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Introduction
Epigenetics is the study of changes in phenotype without the 

corresponding changes in genotype, and historically it includes all the 
“inexplicable” changes in heritability of phenotype from a single cell 
to an organism [1]. More recently, a branch of epigenetics examines 
non-genetic tumor genesis and progression. This branch stems from 
the notion that not all cancers are generated by genetic alterations, 
rather epigenetic changes that lead to silencing of certain genes, while 
allowing transcription machinery access to other genes, resulting in 
divergence from the parent cell line, loss of cell regulation, and cell 
immortalization [2-8]. 

A group of key players in transcriptional regulation are histone 
acetyltransferases (HATs) and histone deacetylases (HDACs) (Figure 
1). These two classes of enzymes work in opposing direction by either 
catalyzing the transfer of acetyl groups from acetyl coenzyme A 
(HATs) or by removing acetyl groups (HDACs) from lysine residues 
of histone tails [2,3,5-11]. Besides acetylation, histones are capable of 
being methylated, phosphorylated, ubiquinated, sumoylated, poly-
ADP ribosylated, carbonylated and glycosylated [2,12].

Mechanisms of action of HDACIs

In eukaryotic cells, DNA wraps around histone proteins, creating 
complexes called nucleosomes that are packaged inside the nucleus. 
How tightly the negatively charged DNA is wrapped around the 
histones partly depends on the acetylation state on histone lysine 
residues, particularly on histones H3 and H4 [1,8,13]. HATs add an 
acetyl group from acetyl coenzyme A to the lysine ε-amino group, 
which reduces the positive charge on the histones. When histones are 
acetylated, the DNA is more loosely wrapped, thus leading to gene 
activation. HDACs, on the other hand, cause deacetylation, resulting 
in positively charged histones that are more tightly wrapped by DNA 
[1,6,8]. Histone deacetylation is correlated with gene repression. 
The mechanism of action of HDACI in cancer therapy seems to be 
multifaceted. HDACIs are thought to reduce the deacetylation levels 
of histone proteins that are overexpressed in cancerous cells. HAT/
HDAC enzymes are capable of regulating both histone and non-histone 
proteins; therefore, HDACIs are able to exert their therapeutic activity 
through both histone and non-histone pathways [2,3,7,8,10-12,14-20]. 

Epigenetic therapy

On the market: Although HDACIs have been investigated against 
many different types of cancers in both in vitro and in vivo systems, 
the clinical understanding and applications of these therapeutic 
agents have been limited. More success was noted with liquid tumors 
but there is a shift towards examining the potential use of HDACIs 
in solid tumors [3,6,8,10,11,13,14,16,21-23]. Fewer studies in solid 
tumors have reached the clinical trial phase of development (www.
ClinicalTrials.gov). On the market, only two HDACIs have been 
approved by the FDA, namely vorinostat (Zolinza, approved 2006) and 
romidepsin (Istodax, approved 2009) for the treatment of cutaneous 
T-cell lymphoma (CTCL) [3,10,11]. Both of these HDACIs bind to the
zinc-finger motif of histone deacetylases, resulting in the acetylation

of histones. Vorinostat is considered a pan-inhibitor while romidepsin 
inhibits HDAC Classes I and II, with significantly increased affinity 
[2,9]. 

In clinical trials: Several HDACIs, including valproic acid (an 
antiepileptic drug), vorinostat, entinostat, and panobinostat, are 
presently examined in clinical trials for various types of cancers [24]. 
In a Phase I clinical trial study, the bioavailability of vorinostat ranged 
from approximately 35% to 52% in patients with advanced cancers 
[25]. Several clinical trials showed the oral bioavailability of vorinostat 
and belinostat (PXD101) to be about 33% [26,27]. Valproic acid shows 
good oral bioavailability [28]. It is currently tested for the treatment 
of breast, thyroid, lung, ovarian, bladder, head and neck, pancreatic, 
brain and leukemia cancers. Panobinostat (LBH589) is an HDACI 
that is similar to vorinostat in its mechanism of action but was found 
to be more potent [3,5,8,9,11]. It is being tested against Hodgkin’s 
lymphoma and cutaneous T-cell lymphoma as well as other types of 
cancers [24]. Additionally, there are a number of studies examining 
the enhanced therapeutic efficacy of using HDACIs with conventional 
cancer treatment strategies. Table 1 shows examples of some current 
clinical trials involving HDACIs in breast cancers, as found from www.
ClinicalTrials.gov [24]. 

Challenges and future outlook: The clinical use of HDACIs for 
cancer therapy is limited. HDACIs have a broad range of applications 
and can reverse the aberrant epigenetic changes in cancers. The 
mechanisms by which HDACIs exert their effects are not completely 
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Figure 1: The role of histone acetyltransferases (HATs) and deacetylase 
(HDACs) in nucleosome configuration.
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understood. Interestingly, HDACIs have been shown to sensitize 
tumors to their respective therapies [14-16,22,23,29]. Potentially, this 
approach may lead to improving the treatment of therapy resistant 
cancers. Studies have shown that HDACIs interact with both histone 
and non-histone proteins [2,3,7,8,10-12,14-20]. These therapeutic 
agents cause no or little damage to normal cells [5,19], which is highly 
desired. Additionally, a major advantage to using HDACIs is that at 
therapeutic doses, they do not show any major side effects [30]. More 
recent efforts are focused on examining the enhanced efficacy of 
HDACIs in combination therapy with conventional cancer treatment 
approaches [3,8,10,11,15,16,20-23,29]. Additionally, promising 
results have been shown for using HDACIs as chemopreventive 
agents [1,3,5,13,15,31-35]. Although additional studies are warranted, 
epigenetic therapy using HDACIs appears as a novel and effective 
treatment approach for cancers.
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