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Introduction
The neurological deficits imposed by spinal cord injury (SCI) 

can have long-term effects, and longitudinally oriented damage and/
or the impairment of neuronal cells can result in total paralysis [1-
3]. Neuronal cell death is the primary pathogenetic mechanism in 
SCI; however, recent advances in stem cell therapy have increased the 
potential for such therapeutic techniques to benefit the replacement 
and regeneration of cells, the alleviation of degeneration symptoms, 
and the recovery of nerve function in the spinal cord [4-7]. 
Nonetheless, further development of stem cell therapy techniques has 
been hampered by logistical and ethical considerations [8-10], and 
the hostile microenvironment at the epicenter of the injury inhibits 
the survival, integration, and/or endogenous repair of transplanted 
cells [11,12]. These challenges have led researchers to adopt a holistic 
approach to the treatment of SCI - one that focus on altering the 
injury microenvironment in order to promote the survival and 
differentiation of transplanted cells [13-15]. This review provides a 
summary of multimodal interventions for the in situ alteration of the 
microenvironment in the treatment of SCI [7,16-20]. 

Biomaterial Scaffolds 
Researchers have investigated the use of nerve guidance channels 

as biological scaffolds for axonal regeneration in SCI repair. These 
channels may be natural or synthetic and degradable or non-degradable 
[21-23]. They are meant to prevent the ingrowth of fibrous scar tissue, 
concentrate neurotrophic molecules released from damaged nerve 
stumps, and guide the growth of both proximal and distal nerve 
stumps [24]. Non-degradable channels comprise synthetic materials 
and provide a unified and controlled synthesis technology. Degradable 
channels preclude the need for permanent implantation of non-
degradable material or the removal of non-degradable material via a 
second procedure. The natural materials used in degradable channels 
include collagen [25], alginate [26], hyaluronic acid [27], agarose 
[28], chitosan [29], fibrin [30], and methylcellulose [31], whereas 
the synthetic materials (polymers) used in non-degradable channels 
include poly(glycolic acid) (PGA) and copolymer poly(lactic-co-
glycolic acid) (PLGA), polycarbonate polymers, poly 2-hydroxyethyl 
methacrylate (PHEMA-co-MMA), poly(lactic acid) (PLA), poly-ε-

caprolactone (PCL), poly-N-(2-hydroxypropyl)-methacrylamide 
(PHPMA), poly(2-hydroxyethyl methacrylate) (PHEMA), degradable 
PLA-b-PHEMA copolymer, and self-assembling peptides (SAPs) [32-
35]. The criteria used to select biomaterials vary among remediation 
strategies; however, biocompatibility, mechanical strength, plasticity, 
and biodegradability are usually deemed essential. Researchers have 
considered the potential for neural stem cells and mesenchymal stem 
cells to benefit spinal cord regeneration based on observations that these 
stem cells are already seeded within the biomaterial scaffold [25,35-39]. 
Using these biomaterials as scaffolds has been shown to enhance the 
functional recovery of damaged spinal cords by prolonging stem cell 
survival through nutritional support or by directly replacing neurons 
and their supporting cells.

Supporting Cells
Numerous studies have investigated the efficacy of support cells, 

such as stem cells and Schwann cells, in the regenerative treatment 
of SCI [40-42]. Stem cells are characterized by self-renewal and the 
ability to differentiate into neuronal cells. This allows neural cells 
which were lost after SCI to be replaced [6,43-45]. Stem cells have 
also been attributed with neuroprotective and axon regeneration-
promoting effects. Extensive research has supported the feasibility of 
treating spinal cord injuries using embryonic stem cells [46], neural 
stem cell-derived progenitor cells [47], mesenchymal stem cells [7], 
nasal olfactory mucosal cells [48], and neonatal astroglial cells [49]. The 
potential use of Schwann cells modified to release neurotrophic factors 
has also been studied [50], as Schwann cells play a crucial role in the 
endogenous repair of peripheral nerves and are able to dedifferentiate, 
migrate, proliferate, express growth promoting factors, and myelinate 
regenerating axons [41,50-52]. Nonetheless, the use of support cells 
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Abstract
Spinal Cord Injuries (SCIs) that result from trauma can cause the death of nerve cells and lead to distal neuronal 

death. The hostility of the lesion microenvironment imposes multiple conditions that must be met to achieve functional 
recovery. Considerable research indicated interactions and signaling, such as supporting cells, extracellular matrix, 
neurotrophic factors and biodegradable polymers for axonal regeneration. In recent years, researchers have 
been seeking novel biomaterials that are capable of stimulating cellular regeneration and promoting functional 
recovery. The ability of various biomaterials to create bridging structures and facilitate axonal growth has also been 
investigated. In this manuscript, we outline the progress researchers have made in developing holistic approaches to 
axonal regeneration in cases of spinal cord injury. We report on a number of therapeutic methods that could be used 
to promote neurological recovery and examine their clinical applicability. We also share a number of recent insights 
that have enhanced the feasibility of multiple channel bridges in the treatment of SCI.
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should be done in conjunction with other interventions in order to 
maximize axonal regeneration and functional recovery.

