical score for up to 21 days or until a humane endpoint based
on clinical score or found dead. The challenge experiments were
performed at two different locations at which different clinical score
systems were used. The H1N1 A/WSN/33 and H5N1 A/Hong Kong/
156/97 challenge studies were performed at CVI Lelystadt at which a
4-point clinical scoring system was used: 0=no clinical signs, 1=rough
coat, 2=rough coat, less reactive, passive during handling, 3=rough
coat, rolled up, labored breathing, passive during handling, 4=rough
coat, rolled up, labored breathing, unresponsive. CS4 was defined as
moribund based on unresponsiveness and used as a humane endpoint.
The H1N1 A/Puerto Rico/8/34 challenge study was performed at TNO
Triskelion at which a 5-point clinical scoring system was used: 0 = no
clinical signs, 1=rough coat, 2=rough coat, labored respiration
3=rough coat, labored respiration, hunched posture and/or
blepharospasm, 4=rough coat, labored respiration, hunched posture,
blepharospasm, lethargic and/or thin/dehydrated, 5=lethargic behavior
(CS4) is observed during four consecutive observations leading to
euthanasia. CS5 was used as humane endpoint.

Statistics

Influenza challenge studies
Differences between immunization regimens relative to negative

control group receiving 4× PBS i.m., were statistically evaluated using
survival proportion, survival time, change in bodyweight and clinical
scores. Survival proportion and survival time after challenge were
analyzed using Fisher’s exact test and log-rank test, respectively.
Repeated measurements in the challenge phase (i.e. bodyweight and
clinical scores) were summarized as a single outcome per animal using
an Area Under the Curve (AUC) approach where missing values for
animals that died early were imputed with a last-observation-carried-
forward method. Body weight data are expressed as the change relative
to the day 0 measurement. The AUC was then defined as the
summation of the area above and below the baseline. An ANOVA on
AUC’s was done with group as explanatory factor. Clinical scores were
summarized as AUC per mouse and groups were compared using a
generalized linear model with a cumulative logit distribution to
compare area under the curves for ordinal variable. Statistical analysis
was planned upfront and adjustments for multiple comparisons were
done using a Bonferroni correction for (i) the H1N1 A/Puerto Rico/
8/34 challenge: H1-DNA/SV=4 comparisons, SV=2 comparisons
(clinical score data for this group were not adjusted), (ii) the H1N1
A/WSN/33 challenge: for all groups 4 comparisons, (iii) figure 1C
H5N1 A/Hong Kong/156/97 challenge: H1-DNA/SV=4 comparisons,
SV=2 comparisons (clinical score data for this group were not
adjusted), (iv) figure 2 H5N1 A/Hong Kong/156/97 challenge: for all
groups 2 comparisons. The studies were considered valid only when
there was a statistically significant difference in survival proportion
(Fisher’s exact-test, 2-sided) between negative and positive challenge
model control groups (data not shown for positive controls).

Statistical analyses were performed using SAS version 9.2 (SAS
Institute Inc. Cary, NC, USA) and SPSS version 20 (IBM, USA).
Statistical tests were conducted two-sided at an overall significance
level of α=0.05. Only p values less than 0.05 are reported in the Result
section. A summary of all statistical tests and respective p values are
presented in supplementary Table S1.

Virus neutralization assay
Madin-darby canine kidney (MDCK) cells were seeded in a 96-well

