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includes the precursor unit mass profile (including adducts, in-source 
fragments, isotopes, etc.), retention time, and MS/MS spectra on the 
ions from the authentic standard. Experimental data is then searched 
against this library and detected compounds are rapidly identified. This 
multi-criteria authentic standard library dramatically diminishes the 
need for HRAM data for compound identification since the multiple 
data streams (i.e., mass, retention and fragmentation pattern), provide 
the needed specificity to make identifications. Using this library, our 
methodology monitors each sample for over 3200 endogenous and 
exogenous metabolites. In addition, this library includes over 4000 
chemicals whose identities have yet to be determined (unknowns). It is 
important to note that while this library consists of such a large number 
of compounds, not all compounds are detected in each experimental 
analysis on a routine basis. Many are matrix specific; for example, found 
in cells or urine only. Others may be species specific or disease specific. 
The field at large has yet to agree on the number of metabolites that are 
routinely detected in mammalian or plant species and there is much 
debate about how many should, can or will ultimately be detectable; 
estimates range from the low hundreds to many thousands [4, 27, 28]. 
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Introduction 
Metabolomics has repeatedly demonstrated utility in identifying 

biomarkers, elucidating disease and treatment mode of action, 
bioprocess improvement and other areas of study [1-7]. The 
instrumentation applied to metabolomics varies widely depending on 
the approach used and the desired properties of the final dataset. NMR 
is often utilized when rapid classification of study samples is needed; 
however, NMR is limited by low sensitivity [8-13]. Triple quadrupole 
mass spectrometers are often used when the desired output is the 
quantification of a specific subset of known biochemicals, often referred 
to as targeted metabolomics [14-16]; however, this approach is blind to 
novel changes and novel biochemicals. Finally, there is small molecule 
profiling, otherwise known as non-targeted metabolomics, which 
aims to detect and semi-quantify as many biochemicals, both known 
and unknown, as possible. This approach is often used to discover 
new insights into biological phenomenon, but presents challenges in 
compound identification and data processing. It is often necessary 
to utilize several of the above noted techniques in combination. For 
example, non-targeted metabolomics techniques may be used to 
discover biomarkers followed by targeted metabolomics, based on 
standard analytical chemistry techniques, to validate the biomarkers 
[17-19]. 

The current non-targeted high-throughput biochemical profiling 
approach utilized by our group differs from many other methodologies 
in the field, which typically rely on High Resolution Accurate Mass 
(HRAM) data output to drive compound identification. A great deal of 
literature has been focused on how to best utilize these data streams for 
compound identification [20-25]. In our approach, rather than relying 
on HRAM data to identify biochemicals, identifications are based on 
multiple orthogonal criteria to a unit mass spectral library built from 
authentic standards, so called tier 1 identifications [26]. This library 
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Even though, given our methodology, accurate mass 
instrumentation is not necessary for compound identification, we 
wanted to assess the other potential analytical benefits, above and beyond 
compound identification, from the use of HRAM data on our non-
targeted metabolomics methodology [29]. The goal of this evaluation 
was to compare and contrast the analytical performance characteristics 
of HRAM data to Unit Mass Resolution (UMR) data. The analyses 
included assessing Linear Dynamic Range (LDR), Limit Of Detection 
(LOD)/sensitivity, scan rate, and mass accuracy, then determining how 
these different factors impacted the process variability, the number of 
compounds and features detected, and the overall quality of data in a 
biological non-targeted metabolomics analysis. 

To perform this evaluation, separate sets of data were analyzed. To 
compare the limit of detection/sensitivity and linear dynamic range for 
the different instrument data streams two different dilution series of 
isotopically labeled standards, ranging from 0.05 ng/mL to 250,000 ng/
mL, and spanning almost seven orders of magnitude, were analyzed. 
The different dilution series were designed to assess different aspects 
of the sensitivity profile of the instruments. One series contained 
standards which spanned chromatographic time and was analyzed 
using reverse-phase chromatography while the other spanned a wider 
mass range and was analyzed using Hydrophilic Interaction Liquid 
Chromatography (HILIC). The next set of data analyzed was from 
30 individual human serum samples, and 11 Quality Control (QC) 
samples, which included six technical replicates of a pool of aliquots 
from each of the 30 serum samples [30] to assess process variability, 
and five water blanks used to identify process contributed artifacts. The 
individual serum and QC samples were used to compare the analytical 
performance of the instrument data streams based on the total number 
of chromatographic peaks detected, the total number of named/
known compounds that were detected and identified, scan speed, mass 
accuracy and precision, process variability, reproducibility/consistency 
and accuracy of detection and integration. 

