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Introduction
Multivariate Analysis of Variance (MANOVA) can be viewed as a 

direct extension of the univariate (ANOVA) general linear model that 
is most appropriate for examining differences between groups of means 
on several variables simultaneously [1,2]. In ANOVA, differences 
among various group means on a single-response variable are studied. 
In MANOVA, the number of response variables is increased to two 
or more variables. MANOVA has three basic assumptions that are 
fundamental to the statistical theory: (i) independent, (ii) multivariate 
normality and (iii) equality of variance-covariance matrices. A 
statistical test procedure is said to be robust or insensitive if departures 
from these assumptions do not greatly affect the significance level 
or power of the test. The violations in assumptions of multivariate 
normality and homogeneity of covariances may affect the power of the 
test and type I error rate of multivariate analysis of variance test [3-6].

The problem of comparing the mean vectors that are more than 
two multivariate normal populations is called Multivariate Analysis 
of Variance (MANOVA). If the variance - covariance matrices of the 
populations are assumed to be equal, then there are some accepted 
tests available to test the equality of the normal mean vectors, which 
are: [7] largest root, the trace [8-10] likelihood ratio, and the [11,12]. 
Contrary to popular belief, they are not competing methods, but are 
complementary to one another. However when the assumption of 
equality of variance-covariance matrix failed or violated it means that 
none of the aforementioned test statistic is appropriate for the analysis 
otherwise the result will be prejudiced. This predicament is known as 
the multivariate Behrens - Fisher problem which deal with testing the 
equality of normal mean vector under heteroscedasticity of dispersion 
matrices. If the covariance matrices are unknown and arbitrary, then 
the problem of testing equality of the mean vectors is more complex, 
and only approximate solutions are available.

Johansen et al. [13-15] proposed multivariate tests for the situation 
in which the covariance matrices could be unequal. In this study, an 
approximate degree of freedom used [16] for comparing k normal 
mean vectors when the population variance - covariance matrices are 
unknown is proposed and compared with an existing procedure (by 
Johanson) when the groups (k) and random variables (p) are three 
respectively.

Methodology
Let xij… xin be a sample from a p-variate normal distribution with 

mean vector µi and covariance matrix ∑i=1,... k, assuming that all the 
samples are independent. Let sample mean and sample covariance 
matrix be ix  and Si respectively based on the ith sample.
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Where Wp (r, ∑) denotes the p-dimensional Wishart distribution 
with degrees of freedom (df=r) and scale parameter matrix ∑.

The problem of interest here is to test:
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The first two central moments of L are obtained:

We shall consider the test statistic 1'y S y−  and use Univariate 
Satterthwaite approximation of degrees of freedom method to suggest 
multivariate generalization based on the T2– distribution [22-29]. Let
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Eqn. (12) is the multivariate version of eqn. (8) given by 
Satterthwaite

A linear combination of p (random) variables
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Substitute eqn. (12) into eqn. (13)
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Substitute eqn. (12) into eqn. (15)
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Substitute eqns. (14) and (16) into eqn. (11)
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Johanson’s test [17]:
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Johason showed that, under H0, JOH is approximately distributed 

as 1, 2f fF  random variable, where the 1 ( 1)f p k= −  and 
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2 .
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hypothesis in eqn. (3) whenever 1, 2,1OH f f aJ F −≥ .

Proposed Method
The entire aforementioned scholars worked on the degree of 

freedom by using various methods to get approximate degree of 
freedom to the test statistic, which the proposed procedure intended 
to, by extending Satterthwaite’s procedure (two moment solution to 
the behrens-fisher problem) in univariate to a multivariate Behrens-
Fisher problem. In Satterthwaite [16] proposed a method to estimate 
the distribution of a linear combination of independent chi-square 
random variables with a chi-square distribution. Let i iL a u=∑  where 
ai are known constants, and Ui are independent random variables such 
that
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Since linear combination of random variable does not, in general, 
possess a chi-square distribution. Satterthwaite [16] suggested the use 
of a chi-square distribution, Say ( )

2
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From an intuitive standpoint, the distribution of [ ]
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E L
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characteristics similar to some member of the chi-square family of 
densities [17-21]. But recall that if a chi-square distribution has degrees 
of freedom (ni-1), then its mean is and variance is 2(ni-1).

Symbolically, this requires that, the first moment of the statistic is:
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This implies that a chi-square with f degrees of freedom should be 
used.

Let consider the second moment. The variance of the statistic is:
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Data simulation

Data was simulated in R environment to estimate power of the test 
and Type I error rate when the alternative hypothesis is true (that is 
when the mean vectors are not equal).