plate at 15,000 cells/well in growth medium (Dulbecco's Modified
Eagle Medium (DMEM) containing 200 mM L-glutamine, 3 µg/ml
trypsin and 1% (w/v) penicillin/streptomycin stock solution, all Gibco,
Invitrogen Ltd, Life Technologies, Paisley, UK) and allowed to attach
for a minimum of 3 hours. Duplicate serial dilutions of heat-
inactivated (30 minutes at 56°C) serum samples (0.01-20%) were
prepared in DMEM with or without trypsin/EDTA (0.6% of a 0.05%
stock solution) and mixed with 120 TCID50 of H1N1 A/Brisbane/
59/07 or 200 TCID50 of the H5N1 A/Hong Kong/156/97 (reassortant
rgPR8-H5N1) virus per sample, respectively, for 1 hour at 37°C, 10%
CO2. Mixes were subsequently added to the MDCK cells and
incubated for 18 hours at 37°C, 10% CO2. Cells were fixed with 80%
acetone, labeled with mouse anti-NP (H16-L10-4R5, produced in-
house), followed by goat anti-mouse HRP-coupled antibody (KPL,
Gaithersberg, MD, USA) for one hour each. TMB substrate (Roche,
Basel, Switzerland) was added, and absorbance was read in a BioTek®

reader (PerkinElmer, Groningen, the Netherlands) after 5-15 minutes.
Monoclonal antibody CR6261 (human IgG2a, produced in-house) and
naïve mouse serum were used as positive and negative controls,
respectively. Samples without detectable neutralization at the lowest
dilution are indicated as the lowest dilution (i.e. background level). The
IC50 values were calculated after 4-parameter logistic curve fit.

T-cell ELISPOT
For ELISPOT analysis of T-cell responses ten amino acids

overlapping 15-mer peptides covering the whole HA protein sequence
of H1 A/Brisbane/59/07, a total of 104 peptides, were used (Pepscan,
Lelystad, The Netherlands). For analysis of the total T-cell response
against the full length H1 A/Brisbane/59/07 a pool of all 111 peptides
was made (total pool). For analysis of T-cell response against a known
9-mer epitope IYSTVASSL [36], highly conserved among number of
strains, including H1 A/Brisbane/59/07 and H5 A/Hong Kong/156/97,
two 15-mer peptides containing this epitope were used. The
concentration per peptide was 0.4 mg/ml, diluted in DMSO.

Ninety-six-well multiscreen plates (Millipore, Bedford, MA), coated
overnight with rat anti-mouse IFNγ (Pharmingen, San Diego, CA) (1
µg per well in PBS pH 7.4), were washed with Dulbecco's PBS (Life
Technologies, Gaithersberg, MD) containing 0.05% Tween-20 (D-PBS/
Tween) and blocked with D-PBS containing 5% FBS for 2 hours at
37°C. Splenocytes were prepared in R10 medium (RPMI 1640 (Gibco/
Invitrogen, Breda, The Netherlands) containing 10% heat inactivated
FBS (HyClone, Logan UT), 1% Pen/Strep (Gibco/Invitrogen, Breda,
The Netherlands), 1% MEM non-essential amino acids (Gibco/
Invitrogen, Breda, The Netherlands) and 13 µM 2-mercaptoethanol
(Fluka Chemie, Buchs, Switzerland) and plated in duplicates at 5 µ 105

cells/well and 2 × 105 cells/well in a 100-µl reaction volume containing
2 µg/ml 15-mer peptides (total pool or two 15-mer peptides).
Following 18 hour incubation at 37°C, the plates were washed with D-
PBS/Tween and incubated for 1.5 hour with a biotinylated rat anti-
mouse IFNγ (Pharmingen, San Diego, CA). Plates were washed and
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incubated for 1.5 hour with streptavidin–alkaline phosphatase
(Southern Biotechnology Associates, Birmingham, AL). Upon final
washing, specific staining was developed with nitro blue tetrazolium-5-
bromo-4-chloro-3-indolyl-phosphate chromogen (Pierce, Rockford,
IL), stopped by washing with tap water, air dried, and analyzed using
an AELVIS ELISPOT reader (AELVIS GmbH). The cell concentration
for which the average of spot forming units (SFU)/well was within the
linear range, 50-225 spots/well, was selected. The average SFU/well
count was adjusted to SFU’s per 106 cells in accordance with cell
dilution.

