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Introduction
Wavelet transform (WT) is a signal processing technique was 

developed as a method to obtain simultaneous, have high resolution 
frequency and time, Wavelet Transform (WT) too for image processing 
and compressing from the Fourier transform (FT) and has been 
widely used to signal processing application [1]. The WT presents an 
improvement over the STFT and possesses multidimensional characters 
and are able to adjust their scale to the nature of a signal features [2]. 
Singularities and irregular structures in signal waveform often carry 
important information from an informatics-theoretic point of view. 
Wavelet Transform (WT) is Analyzes provides a kind of mathematical 
functions in zoom out or zoom in, on those interesting structures of 
sound and image [3]. Wavelets can be are able to capture deterministic 
features and orthonormal. Therefore, WT can decompose a signal 
into translation parameters and localized contributions labeled by so-
called dilation. These parameters represent the information of different 
frequency component contained in the analyzed signals [4]. Wavelet 
transform or wavelet analysis is a recently developed mathematical 
tool for many problems. One of the popular families of wavelet is Haar 
wavelets. Haar wavelet function in fact the Daubechies wavelet of order 
1. Due to its simplicity, the Haar wavelet had become an effective tool
for solving many problems arising in many branches of sciences. Haar
wavelet functions have been used since year at 1910. It was introduced
by the Hungarian mathematician Alfred Haar [5].

A short introduction to the continuous wavelet transform (CWT) 
is presented next. For more details on this subject, interested in these 
topics, readers can consult in Lange et al. [6] or other texts. In order to 
build a robust pattern matching method, we also applied the CWT in 
MS peak detection. In contrast to the algorithm proposed by Mallat 
[7] we directly apply the CWT over the raw spectrum and utilize the
information over the 1D CWT coefficients matrixes, which provide
additional information on how the CWT coefficients change over
scales.

Dolphins family in mammals have good hearing of sensitivity. It is 
caused by a network system senses of hearing has been well. Dolphins 
can be hearing of click sounds with frequencies range 1-150 kHz [8,9]. 
Previous research by looking at a whistle sound vocalizations of dolphins 
and a clicking sound is [10-12]. Vocalizations research about stidulatory 
ever done with object Guppy fish in [13-16]. In this article discuss about 
haar wavelet method to spectral analysis continuous wavelet transform 
1D using whistle sound and position dolphins (Tursiops aduncus), 
dolphins measured in captive of safari park, Cisarua, Indonesia. Data 
analysis in this research with MATLAB R2011a software with haar 
wavelet method in signal processing using MATLAB R2011.

Wavelet Method 
In mathematically, the process of Fourier analysis is represented by 

the Fourier transform:

( ) ( ) j tF f t e dtωω
∞

−

−∞

= ∫ (1)

Which is the sum over all time of the signal f(t) multiplied by a 
complex exponential. (Recall that a complex exponential can be broken 
down into real and imaginary sinusoidal components.).

The results of the transform are the Fourier coefficients F(ὠ), 
which when multiplied by a sinusoid of frequency yield the constituent 
sinusoidal components of the original signal. Graphically, the process 
of Fourier transform can be seen in Figure 1.
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Similarly, the Continuous Wavelet Transform (CWT) is defined as 
the sum over all time of the signal multiplied by scaled, shifted versions 
of the wavelet function ψ:

( ) ( ) ( ), , ,C scale position f t scale position t dt
∞

−∞

= ψ∫
                      

(2)

The results of the Continuous Wavelet Transform (CWT) are 
many wavelet coefficients C, which are a function of scale and 
position. Multiplying each coefficient by the appropriately scaled and 
shifted wavelet yields the constituent wavelets of the original signal. 
Graphically, the process of Continuous Wavelet Transform (CWT) can 
be seen in Figure 2.

Notation

Considers n locations in chromosome at which the relative copy 
number is measured by the log2-ratios of fluorescence intensities 
between in tumor and reference samples. A log2-ratio of 0 for a location 
means no aberration is observed at this locus whereas a positive in 
negative value indicates a possible gain in loss at the locus. Denote by 
Y(Xi ) observed copy of number make changes at the i-th genomic 
location Xi for i = 1, . . . , n. In the additive measurement error model 
is postulated for relating the true latent signal f(Xi ) and the observed 
copy number change Y(Xi ). This method model can be expressed as:

( ) ( )Y Xi f Xi i= +∈ ,     `             (3)

where function of { i, i = 1, . . . , n } are identically distributed and 
independent N(0, σ2) and σ is standard deviation (SD). In what follows, 
we will describe the wavelet analysis and various thresholding methods 
for denoising the data.

Wavelet Analysis
Wavelets method is provide a popular tool for the nonparametric 

of regression analysis and for this a variant of wavelet families are used, 
the choice being dependent on the particular of application. Modified 
of Simplest wavelet family method is generated by the Haar function is 
[17] (Figures 3a and 3b).
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Figure 1: Graphically of Fourier transform.