Extracellular Matrix
One approach that can be used to promote the repair of neurons 

and enhance neuronal plasticity in cases of SCI is the manipulation of 
the extracellular matrix (ECM) [53-56]. Changes in the composition 
and structure of ECM can contribute to the failure of regeneration 
[57]. Inflammation due to ECM disruption often leads to the release 
of hyaluronan fragments, tenascin, and sulfated proteoglycans. 
Thus, recovery from SCI is more likely to be achieved if the ECM 
environment is rendered more permissive through the manipulation 
of key components, such as inhibitory chondroitin sulphate 
proteoglycans, MMP, laminins, fibronectin, and collagen type IV 
[58,59]. Remodeling the ECM environment makes it possible to create 
a niche where the migration and proliferation of cells as well as the 
formation of nerve fascicle can be controlled. The in situ alteration of 
the ECM environment has also been shown to enhance the efficiency 
of cell transplantation methods [60,61]. Indeed, a clearly defined ECM 
environment helps to create a suitable niche for the regeneration 
of endogenous undifferentiated stem cells (including transplanted 
undifferentiated stem cells) [62], and stabilizing the ECM structure to 
reduce inflammation helps to create an environment conducive to tissue 
repair and the promotion of axonal plasticity following SCI [20,54,55]. 
In summary, microenvironment alteration can be used to control the 
fate of stem cells, prolong cell survival, facilitate neuroplasticity, and 
enhance differentiation into neuronal precursors. The current clinical 
applications of biomaterial scaffolds in SCI patients were summary in 
Table 1.

Neurotrophic Factors
Neurotrophic growth factors are central to the development and 

functional maintenance of the nervous system. They participate in 
neurogenesis, neuronal survival, axonal growth, synaptogenesis, and 
activity-dependent forms of synaptic plasticity [63-66]. Neuron survival 
and the regeneration of fiber tracts is aided by neurotrophic factors, 
including, neurotrophin-3 (NT-3) [67], neurotrophin-4/5 (NT-4/5) 
[68], brain-derived neurotrophic factor (BDNF) [69], glial cell line-
derived neurotrophic factor (GDNF) [70], and ciliary neurotrophic 
factor (CNTF) [71]. BDNF promotes the survival of existing neurons 
as well as the growth and differentiation of new neurons and synapses. 
BDNF and NT-3 activate tropomyosin-related kinase (Trk) receptor 
signaling pathways, which tends to increase axonal sprouting while 
also providing neuroprotective effects. Endogenous levels of NT-3 
and BDNF are typically low in healthy spinal cord tissue; however, 
the expression of Trk receptor proteins increases in both neuronal 

and non-neuronal cells following injury. NTs play important roles in 
many facets of nerve regeneration following traumatic CNS injury. 
NT treatments promote neuronal survival, enhance the regrowth 
and remyelination of axons, and increase synaptic plasticity. GDNF 
is a potent neurotrophic factor that provides neuroprotective effects 
and increases axonal regeneration, plasticity, and remyelination [72]. 
Preclinical models of SCI have demonstrated that neurotrophic factors 
are instrumental in the post-injury remodeling of spinal cord circuitry 
[19,63,64]. 

Guided Axonal Regeneration
Functional recovery depends on the successful regeneration of 

nerve fibers and their reconnection to target cells [73,74]. A neuron 
comprises a cell body (or soma), dendrites, and an axon. The dendrites 
receive signals, which are then passed through the cell body and out 
the end of the axon. During neuronal growth, when the proximal end 
of the axon reaches the distal end, the growth cone at the proximal 
end enters the neurodegenerative region, and demyelinated Schwann 
cells form endoneurial tubes with the surrounding basal lamina. 
The extracellular matrix subsequently interacts with some of the 
factors secreted by the neuron, thereby allowing the axon to reach its 
destination and complete nerve cell regeneration. However, defects in 
bridging due to glial scarring and post-traumatic cavitation associated 
with traumatic SCI can limit axonal regeneration and the functionality 
of synapses [75,76]. Thus, neurological recovery may require a graft 
to bridge a cavity, which acts to reduce neural tension and guide the 
regeneration of axons.