ELISA
Recombinant protein (0.05µg per well in PBS pH7.4) (i) HA of

H1N1 A/Brisbane/59/07 (Protein Sciences Inc., CT, USA), H1N1 A/
Puerto Rico/8/34 (Protein Sciences Inc., CT, USA) or of H5N1 A/Hong
Kong/156/97 (manufactured in-house on HEK293F cells), (ii) NP of
H1N1 A/Puerto Rico/8/34 (Sino Biologics Inc. Beijing, China), or (iii)
NA of H1N1 A/Brisbane/59/07 (manufactured in-house on HEK293F
cells) or of H5N1 A/Hong Kong/156/97 (manufactured in-house on
HEK293F cells) were coated onto Maxisorp 96-well plates (Nunc™,
Thermo Scientific) O/N at 4°C. Plates were washed with PBS (Gibco®,
Life Technologies™, Paisley, UK) containing 0.05% Tween-20
(Calbiochem®, Merck Millipore, Darmstadt, Germany) (PBS-T) and
subsequently blocked with for rHA and rNP ELISA; PBS containing
2% dried skimmed milk (Difco™, BD, Breda, the Netherlands) and for
rNA ELISA; PBS containing 2% BSA (Sigma-Aldrich, USA) for 1 hour
at RT. Following a wash with PBS-T serum was added to the plate. The
serum was in duplicate serially diluted (2-fold, 0.002-2%) and
incubated for 1 hour at RT. Following a wash with PBS-T a 1:2000
dilution of Goat-anti-Mouse IgG-HRP (KPL, Gaithersburg, MD, USA)
was added to the plate and incubated for 1 hour at RT. After washing
with PBS-T OPD substrate (Thermo Scientific, Bremen, Germany) was
added to the plate. The colorimetric reaction was stopped after 10
minutes by adding 1M H2SO4. The optical density (OD) was measured
at 492 nm and standard curves were created using a four parameter
logistic curve. The OD of each sample dilution was then quantified
against the standard curve and the final concentration per sample (in
Elisa Units, EU/ml) calculated by a weighted average, using the
squared slope of the standard curve at the location of each
quantification as weight. Negative samples were set at the limit of
detection (LOD), defined as the lowest sample dilution multiplied by
the lowest standard concentration with an OD response above the
lower asymptote of the standard curve and background. All ELISA
titers presented in the figures have been log10 transformed.

Results
Priming seasonal influenza vaccine with H1-DNA enhances

protection against heterologous H1N1 but not against heterosubtypic
H5N1 challenge:

We first tested whether a virosomal seasonal influenza vaccine of
season 2009/2010 (SV09) primed three times with DNA encoding
vaccine homologous H1 HA (H1-DNA) can provide heterologous
H1N1 protection in mice. Albeit not significant, a single immunization
with SV09 alone elicited partial survival (40%) against heterologous
H1N1 A/Puerto Rico/8/34 with significantly prolonged survival time
(p=0.003 compared to PBS) and with reduced clinical scores (p=0.001
compared to PBS). When primed with H1-DNA, SV09 elicited a
significant increase in survival proportion compared to non-
vaccinated mice (60% survival, p=0.043 compared to PBS) with

prolonged survival time (p=0.044 compared to PBS), reduced
bodyweight loss (p=0.050 compared to PBS) and reduced clinical
scores (p<0.001 compared to PBS) (Figure 1A and S1.A).

Figure 1: Priming seasonal influenza vaccine with H1-DNA
enhances protection against heterologous H1N1 but not against
heterosubtypic H5N1 challenge. Mice ( n=10 ) were immunized
either 1x with Inflexal (SV), 3x with H1 HA DNA (H1-DNA), 3x
with RSV DNA followed by a boost of Inflexal (RSV-DNA/SV), 3x
with H1-DNA followed by a boost of Inflexal (H1-DNA/SV) or 4x
PBS (PBS). Shown are Kaplan-Meier survival curves (left) and
mean bodyweight change (right) graphs following challenge. Mice
were challenged with A) H1N1 A/Puerto Rico/8/34 B) H1N1
A/WSN/33 C) H5N1 A/Hong Kong /156/97, Error bars indicate
95% confidence interval (bodyweight).