Haar wavelet family for t ∈ [0, 1] is defined: 
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Result and Discussion
In signal processing, haar wavelets are used for instance for edges 

detection, watermarking, texture detection, compression, denoising, 
and coding of interesting features for subsequent classification 
[18,19]. Signal denoising by thresholding of the Continuous 
wavelet transform (CWT) coefficients is discussed in the following 
subsections. Decomposition in continuous wavelet transform with the 
basic functions of compact support roughly matched to neural scale 
transients, the temporal contiguity in the wavelet domain is inherently 
preserved. The scale contiguity follows from a broad frequency whistle 
sound spread of a time-limited signal of whistle sound, namely if a 
scale is thought of as an approximation of the frequency, a time-limited 
transient will be spread across many scales. 

Analyze signal and decomposition Tree of whistle sound in level 
5 using whistle sound can be seen in Figure 4 with spectral color is 
red. There are the results of modulus of Ca, b Coefficients-Coloration 
in it mode + scale, demonstrating the maximum yield that is in the 
frequency of 4.1 kHz-5.9 kHz with the brightest colors are shown in 
Figure 4, while the decomposition Tree of whistle sound in level 1-5 
exposed in Figure 4, and Continuous wavelet transform De-Noising 1D 
level 5 with haar wavelet of whistle sound in Figure 5. Figure 5 shows a 
peak identification process using whistle sound. In order to provide a 
better visual image, we performed the CWT at 32 scale levels (from 1 to 
50 at an interval of 2) directly over in raw MS spectrum. A segment of 
the computed 1D CWT coefficients are shown in Figure 5.

On the results of Continuous wavelet transform denoising 
1D level 5 (Figure 5) with Haar wavelet of whistle sound is seen 
that there is no difference and magnitude pattern noise spectrum 
whistle performed up to level 4 using the Haar wavelet, but at level 
5 results shown distant and very different with the result 1-4 level, 
de-noised signal (D5) (Figure 5) showed in spectral color is green, 
produces the largest signal that is worth 0.02 kU at a frequency of 12.5 
kHz, and a frequency range of very little noise is at 3 kHz 9 kHz. This 
show is still need for the process of de-noising 1D to a level that is 
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Figure 2: Graphically of Continuous Wavelet Transform (CWT).
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Figure 3a: Haar wavelet: (a) scaling function, (b) mother wavelet [17].
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Figure 3b: Signal comparison represented in different domains with (a) Corresponding to the Fourier transform representation, (b) representing the short of Fourier 
transform, and (c) result of wavelet transform.
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Figure 4: Signal processing with haar wavelet in (a) Analyse signal and (b) decomposition Tree of whistle sound in level 5.

more, such as level 10 or by improving the quality of wavelets to 3D as 
it had done [20]. Residuals S-Ds Results showed very different results 
with the original signal, it is similar to the results of non-decimated 
coefficients details vary much with the results of De-noised-decimated 
details coefficients. De-noised results-decimated details coefficients will 
eliminate noise contained in level 1-5 (Figure 5). Equations or methods 
used in this article is very effective to remove noise from sound like 
the previous studies in Messer et al., Yunhui and Tang et al. [21-23], 
but the method in this article not same. CWT 1D in (Figure 5) had 
a very different outcome by the method of discrete wavelet transform 
(DWT 1D) in Coombes et al. [24], it is proved that any differences in 
the method will produce a different picture though both using Haar 
wavelet. Dependent threshold level can be seen in Figures 6-10.

Modifying the equation , object analysis and the wavelet method 
will inevitably result in continuous wavelet denoising and different, it 
is unclear if the results of this study compared with previous studies in 
Du et al., Dubnov et al., Babaei and Nenadic [25-28]. Position dolphins 
have a difference to the threshold level Dependent with Haar wavelet. 
At level 1 and 4 dolphins are more likely to be at the bottom of the pool 
shown in Figures 6 and 9, while the level of 2, 3, 5 dolphins are more 
likely to be on the surface of pool (7, 8, 10), and it indicates a change in 
position dolphins to signal that it generates, and proved this by using 
the haar wavelet analysis on a dependent threshold level. Retained 
energy is 65.87%-zeros 87.01% in original and compressed signal with 
haar wavelet using dolphins whistle sound, the method haar wavelet 
noise successfully lost and this can be seen in (Figure 11). 
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Figure 5: Continuous wavelet transform De-Noising 1D level 5 with haar wavelet of whistle sound.
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Figure 7: Dependent threshold level 2 of whistle sound with haar wavelet.
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Figure 8: Dependent threshold level 3 of whistle sound with haar wavelet.
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Figure 9: Dependent threshold level 4 of whistle sound with haar wavelet.
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Figure 10: Dependent threshold level 5 of whistle sound with haar wavelet.
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Conclusion
We have demonstrated in wavelet denoising techniques and removing 

noise from whistle sound of dolphins. Using haar wavelet method can 
be produce wavelet denoising in continuous Wavelet Transform (CWT), 
Analyze signal, decomposition Tree of whistle sound in level 5, and 
influence the position of the dependent threshold, but this result need for 
the process of de-noising 1D to a level that is more.
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