While we have not focused on data processing software in this 
manuscript, without such tools and methodologies the robust analysis 
of the data would not have been possible. It is well established that 
one challenge of any high-throughput screening methodology is data 
processing. A great deal of previous work has established the necessary 
software applications, tools and methodologies in order to permit rapid 
compound detection, integration, identification and QC of the data 
streams being analyzed in this study [31-33]. 

Experimental Section
Sample Material

Found in Supplementary Information 1.

Sample Preparation

Dilution Series: The aliquots were analyzed on two separate 
ThermoFisher Scientific (Waltham, MA) mass spectrometers; a Linear 
Ion-Trap (LTQ) and an Orbitrap (Q-Exactive), to determine the 
limit of detection and the linear dynamic range of each instrument 
for each standard. The two different series dilutions were prepared; 
one destined for a reverse-phase chromatographic method and the 
other for a Hydrophilic Interaction Liquid Chromatographic (HILIC) 
method. The dilution series of standards ranged from 0.05 ng/mL to 
250,000 ng/mL and included one blank. For the reverse-phase dilution 
series, aliquots were dried and then reconstituted with 100 µL 0.1% 
formic acid in water. The list of standards in the reverse-phase dilution 
series can be found in Supplementary Information 2. For the HILIC 

dilution series of energy metabolites, 50 µL aliquots were plated into 
two 96-well PCR plates each at twice the final concentration in 60/40 
acetonitrile/10mM ammonium formate buffer (pH 10.6) and brought 
to final concentration with 50 µL acetonitrile. The list of standards in 
the HILIC dilution series can be found in Table 1 .

Biological Samples

Biological samples were stored at -80°C until needed and then 
thawed on ice just prior to extraction. Extraction of samples was 
executed using an automated liquid handling robot (Hamilton LabStar, 
Hamilton Robotics, Inc., Reno, NV), where 450 µL of methanol was 
added to 100 µl of sample to precipitate proteins. The methanol 
contained four recovery standards, DL-2-fluorophenylglycine, 
tridecanoic acid, d6-cholesterol and 4-chlorophenylalanine to 
allow confirmation of extraction efficiency. Four aliquots of each 
sample were taken from the extract and dried. For serum samples, 
two aliquots of each sample were reconstituted in 50 µL of 6.5 mM 
ammonium bicarbonate in water (pH 8) for the negative ion analysis 
and another two aliquots of each were reconstituted using 50 µL 0.1% 
formic acid in water (pH ~3.5) for the positive ion method. Urine 
samples were extracted similarly but reconstituted with 100 µL of 
reconstitution solvent. Reconstitution solvents contained instrument 
internal standards (listed in Supplementary Information 2) to assess 
instrument performance and to serve as retention index markers for 
chromatographic alignment. Extracts of a pooled serum sample were 
injected six times for each data set on each instrument to assess process 
variability and five water aliquots were also extracted and analyzed to 
serve as process blanks for artifact determination. 

UPLC Method 

Separations were performed using a Waters Acquity UPLC 
(Waters, Milford, MA). Reverse-phase (RP) positive ion method 
analysis used mobile phases consisting of 0.1% formic acid in water 
(A) and 0.1% formic acid in methanol (B). Reverse-phase negative 
ion analysis used mobile phases consisting of 6.5 mM ammonium 
bicarbonate in water, pH 8 (A) and 6.5 mM ammonium bicarbonate 
in 95% methanol/ 5% water (B). The gradient profiles can be found in 
Supplementary Information 3. The sample injection volume was 5 µL 
and a 2x needle loop overfill was used. Separations utilized separate 
acid and base-dedicated 2.1 mm × 100 mm Waters BEH C18 1.7 µm 
columns held at 40°C. 