Data analysis

Simulated and real life data sets from previous study [17] were used 
to compare the proposed/alternative procedure with the existing one 
(Johanson). For the simulated data, three factors were varied namely; 
number of groups (k), the number of variables (p) and significant levels 
(α).

In each of the 1000 replications and for each of the factor 
combination, an in p× (where i=1,….4) data matrix Xi were generated 
using an R package for Multivariate Normal. The programme also 
performs the Box-M test for equality of covariance matrices using the 
test statistic:

( ) 1

1

1 log
k

i i p
i

M c n S S−

=

= −∑ ,

Where

( )1
1k

i ii
p

n S
S

n k
=

−
=

−
∑

( )( )
2

1

2 3 1 1 11
6 1 1 1

k

j j

p pc
k p n n k=

 + −
= − − 

− + − −  
∑

( )2 1BX C M= −

And Si and Sp are the ith unbiased covariance estimator and the 
pooled covariance matrix respectively. Box’s M has an asymptotic chi-

square distribution with ( )( )1 1
2

p k k+ −  degree of freedom. Box’s 

approximation seems to be good if each ni exceeds 20 and if k and p do 
not exceed 5 [11]
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( )B a vX X≥  where 

1 ( 1)(k 1)
2

v p= + − .

Result
Table 1 shows that irrespective of the sample size and significant 

level α, the propose procedure has the higher power of the test and less 
type I error rate compared to Johanson when the alternative hypothesis is 
true. The two only have the same type I error rate when the sample sizes 
are large (100’s and 200’s), but then the powers of the test are not the same 
throughout the sample sizes considered (5’s, 10’s, 50’s, 100’s and 200’s).

From Table 2, when the sample size are not equal and very small 
[(5,10,15) and (20,25,30)], Johanson procedure perceived to be better 
than the propose procedure in terms of power of the test but poor 
in type I error rate at significant level α=0.01, but when sample sizes 
increases to (50,70,90) and (100,150,200) the propose procedure 
performed better at the two significant level (α=0.01 and 0.05).

Table 3, when the sample sizes are small [(5,5,5) and (10,10,10)] 
and equal in all the groups, Johanson performed better at significant 
level α=0.01 in terms of power of the test while propose procedure are 
better in terms of type I error rate in all the scenario, but when sample 
sizes are (100,100,100) and (200,200,200) they both perform the same.

From Table 4, when the stimulated data are multivariate gamma 
and unbalance, the propose procedure are better than Johanson 
procedure in the entire scenario both in terms of power of the test and 
type I error rate.

Illustrative example

The real life data used by Krishnamoorthy and Xia [27] was used 

Power of the test
Correction (x1=0.94, x2=0.81 and x3=0.96)
  Sample size 0.01 0.05

Johanson Propose Johanson Propose
P=2 and k=3 5, 5, 5 0.0381 0.0391 0.1386 0.1522

10, 10, 10 0.0651 0.0803 0.1904 0.2607
50, 50, 50 0.3732 0.4589 0.5895 0.9039
100, 100, 100 0.7304 0.9109 0.8752 0.932
200, 200, 200 0.9744 0.9901 0.9933 0.9992

Type I error rate
  Sample size 0.01 0.05

Johanson Propose Johanson Propose
P=2 and k=3 5, 5, 5 0.952 0.875 0.83 0.645

10, 10, 10 0.843 0.662 0.636 0.375
50, 50, 50 0.025 0.003 0.004 0.001
100, 100, 100 0 0 0 0
200, 200, 200 0 0 0 0

Table 1: Multivariate Normal Distribution (For balanced design).

Power of the test
Correction (x1=0.94, x2=0.81 and x3=0.96)
  Sample size 0.01 0.05

Johanson Propose Johanson Propose
P=2 and k=3 5, 10, 15 0.0624 0.0469 0.1866 0.579

20, 25, 30 0.1546 0.0761 0.3366 0.3586
50, 70, 90 0.4994 0.5626 0.7132 0.875
100, 150, 200 0.8848 0.962 0.9587 0.9792

Type I error rate
  Sample size 0.01 0.05

Johanson Propose Johanson Propose
P=2 and k=3 5, 10, 15 0. 863 0. 626 0.633 0. 334

20, 25, 30 0.408 0. 172 0.177 0.05
50, 70, 90 0.005 0.001 0 0
100, 150, 200 0 0 0 0