To confirm the effect of DNA priming in another heterologous
challenge model, we assessed protection by H1-DNA/SV09 upon
challenge with H1N1 A/WSN/33. Two additional groups were included
in this experiment to further delineate the contribution of H1-DNA to
protection: one group of mice was immunized with H1-DNA only and
another group three times with DNA encoding an irrelevant antigen
(RSV_F_A2 protein) (RSV-DNA) followed by a boost of SV09 (RSV-
DNA/SV09). H1-DNA/SV09 induced 70% survival after H1N1
A/WSN/33 challenge (not statistically significant), with prolonged
survival time (p=0.038 compared to PBS) and reduced clinical scores
(p=0.001 compared to PBS) (Figure 1B and S1.B), confirming
protective ability of the heterologous prime/boost vaccination regimen.
Partial survival seen in groups immunized with H1-DNA or RSV-
DNA/SV, 60% and 50% respectively, was neither significant in survival
proportion or reduction of disease symptoms. Thus, the improved level
of cross-protection achieved with the heterologous prime/boost
regimen requires specific antigen-expressing DNA as a prime and is
not due to possible non-specific effect of DNA administration. The
level of heterologous H1N1 cross-protection induced by the H1-DNA/
SV09 vaccination regimen was comparable to the cross-protection
induced by three vaccinations with SV09 (3xSV09) (Figure S2), a
regimen previously shown to be broadly protective [32].
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To further evaluate whether the heterologous prime/boost
vaccination regimen could elicit also heterosubtypic protection we
challenged mice immunized with SV09 alone or H1-DNA/SV09 with
H5N1 A/Hong Kong/156/97. Partial protection against H5N1 was
elicited already by SV09 alone with a significant increase in survival
proportion, survival time and reduced clinical scores compared to
PBS-vaccinated mice (p=0.022, p=0.015 and p=0.005, respectively).
Priming SV09 three times with H1-DNA did not improve the
heterosubtypic cross protection induced by SV09. H1-DNA/SV09
induced partial survival, 44%, albeit not statistically significant, with
reduced clinical scores (p=0.007 relative to PBS) (Figure 1C and S1.C).

H1-DNA/SV09 confers partial protection while three times SV09
protects against heterosubtypic H5N1 challenge:

A homologous prime/boost vaccination regimen in which a SV of
season 2011-2012 was given 3 times was previously shown to elicit 80%
survival against H5N1 challenge [32]. Here, we assessed the ability of
the SV of season 2009 to induce protection against H5N1 when given
in either a homologous or heterologous prime/boost immunization
regimen.

Consistent with our previous experiment, the H1-DNA/SV09
vaccination regimen partially protected mice. The survival proportion
of 43% was not significantly increased compared to PBS but clinical
scores were reduced (p=0.021 compared to PBS). A homologous
prime/boost regimen consisting of 3×SV09, however, induced
significant survival (80%, p=0.003 compared to PBS) with prolonged
survival time (p<0.001 compared to PBS), reduced bodyweight loss
and clinical score (p=0.001 and p<0.001 compared to PBS,
respectively) (Figure 2 and S3).

Figure 2: H1-DNA/SV09 confers only partial protection while three
times SV09 protects against heterosubtypic H5N1 challenge. Mice
were immunized either 3x with Inflexal 2009 (3xSV09), 3x with H1
HA DNA followed by a boost of Inflexal 2009 (H1-DNA/SV09) or
4x PBS (PBS) followed by challenge with H5N1 A/Hong Kong/
156/97 (n=8 for PBS and 3x SV09; n=7 for H1-DNA/SV09).
Kaplan-Meier survival curves (left) and means bodyweight change
(right). Error bars indicate 95% confidence interval (bodyweight).