HILIC used mobile phases consisting of 10 mM ammonium 
formate in 15% water, 5% methanol, 80% acetonitrile (effective pH 
10.16 with NH4OH) (A) and 10 mM ammonium formate in 50% water, 
50% acetonitrile (effective pH 10.60 with NH4OH) (B). The gradient 
profiles can be found in Supplementary Information 3. The sample 
injection volume was identical to the RP method. The stationary phase 
consisted of a 2.1 mm × 150 mm Waters BEH Amide 1.7 µm column 

Standard HRAM LOD ng/ml UMR LOD ng/ml Nominal m/z
Succinate 0.5 5 117

Malate 0.5 25 133
Alpha-ketoglutarate 0.1 25 145

pyruvate 10 100 175*

ATP 2500 5000 506
NAD+ 250 250 540
NADH 500 500 664

*dimer used for quantification

Table 1: Limit of Detection (LOD) for a Dilution Series of Standards Ranging in 
Mass Using HILIC Chromatography.
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held at 40°C.

Unit Mass Resolution (UMR) Method

A ThermoFisher Scientific (Waltham, MA) LTQ was the unit mass 
resolution instrument tested. Detailed source, MS and MS/MS settings 
can be found in Supplementary Information 4. For all methods, the 
scan range was 80-1000 m/z with a scan speed of ~4.5 scans per second 
(alternating between MS and MS/MS scans). The MS/MS dynamic 
exclusion option was enabled with the user-set exclusion duration time 
of 3.5 s. Calibration of the LTQ instrument was performed as needed.

High Resolution Accurate Mass (HRAM) Method

A ThermoFisher Scientific (Waltham, MA) Q-Exactive [34] was 
the HRAM instrument tested. Detailed source, MS and MSn settings 
can be found in Supplementary Information 4. The scan range was 80-
1000 m/z with a scan speed of ~9 scans per second (alternating between 
MS and MS/MS scans), and the resolution was set to 35,000 (measured 
at 200 m/z). Mass calibration was performed as needed to maintain <5 
ppm mass error for all standards monitored.

Data Processing and Analysis

A detailed description of data processing including chromatographic 
alignment, QC practices and compound identification can be found in 
references [31-33]. A brief description is provided below.

Dilution Series Analysis

To analyze the data from the dilution series experiment, the 
ThermoFisher Scientific software Xcalibur QuanBrowser was used 
for peak detection and integration. This software package targeted the 
specific compounds in the dilution series and permitted optimization 
of peak detection and integration criteria on a per-compound and a 
per-sample basis. The integration of each individual chromatographic 
peak was manually approved and the integration refined, if necessary, 
for each standard in each step of the series to ensure an accurate 
comparison of instrument performance.

Biological Sample Analysis

In-house peak detection and integration software was used whose 
data output was a list of m/z ratios, retention indices and area under 
the curve (AUC) values. User specified criteria for peak detection 
included thresholds for signal to noise ratio, area and width. Relative 
standard deviations (RSDs) of peak area were determined for each 
internal and recovery standard to confirm extraction efficiency, 
instrument performance, column integrity, chromatography and 
mass calibration. The biological data sets, including QC samples, were 
chromatographically aligned based on a retention index that utilized 
internal standards assigned a fixed RI value [35,36]. The RI of the 
experimental peak was determined by assuming a linear fit between 
flanking RI markers whose RI values are set. 

Peaks were matched against an in-house library of authentic 
standards and routinely detected unknown compounds specific to 
the respective method. Identifications were based on retention index 
values within 150 RI units (~10 s), experimental precursor mass match 
to the library authentic standard within 0.4 m/z for the LTQ or 0.005 
m/z for the accurate mass instrument and quality of MS/MS match. 
All proposed identifications were then manually reviewed and hand 

curated by an analyst who approved or rejected each identification 
based on the criteria above [31,32].