Table 2: Multivariate normal distribution (For unbalanced design).
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to compare propose procedure with Johanson procedure so as to 
understand the behavior of these two tests as described early on, for 
comparing several groups. There are five samples of 30 skulls from each 
of the early predynastic period (circa 4000 BC), the late predynastic 
period (circa 200 BC), and the Roman period (circa AD 150). Four 
measurements are available on each skull, namely. X1=maximum 
breadth, X2=borborygmatic height, X3=dentoalveolar length, and 
X4=nasal height (all in mm). And ni=...=n4=15, the number of groups 
is k=4, while the number of variables is p=4. The null hypothesis of 
interest is whether the mean vectors for the four variables are the same 
across the four periods [31,32]. The hypothesis may be written as
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S

− 
 
 =
 
 
 

Power of the test
Correction (x1=0.94, x2=0.81 and x3=0.96)
  Sample size 0.01 0.05

Johanson Propose Johanson Propose
P=2 and k=3 5, 5, 5 0.0334 0.0296 0.1299 0.2229

10, 10, 10 0.0631 0.0561 0.1941 0.2086
50, 50, 50 0.4786 0.6008 0.7069 0.8179
100, 100, 100 0.8601 0.9115 0.9527 0.955
200, 200, 200 0.9966 0.999 0.9994 0.9997

Correction (x1=0.94, x2=0.81 and x3=0.96)
  Sample size 0.01 0.05

Johanson Propose Johanson Propose
P=2 and k=3 5, 5, 5 0.977 0.952 0.896 0.73

10, 10, 10 0.894 0.651 0.587 0.225
50, 50, 50 0.002 0.000 0.001 0.000
100, 100, 100 0.0000 0.000 0.000 0.000
200, 200, 200 0.000 0.000 0.000 0.000

Table 3: Multivariate Gamma Distribution (For balanced design).

Power of the test
Correction (x1=0.94, x2=0.81 and x3=0.96)
  Sample size 0.01 0.05

Johanson Propose Johanson Propose
P=2 and k=3 5, 10, 15 0.073 0.086 0.2163 0.2221

20, 25, 30 0.2105 0.2149 0.4319 0.4559
50, 70, 90 0.6827 0.8976 0.8516 0.9753
100, 150, 200 0.9719 0.9873 0.9933 0.9991

Correction (x1=0.94, x2=0.81 and x3=0.96)
  Sample size 0.01 0.05

Johanson Propose Johanson Propose
P=2 and k=3 5, 10, 15 0.831 0.543 0.475 0.167

20, 25, 30 0.147 0.043 0.041 0
50, 70, 90 0 0 0 0
100, 150, 200 0 0 0 0

Table 4: Multivariate Gamma Distribution (For unbalanced design).

 α Johanson Propose Procedure 
  Critical 

value
Test 

statistic
Power P-value Critical 

value
Test 

statistic
Power P-value

0.05 2.0443 2.2751 0.104 0.0294 2.6138 7.6763 0.5268 0.0001
0.025 2.3451 2.2751 0.0579 0.0294 3.1377 7.6763 0.4059 0.0001
0.01 2.7464 2.2751 0.0263 0.0294 3.8459 7.6763 0.2745 0.0001

Table 5: Null hypothesis.
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1

0.169 0.015 0.005 0.065
_ 0.170 0.003 0.111
_ _ 0.160 0.059
_ _ _ 0.483

S −

− − 
 − =
 
 
 

Using all the above matrices, we have:

1

1

134.09
134.10

ˆ
98.349
50.832

k

o i i
i

W W Xµ∗ −

=

 
 
 =
 
 
 

∑

All the above matrices are computed using R package. Then we 
have:

( ) ( ) ( )'

1

ˆ ˆ; 33.08102
k

i i i o i i o
i

T X S X w Xµ µ∗ ∗

=

= − − =∑
From the Table 5 above, when significant level α is 0.05 Johanson 

and propose procedure rejected null hypothesis because test statistic 
is greater than critical value that is 2.275 is greater than 2.0443 and 
7.6763 is greater than 2.6138, also p-values of Johanson is 0.0294 which 
is less than 0.05 and that of propose procedure is 0.0001 which is less 
than 0.05, but when significant level α are 0.025 and 0.01, Johanson 
accepted the null hypothesis because 2.275 is less than 2.3451 and 
2.7464 with p-value greater than α, while propose procedure rejected 
null hypothesis since 7.6763 is greater than 3.1377 and 3.8459 with 
p-value less than α.

Remark
From the simulated data, it is obvious that the propose procedure 

performed better than Johanson procedure because its (propose 
procedure) power of the test are higher than that of Johanson procedure 
in the entire scenario that is, when sample size differs, when significant 
level α varies, when the design are balance and unbalance. Also from the 
illustrative example, it is observed that propose procedure performed 
than Johanson procedure because propose procedure has the higher 
power of the test than Johanson.
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