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Introduction
The Hosoya polynomial of a graph was introduced by H. Hosoya 

in 1988 as a counting polynomial; it actually counts the number of 
distances of paths of different lengths in a molecular graph [1].

Hosoya polynomial is very well studied. In 1993, Gutman introduced 
Hosoya polynomial for a vertex of a graph [2]; these polynomials are 
correlated. The most interesting application of the Hosoya polynomial 
is that almost all distance-based graph invariants, which are used to 
predict physical, chemical and pharmacological properties of organic 
molecules, can be recovered from the Hosoya polynomial [3-6].

Several people have computed the Hosoya polynomial and related 
indices of different classes of graphs. In 2002 Diudea computed the 
Hosoya polynomial of several classes of toroidal nets and recover their 
Wiener numbers [7-10]. In 2011 Ali gave the Hosoya polynomial of 
concatenated pentagonal rings [11]. In 2012 Kishori gave a recursive 
method for calculating the Hosoya polynomial of Hanoi graphs, and 
computed their sum distance-based invariants [12]. In 2013 Farahi 
computed the Hosoya polynomial of polycyclic aromatic hydrocarbons 
[13].

There are some useful topological indices which are related to 
Hosoya polynomial, and we are interested in Wiener, hyper Wiener, 
Tratch-StankevitchZiefirov, and Harary indices as these can be 
recovered from it. The Wiener index was introduced by Harry Wiener 
in 1947 and was used to correlate with boiling points of alkanes [14]. 
Later it was observed that the Wiener index can be used to determine 
a number of physico-chemical properties of alkanes as heats of 
formation, heats of vaporization, molar volumes, and molar refractions 
[15]. Moreover, it can be used to correlate those physico-chemical 
properties which depend on the volume-surface ratio of molecules 
and to Gas chromatographic retention data for series of structurally 
related molecules. Another topological index whose mathematical 
properties are relatively well investigated is the hyper-Wiener index 
was introduced by Randic in 1993 [16]. It is also used to predict 
physico-chemical properties of organic compounds, particularly 
to pharmacology, agriculture, and environment protection [4]; for 
more details, see also [17-19]. In 1993 Plavsic et al. introduced a new 
topological index, known as Harary index, to characterize chemical 
graphs [15]. Tratch, Stankevitch and Zefirov introduced Tratch-
Stankevitch-Zefirov index as expanded Wiener index in 1990 [18].

This article is concerned with the study of the Hosoya polynomial 
and its related topological indices of one class of the general Jahangir 
graph Jn,m.

Basic Definitions
A graph G is a pair (V (G),E(G)), where V is the set of vertices and 

E is the set of edges. A path from a vertex v to a vertex w is a sequence 
of vertices and edges that starts from v and stops at w. The number of 
edges in a path is the length of that path. A graph is said to be connected 
if there is a path between any two of its vertices. The distance d(u,v) 
between two vertices u,v of a connected graph G is the length of a 
shortest path between them. The diameter of G, denoted by d(G), is the 
longest distance in G (Figure 1).

A molecular graph is a representation of the structural formula of 
a chemical compound in terms of graph theory. Specifically, molecular 
graph is a simple graph whose vertices correspond to atoms of the 
compound and whose edges correspond to chemical bonds; however, 
hydrogen atoms are often omitted. (In the present article all the graphs 
are molecular.)

Definition (1.1) 

The Hosoya polynomial in variable x of a molecular graph G=(V,E) 
is defined as
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Figure 1: A connected graph with a highlighted shortest path from v1 to v5.
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where d(G,k) is the number of pairs of vertices of G laying at distance 
k from each other.

A function I which assigns to every connected graph G a unique 
number I(G) is called a graph invariant. Instead of the function I it 
is custom to say the number I(G) as the invariant. An invariant of a 
molecular graph which can be used to determine structure-property or 
structure-activity correlation is called the topological index.

Definition (1.2)

Let u,v be arbitrary vertices of a connected graph G=(V,E), and 
d(v,G) is the sum of distances of v with all vertices of G. The Wiener 
index W(G) of the graph G is defined as

( ) ( )
v u;u,v V

1(v,u) ,
2 v V

W G d d v G
< ∈ ∈

= =∑ ∑
The Wiener index and the Hosoya polynomial are related by the 

equation

( ) ( )
1

,
x

dW G H G x
dx =

=

Definition (1.3)

The hyper-Wiener index WW(G) of a graph G is defined as

( ) ( ) ( )2

v u;u,v V

1(v,u) ( ,u ,
2 v V

WW G d d v d v u
< ∈ ∈

= = +∑ ∑ ∑ .

The hyper-Wiener index and the Hosoya polynomial are related 
by the equation

( ) ( )
2

2 1

1 ,
2 x

dWW G xH G x
dx =

= .