Neither neutralizing antibodies nor cross-reactive T cells reflect
heterosubtypic protection induced by H1-DNA/SV09 and 3xSV09:

To elucidate possible mechanism of heterosubtypic protection, we
characterized the neutralizing antibody and HA T-cell responses
induced with H1-DNA/SV09 and 3×SV09 regimens against
heterosubtypic (challenge) influenza strain (H5N1) and the SV09
H1N1 strain (A/Brisbane/59/07). Neither vaccination regimen elicited
detectable cross-neutralizing antibodies, while both vaccination
regimens induced high titers of vaccine homologous H1N1
neutralizing antibodies, with H1-DNA/SV09 regimen eliciting
approximately 5.3-fold higher mean titer compared to 3×SV09 (Figure
3A). With respect to HA specific T-cell response, only the H1-DNA/

SV09 regimen elicited a T-cell response against both a highly
conserved T-cell epitope in the stalk of the HA (IYSTVASSL,
conserved in both H1 and H5) and the total pool of peptides from HA
of A/Brisbane/59/07 (Figure 3B). Thus, neither cross-neutralizing
antibodies nor HA-specific T-cell responses can explain the high
heterosubtypic protection seen by 3×SV09 versus suboptimal
protection obtained with H1-DNA/SV09 vaccination regimen.

High titers of antibodies against NP, but not against H5 HA or NA,
are elicited with both vaccination regimens and reflect observed
difference in heterosubtypic protection:

We further characterized the humoral immune responses induced
with the two vaccination regimens by measuring the total IgG response
against HA, NA and NP in the pre-challenge serum. Pre-challenge
antibody titers were used to assess the relationship between humoral
immunogenicity and challenge outcome. Neither H1-DNA/SV09 nor
3xSV09 elicited significant rH5 A/Hong Kong/156/97 binding
antibodies (except in 2 out of 8 mice from 3xSV09 group) (Figure 4A).
Both regimens elicited high titer antibodies against vaccine rH1 (A/
Brisbane/59/07).

Figure 3: Neither neutralizing antibodies nor cross-reactive T cells
reflect heterosubtypic protection induced by H1-DNA/SV09 and
3xSV09. Characterization of humoral and cellular immune
response induced by 3x Inflexal 2009 (3xSV09), 3x H1 HA DNA
followed by a boost of Inflexal 2009 (H1-DNA/SV09) or 4x PBS
(PBS), 4 weeks after final immunization (n=8). A) Neutralizing Ab
titer against H5N1 A/Hong Kong/156/97 and H1N1 A/Brisbane/
59/07. B) INF-γ secreting T cells measured in ELISPOT against a
pool of 215-mer peptides carrying conserved epitope; IYSTVASSL
and a pool of 15-mer peptides of HA of H1N1 A/Brisbane/59/07.
Group medians are shown.

The mean rH1 titer elicited with H1-DNA/SV09 was approximately
5.3-fold higher than the corresponding titer elicited with 3xSV09.
Neither H1-DNA/SV09 nor 3xSV09 elicited significant rN1 A/Hong
Kong/156/97 binding antibody titers (Figure 4B). A moderate titer of
antibodies against vaccine rN1 (A/Brisbane/59/07) was detected after
3xSV09, but not after H1-DNA/SV09.
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Figure 4: High titers of antibodies against NP, but not against H5
HA or NA, are elicited with both vaccination regimens and reflect
observed difference in heterosubtypic protection. Characterization
of humoral immune response induced by 3x Inflexal 2009
(3xSV09), 3x H1 HA DNA followed by a boost of Inflexal 2009 (H1-
DNA/SV09) or 4x PBS (PBS) in pre-challenge serum of mice
challenged with H5N1 A/Hong Kong/156/97 (Immunogenicity of
animals in challenge is reported; n=8 for PBS and 3x SV09; n=7 for
H1-DNA/SV09). Binding Ab titer measured in ELISA against A)
rHA of H5N1 A/Hong Kong/156/97 and rHA of H1N1 A/Brisbane/
59/07 B) rNA of H5N1 A/Hong Kong/156/97 and rNA of H1N1 A/
Brisbane/59/07 C) rNP of A/Puerto Rico/8/34 (due to lacking
serum n=5 for PBS; n=5 for 3x SV09; n=6 for H1-DNA/SV09).
Group medians are shown.