Results and Discussion
Dilution Series Limit of Detection (LOD)/Sensitivity

The LOD of an instrument is a direct measurement of an 
instrument’s capability to distinguish a compound’s signal from any 
noise present in the mass channel. The lower the limit of detection, 
the more sensitive the instrument is and therefore the more signals 
can be detected and/or distinguished from noise. In the application 
of non-targeted metabolomics, it is critical to be able to detect as 
many compounds as possible and therefore any technology that offers 
lower limits of detection and improved sensitivity provides increased 
compound detection. To compare the limits of detection and therefore 
sensitivity of each instrument, two separate dilution series, one using 
reverse-phase chromatography and the other hydrophilic interaction 
liquid chromatography (HILIC), were run. Each dilution series 
contained a unique set of compounds used to assess different aspects 
of instrument sensitivity; the reverse-phase dilution series standards 
spanned the chromatographic time window and the HILIC dilution 
series standards covered a wider mass range. The reverse-phase dilution 
series included nine labeled standards ranging in concentration from 
0.05 ng/mL to 250,000 ng/mL, with each concentration being run in 
triplicate. 

This dilution series demonstrated that the HRAM data stream had 
consistently lower LODs than the UMR data stream (Supplementary 
Information 2) in scanning mode. The degree of improved sensitivity 
ranged from several fold to several orders of magnitude. The LOD 
was determined as the lowest concentration where a discernible and 
reproducible peak could be detected and/or distinguished from the 
background in all technical replicates and demonstrated dilution from 
the next higher concentration. 

The improvement in sensitivity is likely a result of the decreased 
noise associated with the smaller isolation window utilized with the 
HRAM data. The HRAM data demonstrated better than 3 ppm mass 
accuracy for the dilution standards and therefore, when integrating 
peaks, a 5 ppm mass window could confidently be used to detect and 
quantify these standards. This meant that instead of having to use a 
total mass window of 0.4 m/z, which was used for the UMR analysis, a 
much smaller mass window could have been used to isolate the same 
analytical signature. As an example, the mass window of 0.001 m/z 
could be used to isolate the analytical signature for d3-leucine on the 
HRAM data, while for this same signature in the UMR data one would 
have to use a 0.4 m/z window. Ultimately, using smaller mass windows 
included significantly less noise thus improving the signal/noise ratio. 
The reasoning for assessing the difference in sensitivity of these two 
instruments using dilution series was that often the noise associated 
with the HRAM data stream was minimal to non-existent, therefore 
sensitivity was determined as the first concentration where a signal was 
detected. 

It should be noted that the HRAM instrument tested contained 
a different and newer source design than the UMR instrument. It is 
possible that the new source design increased signal, which in addition 
to the reduction in noise due to tighter mass tolerance, improved the 
sensitivities of these standards as well. In order to better assess the 
relative contribution of improved sensitivity resulting from an increase 
in signal or a decrease in noise we performed another dilution series 
which included several higher mass energy metabolites analyzed using 
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hydrophilic interaction liquid chromatography (HILIC). In general, 
the amount of background noise in a mass spectrometer is higher at 
lower masses and decreases with higher masses. This low mass noise 
is primarily from solvent clusters and contaminants. If the gain in 
sensitivity seen is driven by a reduction of noise, then at higher masses 
the difference between the HRAM data and the UMR data would be 
less pronounced as there is less noise in the higher mass region. Table 
1 shows that the LOD/sensitivity for the higher mass standards are the 
same or very similar between the HRAM and UMR instruments. This 
data supports the theory that the improvement in sensitivity between 
these instruments is primarily due to the reduction of noise provided 
by the tighter mass window tolerance. 

Number of Compounds and Peaks Detected in a Biological 
Sample Set 

The dilution series data demonstrated the improved sensitivity of 
the HRAM data over UMR data using standards in a neat environment. 
In order to understand the implications of improved sensitivity on 
biologically variable and complex samples, a sample set consisting 
of 30 individual human serum samples, along with QC samples, was 
analyzed. This sample set was run on both instruments and the data 
monitored for approximately 3200 known compounds using an in-
house authentic standards library. Identification of compounds was 
based on three criteria: 1) mass match within 0.4 m/z for the UMR 
data and a very conservative value of 0.005 m/z for the HRAM data, 
2) fragmentation spectral match, and 3) retention time/index match, 
all to the authentic standard library entry for each compound. Data 
was manually inspected to remove compounds not present with at least 
3x greater concentration than the corresponding peaks found in the 
water blanks and to assess quality of fragmentation spectral match and 
consistency of integration of peaks sample to sample [31,32]. 

