alexa High Abundance Proteins: Proteomer’s Thorns in the Flesh? | OMICS International
ISSN: 0974-276X
Journal of Proteomics & Bioinformatics

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

High Abundance Proteins: Proteomer’s Thorns in the Flesh?

Ravi Gupta*

Life and Energy Convergence Research Institute, Pusan National University, Republic of Korea

*Corresponding Author:
Ravi Gupta
Department of Plant Bioscience
Life and Energy Convergence Research Institute
Pusan National University
Miryang, 627- 706, Republic of Korea
Tel: +82-1092170356
E-mail: [email protected]

Received Date: July 04, 2017; Accepted Date: July 20, 2017; Published Date: July 22, 2017

Citation: Gupta R (2017) High Abundance Proteins: Proteomer’s Thorns in the Flesh? J Proteomics Bioinform 10:e35. doi: 10.4172/jpb.1000e35

Copyright: © 2017 Gupta R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Proteomics & Bioinformatics


Identification of low-abundance proteins is one of the major challenges in Proteomics because of the high dynamic range of the protein concentration in the biological samples [1]. Therefore, one of the prime objectives of the proteomers is to reduce the dynamic protein concentration range to shed a light on the “low-abundance proteome” or sometimes referred as “Hidden Proteome” [2]. The development and utilization of latest mass spectrometers have increased the sensitivity of the protein identification, fostering the identification of proteins present in extremely small amounts (up to attomoles, in isolation) [3]. However, the identification of low-abundance proteins during the analysis of whole cell/tissue proteome is still not achievable without any prefractionation of the samples [4]. One of the major reasons of this limited resolution, during total proteome analysis, is the presence of high-abundance proteins which occupies a major portion of the cell/ tissue proteome. Albumin in blood [1], RuBisCO in green leaves [5], and storage proteins in seeds, tubers, and roots [6] are some of the common examples of the high-abundance proteins in the biological samples. These high abundance proteins are products of the genes which are present in large copy numbers and inevitably impede the identification and characterization of low abundance proteins. Biomarkers or signaling/regulatory proteins are generally lowabundance in nature and are masked by the presence of these abundant proteins which are present in numbers 105-106 copies per cell [2,7,8]. As an example, 22 most abundant proteins, in the human blood plasma, constitute approximately 99% of the total plasma proteome with lowabundance proteins present as only 1% of the total plasma proteome [9]. Because of the presence of these high-abundance proteins, proteomics studies majorly ends up with the repeated identification of different components of these abundant or house-keeping proteins and thus actual information of the biological phenomenon remains concealed. The possibility to look beyond these abundant proteins or go further lies on the successful enrichment and identification of the low-abundance proteins which are present less than 100 copies per cell [7].

Several methods have been developed in the last two decades to enrich and identify the low-abundance proteome [2,8]. Most of these methods, if not all, depend on the specific depletion of high-abundance proteins, thus enriching the low-abundance proteins in the remaining fraction [10,11]. These depletion based methods utilize different chemicals [12,13], solvents [14] or antibodies against the target proteins [15] to efficiently remove the high-abundance proteins from the total protein samples. Previous reports have shown that depletion of albumin from plasma [15], RuBisCO from leaf [5,12,13] and storage proteins from seed [16,17] and tuber [14] samples lead to the significant increase in the proteome coverage and identification of low-abundance proteins. However, although the precipitation based methods are rapid and cost-effective, there is always a risk of loss of some non-target proteins that might precipitate along with the depleted target proteins. Previously, it was shown that depletion of albumin also removes low-abundance cytokines from the human plasma [18]. As these low-abundance proteins are of biological interest, non-specific depletion of these could result in potential loss of biological information.

In addition to these depletion based methods, hexapeptide ligand library (available as a trade name of “ProteoMiner”, BioRad), has also been proved to be highly efficient in reducing the dynamic protein concentration range of different biological extracts from both plants and animals [19-21]. This technique utilizes hexapeptide ligand libraries for capturing proteins where different ligands are capable of binding different proteins. As the library consists of the equal amount of each ligand, it can lead to the enrichment of low-abundance proteins when total protein extracts are applied on the columns under overloading conditions [19,22].

However, as these prefractionation techniques involve and additional step, these could potentially affect the reproducibility of the obtained data, leading to the preanalytical bias [23,24]. Increasing the number of biological and technical replicates per sample can reduce the preanalytical bias. Moreover, analysis of both the high-abundance protein depleted and enriched fractions can further help in reducing the preanalytical bias. Overall, these methods have been proved fruitful in the removal of the high-abundance proteins, which are the major hurdle in the identification of low-abundance proteins and utilization of these techniques, are, therefore, highly recommended for increasing the proteome coverage of the biological samples.


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

  • Glycobiology, Lipids & Proteomics
    August 27-28, 2018 Toronto, Canada
  • Computational Biology and Bioinformatics
    Sep 05-06 2018 Tokyo, Japan
  • Advancements in Bioinformatics and Drug Discovery
    November 26-27, 2018 Dublin, Ireland

Article Usage

  • Total views: 856
  • [From(publication date):
    July-2017 - Jun 21, 2018]
  • Breakdown by view type
  • HTML page views : 807
  • PDF downloads : 49

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7