Since HA and NA specific assays did not appear to correlate with
the observed protection against H5N1, we assessed the level of NP
antibodies. As NP is highly conserved between influenza a group 1
virus (e.g., an amino acid homology above 90%) we did not
differentiate between vaccine homologous and challenge strain NP.
Pre-challenge serum of mice immunized with H1-DNA/SV09
contained moderate level of anti-NP antibodies, and comparable to the
level observed after single immunization with SV09 (data not shown)
while the mean titer of anti-NP antibodies elicited with 3xSV09 was
approximately 11.4-fold higher (Figure 4C).

Discussion
In this study we confirm the previous finding [30] that the breadth

of heterologous protection elicited with seasonal influenza vaccine can
be enhanced by priming the vaccine with DNA expressing vaccine-
corresponding H1 HA. In addition, we demonstrate that this regimen

is less efficient than multiple immunizations with seasonal vaccine in
conferring protection against heterosubtypic H5N1. Among tested
immune parameters only the anti-NP antibody titer followed the
pattern of the protection between the two vaccination regimens.

Influenza specific antibodies can protect against influenza infection
via a number of different immunological mechanisms. Neutralizing
antibodies can prevent viral attachment to target cells [37,38], inhibit
release from endosomes [22,37,39] or block egress[37,40]. Binding
antibodies can mediate protection via indirect mechanisms such as
antibody-dependent cellular cytotoxicity (ADCC) or antibody-
dependent complement mediated cytotoxicity (ADCMC) [18,41].
Influenza specific T-cells play a role in clearing infected cells and
thereby limit the virus spread and host morbidity [4,42-44]. While
vaccine- or infection-elicited protection against closely related viruses
predominantly relies on hemagglutination-inhibiting antibodies that
block the viral attachment to sialic acid receptors at cell surface, the
protection against distant viruses is less well understood. It is likely
that for different vaccines different mechanisms contribute to
heterosubtypic protection, depending on the vaccine composition,
formulation and schedule.

DNA plasmids as vectors for antigen delivery have been used in
several fields to enhance the level and the breadth of the immune
response [45-47]. The mechanism underlying the increased breadth of
the humoral immune response induced when priming with DNA is
suggested to be due to the increased number and diversity of induced
CD4 T cells which can increase the expansion of antigen specific B
cells [45,48,49]. In the influenza field, this strategy has been
implemented primarily for pandemic H5N1 vaccines [50-52] but also
in the development of cross-protective seasonal influenza vaccines
[30,35]. In our hands, priming virosomal seasonal influenza vaccine
with DNA expressing vaccine-corresponding H1 HA enhanced the
heterologous protection in two different influenza challenge models,
confirming the results from Wei et al., [30] for a split influenza vaccine.
However, when evaluating the regimens’ ability to confer
heterosubtypic protection we found that priming the virosomal
vaccine with H1-DNA did not improve the vaccines ability to confer
H5N1 protection. Though eliciting a higher cross reactive HA specific
T cell response than the homologous prime/boost regimen neither H1-
DNA/SV09 nor 3xSV09 elicited detectable cross reactive HA Ab
responses. Nevertheless, the homologous prime boost regimen,
3×SV09, was able to confer a higher level of survival after challenge
with the heterosubtypic H5N1 strain.

