Hereditary Hemorrhagic Telangiectasia: Patient with Pulmonary Hypertension and Hepatic Encephalopathy

Chit Wai Wong

Department of Medicine and Geriatrics, Caritas Medical Centre, Hong Kong

Abstract

Hereditary hemorrhagic telangiectasia (HHT) is usually under recognized. It is a rare genetic disorder characterized by telangiectasia and epistaxis. Visceral involvement by HHT is common but frequently asymptomatic and remains undiagnosed. However, once the visceral manifestation of the disease occurs, it can result in significant morbidity and mortality. This case report demonstrates the rare complications of pulmonary hypertension and hepatic encephalopathy in HHT.

Case Report

A 78 year-old lady had diagnosis of hereditary hemorrhagic telangiectasia (HHT). She had telangiectasia over mucosa of nasal septum, tongue and both forearms, and frequent recurrent epistaxis for more than 20 years. She had iron deficiency anemia and endoscopy in 2003 revealed multiple angiodysplasia in the stomach. Endoscopic argon plasma coagulation of angiodysplasia in stomach had been performed but was incomplete. She was put on iron supplement with hemoglobin level maintained at around 10 g/dL.

She had developed progressive shortness of breath for a year and was diagnosed to have pulmonary hypertension in late 2010. Transthoracic echocardiography showed a dilated right ventricle with tricuspid regurgitation and was diagnosed to have pulmonary hypertension in late 2010. She was managed with furosemide and was on digoxin for a year with improvement.

She was admitted to medical ward in June 2012 with congestive heart failure, presented with dyspnea and peripheral edema. Transthoracic echocardiography showed satisfactory left ventricular contraction with ejection fraction of 87.64%, and dilated right ventricle with tricuspid regurgitation. She was managed with furosemide and with improvement.

However, she developed sudden onset of mental dullness a few days later. She was afebrile and the physical examination including cardiovascular system, chest and abdomen were unremarkable, and there was no focal neurological sign. Blood (results including complete blood count Hb 11.1 g/dL, WBC 8.7×10^9/L, PLT 210×10^9/L) renal function test (Urea 9.9 mmol/L, Creatinine 49 μmol/L), liver function test (Bilirubin 25 μmol/L, ALP 88 U/L, ALT 13 U/L, Albumin 30 g/L), electrolytes (Sodium 141 mmol/L, Potassium 4.1 mmol/L, Calcium 2.19 mmol/L) and glucose (5.9 mmol/L) showed no significant abnormality. Blood gas result (pH 7.43, pCO2 58.5 mmHg, pO2 61 mmHg, Bicarbonate 40.2 mmol/L) showed no significant difference over the previously one year. However, there was elevated serum ammonia level to 54 μmol/L. Chest X-ray was clear and CT brain showed only old lacunar infarcts. It was also complicated with acute upper gastrointestinal bleeding and another episode of hepatic encephalopathy (Ammonia 181 μmol/L, Bilirubin 16 μmol/L, ALP 178 U/L, ALT 31 U/L, Albumin 20 g/L). Although active management including potent antibiotics, proton pump inhibitor intravenous infusion and blood transfusion were given, her condition continued to deteriorate and died a month after admission.

Retrospective review of contrast-enhanced CT of abdomen done in 2011 showed evidence of liver involvement by HHT. There is markedly dilated common hepatic artery and intrahepatic arterial branches (Figure 1). Besides, there is early filling of hepatic vein during arterial phase which is consistent with the presence of arteriovenous shunt (Figure 2).

Discussion

This case report illustrates a patient with HHT and the clinical manifestations caused by several organs involvement: epistaxis, angiodysplasia in the gastrointestinal tract with iron deficiency anemia, hepatic involvement with hepatic encephalopathy, and pulmonary hypertension.

HHT is a systemic fibrovascular dysplasia, which is characterized by mucocutaneous telangiectasia and Arteriovenous Malformation (AVM) in visceral organs, predominantly the lung, liver, gastrointestinal tract.
HHT is an autosomal dominant disorder. It is caused by mutations of genes. Most important ones are the Endoglin (ENG) gene in chromosome 12, which allows further classification into HHT type 1 (mutation in ENG gene) and type 2 (mutation in ALK1 gene), with type 2 being most frequent [2]. Both genes are essential for maintaining vascular integrity. Due to late onset penetrance, sign of disease may not be present until after age of 30 or 40 [3]. Furthermore, the vascular abnormalities tend to increase in number and grow in size with age. As a result, the clinical manifestation appears progressively during life time and is not uncommon to have first noted at advanced age as in this patient.

Approximately 44% to 75% of HHT patients have lung involvement [4]. AVM in lung causing pulmonary arterial blood bypasses the alveoli to pulmonary vein directly without being oxygenated which leads to hypoxemia. Other clinical consequences of pulmonary AVMs include brain abscess and stroke. It is because bacteria and blood clots can bypass the capillary network of the lung and migrate directly to the brain without being "filtered out". Furthermore, it may cause hemoptysis if bleeding from AVM occurs. Screening for pulmonary AVM is strongly recommended because pulmonary AVM can be safely treated with transcatheter embolo therapy, which in turn can limit the potential significant complications of pulmonary AVM arise [5].

Pulmonary hypertension is a rare pulmonary vascular manifestation of HHT. It has two distinct types. Most commonly, it associates with systemic arteriovenous shunting, mostly the liver AVM [6,7]. This, in turn, leads to increased systemic blood volume, increased pulmonary blood flow, high cardiac output and finally, left heart failure. This precipitates the development of pulmonary hypertension over time, though the precise mechanism is not completely understood [7]. Less commonly, the pulmonary hypertension in HHT can be an isolated condition with similarity to idiopathic Pulmonary Arterial Hypertension (PAH) [8]. It is clinically and histologically indistinguishable from idiopathic PAH. It is characterized by the obliteration of small pulmonary arteries leading to increased pulmonary vascular resistance and thus marked elevation of pulmonary arterial pressure. It is associated with mutations in the ALK1 gene and thus is more common in type 2 HHT [8]. Although the clinical presentations of these two types of pulmonary hypertension in HHT are non-specific and similar, they can be readily differentiated by right side cardiac catheterization. In pulmonary hypertension associated with liver AVM, there is high cardiac output, elevated pulmonary wedge pressure and normal pulmonary vascular resistance. On the contrary, in PAH, the pulmonary wedge pressure is normal and the pulmonary vascular resistance is increase. Management of pulmonary hypertension in association with liver AVM is primarily by medical therapy, which includes correction of anemia, salt and fluid restriction, diuretics and digoxin etc, according to the clinical condition [6]. Treatment with transarterial embolization or ligation of liver AVM can cause significant complications such as hepatic or biliary necrosis [6], and should be used with caution. In HHT patients with pulmonary arterial hypertension, the use of special treatments (prostanoid analogs, sildenafil or bosentan) as for idiopathic pulmonary arterial hypertension, remain to be determined [5]. Nevertheless, treatment of pulmonary AVM by vaso-occlusion is contraindicated in patients with known pulmonary hypertension. It is because pulmonary AVM may contribute to lower the pulmonary artery pressure and pulmonary vascular resistance, so once it is occluded, the underlying pulmonary hypertension may be further worsened [5,9].

Although liver involvement occurs in up to 74% of patients [10], symptomatic involvement is infrequent. It occurs predominantly in females and is associated with mutation in the ALK1 gene (HHT type...
References