Figure 1 shows the number of named/known compounds detected 
from the individual serum samples (list of all detected compounds 
are in Supplementary Information 13 and 14). This data shows that 
the HRAM data enabled the detection of more compounds when 

monitoring for positive or negative ions as compared to UMR data. In 
total, the HRAM data stream permitted the detection of an additional 
118 unique compounds over the UMR data stream. 

The major factors contributing to the increase in the number of 
compounds detected by using HRAM data over UMR data are the 
added mass resolution and sensitivity permitting the detection of 
metabolites whose masses could not be resolved previously, either from 
other compounds or from noise. Many examples of these phenomena 
were seen in the data. Figure 2 demonstrates the ability of the improved 
mass resolution to separate two known and co-eluting compounds. In 
this example, the HRAM data stream (Figure 2A) permitted the clean 
detection of the significantly lower intensity N-acetylglutamine peak 
underneath the N6-acetyllysine peak, whereas N-acetylglutamine 
was masked by N6-acetyllysine in the UMR data (Figure 2B). There 
were also examples in the data where a metabolite could not be 
differentiated from the noise in the UMR data but could reproducibly 
be detected using HRAM data (Figure 3). In Figure 3, the HRAM data 
stream (Figure 3A) is able to distinguish the family of methylxanthine 
compounds from a noisy mass channel that masks the family almost 
entirely in the UMR data (Figure 3B). In addition to detecting more 
unique/new compounds, the HRAM data also showed improved 
consistency of detection, with more compounds being detected in 
100% of the experimental samples in the HRAM data than the UMR 
data (Supplementary Information 5). 

The number of named compounds varies in different matrices. The 
data presented here is from human serum, which is a relatively simple 
matrix, in terms of number of compounds, when compared to other 
matrices like urine or feces. For example, initial data using HRAM 
instrumentation have demonstrated that we were able to detect almost 
800 named compounds in feces (data not shown). It is important to 
note that this large increase in detected compounds is accompanied by 
a large increase in the number of chromatographic/mass peaks (ion-
features) detected. The HRAM data stream produced three to four 
times more ion features than the UMR data stream (Supplementary 
Information 6). The ~3-4x increase in ion-features did not translate 
into 3-4x the number of compounds that were detected, because these 
additional peaks had multiple sources. Some of these additional peaks 
were from the detection of newly detectable known compounds as a 
result of the improved sensitivity and mass resolution, as evidenced 
by the increased number of named compounds detected. However, in 
addition to these newly detected compounds, some of these new peaks 
are simply new redundant measurements of the same parent compound 
in the form of new adducts, in-source fragments, and multimers not 
previously detected for an individual metabolite [20, 37,38]. Finally, 
some of the additional peaks detected could represent compounds not 
previously detected or characterized. As a result, data mining will likely 
add to the number of named compounds.

Process Variability 

The overall process variability of an analytical method contributes 
significantly to the ability to effectively detect changes in concentrations 
of compounds within a biologically variable sample set. The lower 
the process variability of the measurement for any given compound 
the smaller the biologically relevant concentration shift which can be 
accurately and reproducibly detected. In this way, it becomes imperative 
to continually reduce the process variability in order to detect smaller 
yet statistically significant biological concentration changes. 