We reported previously that vaccinating mice with SV11 according
to the same homologous prime/boost regimen induced a comparable
level of survival against H5N1. Unlike 3xSV09, the protection induced
by3xSV11 correlated with the vaccine mediated H5 HA binding
antibodies induced. The difference seen in protective capacity and
immunogenicity between SV09 and SV11 is likely due to difference in
vaccine composition. These results further emphasize the difficulty in
predicting the cross protective capacity of a seasonal influenza vaccine
based solely on immunogenicity.

In the current study, T-cell immunity was elicited only with H1-
DNA priming, so the superior protection against H5N1 by
homologous vaccination could not be explained by HA-directed
cellular immunity. Though we cannot rule out the level of cellular
immunity against NA, our historical data indicate that these seasonal
influenza vaccines do not induce NA-directed T-cell immunity. In
combination with a lack of HA and NA cross-reactive antibodies, these
findings suggest that responses to seasonal vaccine components other
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than HA or NA may contribute to the heterosubtypic H5N1
protection. Highly conserved influenza core proteins, such as
nucleoprotein (NP), have frequently been investigated for their ability
to induce cross-protection [5,7,53,54]. While primary mechanism of
protection was considered to be via CD8 effector cells, a role for anti-
NP antibodies has recently been suggested [55,56]. Vaccine candidates
containing NP have recently been shown to induce cross-protection in
mice, and passive transfer experiments of anti-NP IgG have confirmed
the ability of NP antibodies to confer protection [55-57]. Here we
demonstrate that anti-NP antibodies are elicited by both vaccination
regimens and it is possible that they contribute to the heterosubtypic
(H5N1) protection conferred with vaccination modules comprised of
SV09. The anti-NP titer induced with the heterologous prime/boost
vaccine (H1-DNA/SV), the regimen that conferred weaker protection
against H5N1, was lower and comparable to the titer level elicited with
a single vaccination with SV (data not shown). This was as expected
considering that DNA used for priming encodes only HA and not NP.

As we did not measure NP-specific T cells, we cannot formally
prove that they do not play a role in the heterosubtypic protection
elicited with 3xSV09. However, considering that 3xSV09 was not very
efficient in eliciting HA-specific T cells, and our historical data
indicating that this type of vaccines does not induce strong NP-specific
T cells (data not shown), we consider it unlikely that NP T cells play a
significant role for 3xSV09 vaccine-mediated heterosubtypic
protection. It is also unlikely that NP-specific T cells played a role in
protection elicited with H1-DNA/SV09 considering that the DNA
encoded only HA and not NP.

The exact mechanism by which NP-specific antibodies mediate
protection is not completely understood. In recent studies it has been
established that NP is presented on the surface of virus-infected cells
during budding of new viruses [58,59] and the mechanism by which
the anti-NP antibodies mediate protection has been shown to be FcγR
dependent[57]. Furthermore, Jegaskanda et al., [60] have shown, using
NK-cell activation assay, that a trivalent inactivated influenza vaccine
induce NP-mediated ADCC responses. Thus, it is possible that
antibodies directed against influenza NP contribute to the
heterosubtypic H5N1 protection observed in our study through these
mechanisms.

In conclusion, we demonstrate that priming a seasonal influenza
vaccine with HA encoding DNA and thereby improve its cross reactive
HA T-cell response does not improve its ability to cross protect against
H5N1 influenza virus. Despite the lack of detectable cross reactive HA
and NA Ab titers a homologous prime /boost regimen of the vaccine
improved its ability to confer cross protection against H5N1. While
HA and NA immunogenicity appears to play a minor role, NP-binding
antibodies are the only immunogenicity parameter tested, which
follows the same pattern as the heterosubtypic protection between the
two studied vaccination regimens. We suggest that adding NP
encoding DNA in the combination vaccine schedule may be an
interesting approach to further broaden the protective activity of this
heterologous prime/boost vaccine regimen in future studies.
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