Implantable nanofabricated polymers are biodegradable and 
bioabsorbable and have demonstrated considerable promise in 
transplant surgery [25,77]. These non-toxic materials can be used to 
form robust bridges and scaffolds which facilitate nerve regeneration. 
Recent studies have also found that multiple poly (lactic-co-glycolic) 
channels can serve as bridges that physically direct the growth of axons 
across the injury while also optimizing the post-traumatic spinal cord 
microenvironment [78-80]. Numerous methods have been developed 
to synthesize bridges using natural or synthetic polymers [81], and 
certain biomaterials have been shown to provide neuroprotective 
benefits for SCI patients. For example, an investigation into the co-
transplantation of QL6-SAP with neural stem/progenitor cells, Iwasaki 
et al. [82], the observed the preservation of motor neurons as well as the 
attenuation of perilesional inflammation. Other studies have reported 
remodeling the extracellular matrix using nanofibers, which serve as 
a scaffold and inhibit the formation of glial scars while facilitating the 
regeneration of axons [81,83]. Implanting nanofabricated polymers 
in multiple channels can help to overcome barriers to regeneration, 
provide physical axon guidance, prevent the formation of cavities, and 
protect regenerated neurons.

Authors Biomaterial scaffolds Stem cells Functions and improvements

Xiao Z et al. [92]. collagen  (NeuroRegen) 
scaffold

autologous bone marrow 
mononuclear cells

Partially autonomic nervous function improvement, and the recovery of 
somatosensory evoked potentials (SSEP) from the lower limbs was also detected.

Zhao Y et al. [93]. collagen  (NeuroRegen) 
scaffold

human umbilical cord 
mesenchymal stem cells

Increased finger activity, enhanced trunk stability, defecation sensation, and 
autonomic neural function recovery, were observed in some patients.

Theodore N et al. [94]. Neuro-Spinal ScaffoldTM -

By 6 months, 3 of 5 patients had converted from Abbreviated Injury Scale (AIS) A to 
AIS B(2) or C(1). One patient gained 10 points of hip and knee function by 6 months, 
with additional improvement and new ankle function at 12 months (increased motor 

score of 8). One patient converted from AIS A to B at 6 months, a late-occurring 
conversion that is extremely rare.

Theodore N et al. [94] Neuro-Spinal ScaffoldTM -
By 3 months, his neurological examination improved to an L1 AIS grade C 

incomplete injury. At 6-month postoperative follow-up, there were no procedural 
complications or apparent safety issues related to the scaffold implantation.

Table 1: The current clinical applications of biomaterial scaffolds in SCI patients.
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Discussion
The application of biomaterial scaffolds in multiple channels 

has been shown to promote long-term axon growth, enhance the 
myelination of neurons, and inhibit scar formation. However, it 
should be considered the influence of enhancement factors that had 
been incorporated into implantable nanofabricated polymers, such as 
extracellular matrix, growth and neurotrophic factors, as well as other 
materials capable of modulating remyelination, axonal regeneration, 
and neurological recovery [84-92]. Bio-absorbable materials have an 
advantage in the covering of cofactors; these are released by degradation 
and have a controlled release effect [79]. For example, lentiviral vectors 
encoding Lingo-1 have been shown to negatively regulate myelination, 
and shRNA has been shown to promote functional recovery and 
nerve regeneration in cases of SCI [85]. Modified collagen hydrogels 
containing FGF-2 (bFGF) have also been shown to decrease the 
number of infiltrating astrocytes and promote neural regeneration in 
the treatment of SCI [86]. Thus, future research that investigates the 
use of biomaterial scaffolds in conjunction with cofactors should help 
improve the efficacy of SCI therapy. 

The spinal cord contains myelin-sheathed neuronal tracts 
(including motor and sensory tracts), encased in white matter, which 
are responsible for afferent and efferent pathways [87,93]. These tracts 
guide nerve sprouting and stimulate the formation of nerve bundles, 
which may in-turn benefit axonal regeneration [88]. It was discovered 
that the use of multiple channel bridges in the treatment of SCI can 
direct the growth of neural fibers and facilitate spinal cord regeneration. 
In a similar study, plasmid-loaded multiple channel bridges were 
engineered to induce the growth of axons across the injury site [89,94]. 
Tuinstra et al. further established a multichannel bridge coating which 
was capable of delivering neurotrophin encoding lentiviruses to 
promote axonal regeneration following SCI [90]. Ideally, artificial tissue 
engineering techniques are meant to coat neural multichannel bridges 
with Schwann cells and macrophages, growth factors and neurotrophic 
factors, and an extracellular matrix in order to stimulate axonal growth 
and movement [54,64,91]. In summary, researchers should seek to 
improve the efficacy of SCI treatment, combined with the simultaneous 
transplantation of stem cells, by developing techniques which guide the 
regrowth of nerve cells.
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