Biological variability is routinely much higher than process 
variability. Therefore the technical replicates of the serum samples 

 

Figure 1: Shows the number of named/known compounds identified per instru-
ment used and per chromatographic method used (Positive Ion and Negative 
Ion Method). Many compounds were redundantly detected in both the positive 
and negative ion methods. The total unique compound totals remove these 
redundancies and provides a more accurate representation of the number of 
unique named/known compounds identified.
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were used to assess the process variability. In order to assess the effect 
these two data streams had on overall process variability, the median 
Relative Standard Deviation (RSD) for the compounds (excluding 
internal standards) detected in 100% of the technical replicates (6 total) 
was determined. The total process variability of the HRAM data set 
was reduced 50% as compared to the UMR data for both the positive 
and negative ion methods. The median RSD went from 13 in the 
UMR data to 6 in the HRAM data, even though the HRAM data set 
detected more total compounds (Supplementary Information 7). This 
reduction in process variability seems to be mostly a result of improved 
consistency and quality of peak detection and integration, again due 
to the reduction of noise associated with the tighter mass tolerance 
that can be utilized in the HRAM data. In Figure 4, the selected ion 
chromatogram for N-acetylhistidine is shown from two individual 
human urine samples (black and red traces respectively) from UMR 
data (Figure 4A) and from HRAM data (Figure 4B). Given the more 
clearly defined peak start and stop in the HRAM data (Figure 4B), 
automated software could more readily detect and integrate peaks as 
compared to the UMR data shown in Figure 4A, thus driving reduced 
overall process variability. 

Another observation from this data is that the noise associated 
UMR data can mask the differences in concentration between samples 
as seen in Figure 4. In this example, the reduced noise of the HRAM 
data stream (Figure 4B) permitted the detection of the difference in 
concentration of N-acetylhistidine between these two different urine 
samples that was completely masked in the noisier UMR data (Figure 
4A). In this way, the use of HRAM data permitted the detection of 
potentially significant biological changes in concentration that was 
obscured in the UMR data. 

Dilution Series Linear Linear Dynamic Range (LDR)

The LDR of an instrument is a measurement of an instrument’s 
ability to accurately represent concentration changes seen in 
experimental samples. To compare the LDRs of the HRAM and UMR 
instruments, the reverse-phase dilution series data was used. For this 
analysis, the data from the nine labeled standards in the dilution series 
were fitted with a linear trend line. When the area response for each 
concentration deviated enough to shift the linear fit beyond an R2 of 
0.98 the concentration was considered to have become non-linear 
(Supplementary Information 8). Comparing the data streams the 
HRAM data demonstrated an overall increased LDR compared to the 
UMR data. The average LDR for the HRAM data was four orders of 
magnitude, while the UMR data had an average LDR of three orders 
of magnitude (Supplementary Information 9). Interestingly, the UMR 
data was capable, in several cases, of improved linear behavior at higher 
concentrations while still demonstrating an overall reduced LDR as 
compared to the HRAM dataset. This overall reduced LDR was a result 
of the decreased sensitivity at low concentrations for the UMR data 
(Supplementary Information 2). A summary of all LOD and LDR data 
for each standard can be found in Supplementary Information 10. 

As expected, all standards on both instruments demonstrated 
deviations from linear area response behavior at high concentrations 
(Supplementary Information 8-11). This deviation from linearity likely 
derives from electrospray saturation. Even though both instruments 

 

Figure 2: ESI+ extracted ion chromatogram of the masses for N6-acetyllysine 
and N-acetylglutamine from a human serum extract from the HRAM instrument 
(A) and from the UMR instrument (B). Precise masses and mass windows 
used are labeled on each panel. The added mass resolution and accuracy 
permitted N6-acetyllysine to be fully resolved from N-acetylglutamine in HRAM 
data streams, thus permitting the accurate detection of both molecules, which 
was not possible in the UMR data stream.

 

Figure 3: ESI+ extracted ion chromatogram of the mass for the methylxanthine 
family of isomers from a human serum extract from the HRAM instrument (A) 
and from the UMR instrument (B). Precise mass and mass windows used are 
labeled on each panel. The added sensitivity provided by increased mass reso-
lution and accuracy permitted the detection of all three methylxanthine isomers 
in the HRAM data streams from the inherent background noise, which was not 
possible with the UMR data. Vertical lines indicate full MS scans taken during 
analysis. Note the faster scan speed of the HRAM instrument.  

Figure 4: ESI+ extracted ion chromatogram of the mass for N-acetylhistidine 
from two different human urine extracts (black and red traces respectively) 
from UMR data (A) and HRAM data (B). Precise mass and mass windows used 
are labeled on each panel. The added mass resolution and accuracy of the 
HRAM data stream permitted the detection of the difference in concentration 
of N-acetylhistidine between these two samples that was masked in the noisier 
UMR data. This data was reproduced on an alternate HRAM data stream in-
strument to confirm finding (data not shown).
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displayed deviations from linear behavior, the replicate injections 
demonstrated a high degree of precision in the determination of area, 
with the HRAM instrument demonstrating tighter precision than 
the UMR instrument (Supplementary Information 11). In addition, 
while the area response deviated from linear behavior, even at high 
concentration the mass measurements were still within a 5ppm 
tolerance (data not shown) for the HRAM instrument. 

Scan Speed

The scan speed comparison of these instruments is highly dependent 
on the methods and instrument settings used. The UMR instrument 
scanned approximately 4.5 scans per second, which permitted adequate 
sensitivity and UHPLC peak sampling. When operated at 35,000 
resolution (measured at 200 m/z) the HRAM instrument scanned two 
times faster than the UMR instrument (Supplementary Information 12 
and Figure 3, vertical lines). This increased scan speed likely had some 
positive influence on the observed reduction of process variability, 
but more practically, this improved scan speed opened a great deal 
of flexibility around method development. For example, given our 
requirement of MS/MS spectrum match for compound identification, 
the HRAM instrument scanned fast enough that one could choose 
to take one full mass MS scan followed by two or even three data 
dependent MS/MS scans (top 2 or 3, respectively) and still obtain 
more full mass MS scans in a second, which are used for determining 
the area under the curve for quantification purposes (Supplementary 
Information 12). Others might find the ability to increase the mass 
resolution of the instrument, thus lowering the scan speed in order 
to gain mass resolution, more important to their specific application. 
Either way the added scan capacity opens up more options for the user. 
For our instrument comparison the same scan profile was maintained, 
specifically one MS scan followed by one MS/MS scan (top 1), for all of 
the reported comparisons. 

Accurate Mass for Unknown Identification

While the presented work focused on the known or named 
compounds detected, a large component of any global screening 
metabolomics method is the detection of unknowns. Unknowns or 
unnamed compounds are compounds with reproducible mass, retention 
and fragmentation characteristics but for which a precise identity has 
yet to be determined. While the majority of compounds detected in 
the serum sample set were named/known compounds matched to 
authentic standard library entries, many were unknown compounds. 
There is certainly a great deal of work by the community focused on 
identifying similar unknowns found in various biological data since 
these can often be distinguishing biomarkers or display important 
correlations with the study design at hand. By using the HRAM stream 
of data the mass assignments of these unknowns can be automatically 
used to identify or aid in identification of these unknowns. For many 
of the lower mass unknowns detected in biological data the accurate 
mass data can lead to a unique molecular formula, particularly when 
fragmentation and isotope ratios are included in the determination 
[21,22]. Therefore these instruments also provide powerful additional 
information to aid in the identification of unknowns without need 
for additional sample analyses. In the time between the analysis and 
data processing of the data presented in this manuscript and more 
recent data analyzed in human serum the number of named/known 
compounds has increased to over 600 (data not shown) as a result of 
the accurate mass data stream permitting us to identify and annotate 
unknowns. 

Conclusion
Our results demonstrate the utility of HRAM data above and 

beyond its use for compound identification. The HRAM data 
offered significant analytical benefits to every aspect of data quality 
investigated and improved downstream data processing of high 
throughput metabolomics data. The HRAM data, mostly through the 
reduction of noise and interferences, demonstrated greater sensitivity, 
wider dynamic range, reduced process variability and permitted 
the detection of more compounds than the UMR data without 
detrimental effect on scan speed. While only orbitrap-based HRAM 
instrumentation was directly evaluated, it is likely that other accurate 
mass instrumentation, such as ToF, will demonstrate similar analytical 
benefits [39]. While metabolomics, as a whole, is far from being only 
an instrumentation problem, our results indicate that the HRAM data 
stream demonstrated significant analytical improvement. In addition 
to the benefit of accurate mass for compound identification, this type 
of instrumentation is likely to be extremely beneficial to practitioners 
of non-targeted metabolomics. 
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