Definition (1.4)

The Harary index Ha(G) of a graph G is defined as

( )
( )2

1

,i j i j

Ha G
d u v<

= ∑

The Harary index and the Hosoya polynomial are related by the 
equation

( ) ( )1

0

,H G x
Ha G dx

x
= ∫

The Tratch-Stankevitch-Zefirov index is also related to the Hosoya 
polynomial under the relation

( ) ( )
3

2
3 1

1 ,
3! X

dHa G x H H G x
dx =

= .

The Main Theorem
In this section we not only give the general form of the Hosoya 

polynomial but also give the general forms of the Wiener, hyper 
Wiener, Harary, and Tratch-StankevitchZefirovof indices of the 
Jahangir graph J7,m,m ≥ 3.

Theorem (1.1)

The Hosoya polynomial of the Jahangir graph J7,m,m ≥ 3, is 

( )
8

7
1

,  i
i

i
H J m c x

=

= ∑ where 

( ) ( ) ( )

( ) ( ) ( )
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= = + = + = +
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Proof: We prove it by giving general form of each coefficient ci, 
which is actually the number of vertices that lie at distance i,1 ≤ i ≤ 
8, from each other, excluding the repetitions. Note that the reason to 
appear eight coefficients is that the distances actually vary from 1 to 8 
in J7,m. Now we go for c’s (Figure 2):

c1=	number of vertices that lie at distance 1 from each other

   =	number of total edges in J7,m

   =	(number of blocks) × (Number of edges in one block)

+number of internal edges

   = m(7)+m

c2 is computed in four steps:

Step 1: Moving in clockwise direction mark subscript i of a vertex 
vi under the vertex vj lying at distance 2 from it; to handle the situation 
we mark such subscripts inside the main circle (Figure 3).

Step 2: Mark the subscript 7m+1 of the central vertex v7m+1 under 
the vertices that lie at distance 2 from it.

Step 3: Now consider the m number of 3-degree vertices v7i−6,1 ≤ i 
≤ m. Starting from v1 mark the subscript of v1 under the vertices that lie 
at distance 2 from it via the central vertex v7m+1.

Step 4: Now count the number of subscripts marked under each 
vertex and writes that counted number over each vertex, outside the 
main circle; you can see in the figure where such numbers are encircled.

In order to count the total distances let B1,B2,B3, and B4 be the sets 
that contain the vertices lying respectively at distances 1,2,3, and 4 from 
the central vertex. Observe that |B1|=m,|B2|=2m,|B3|=2m, and |B4|=2m.
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Figure 2: Coefficient ci.
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 =	m(2m+7)

4. c4 is computed in four steps:

Step 1: Moving in clockwise direction mark subscript i of a vertex 
vi under the vertex vj lying at distance 4 from it; to handle the situation 
we mark such subscripts inside the main circle.

Step 2: Mark the subscript 7m+1 of the central vertex v7m+1 under 
the vertices that lie at distance 3 from it.

Step 3: Now consider the m number of 3-degree vertices v7i−6,1 ≤ i 
≤ m. Starting from v1 mark the subscript of v1 under the vertices that lie 
at distance 3 from it via the central vertex v7m+1.

Step 4: Now count the number of subscripts marked under each 
vertex and write that counted number over each vertex, outside the 
main circle; you can see in the figure where such numbers are encircled.

In order to count the total distances let B1,B2,B3, and B4 be the sets 
that contain the vertices lying respectively at distances 1,2,3, and 4 from 
the central vertex. Observe that |B1|=m,|B2|=2m,|B3|=2m, and |B4|=2m.

c4	=total number of vertices that lie at distance 3 from each other

	 =distances of vertices of B1+distances of vertices of B2

 +distances of vertices of B3+distances of vertices of B4

 =	(|B1 × 1)+(|B2| × m)+(|B3| × m)+(|B4| × 2)

 =	m+(2m × m)+(2m × m)+(2m × 2)

 =	m(4m+5).

5. c5 is computed in five steps:

Step 1: Moving in clockwise direction mark subscript i of a vertex 
vi under the vertex vj lying at distance 5 from it; to handle the situation 
we mark such subscripts inside the main circle.

Step 2: Mark the subscript 7m+1 of the central vertex v7m+1 under 
the vertices that lie at distance 5 from it.

Step 3: Now consider the m number of 3-degree vertices v7i−6,1 ≤ i 
≤ m. Starting from v1 mark the subscript of v1 under the vertices that lie 
at distance 5 from it via the central vertex v7m+1.

Step 4: Now consider 2m number of 2-degree vertices which are 
adjacent to 3-degree vertices on the circle. Starting from v2 mark its 
subscript under the vertices that lie at distance 5 from it via the central 
vertex and repetition not included.

Step 5: Now count the number of subscripts marked under each 
vertex and writes that counted number over each vertex, outside the 
main circle; you can see in the figure where such numbers are encircled.

In order to count the total distances let B1,B2,B3, and B4 be the sets 
that contain the vertices lying respectively at distances 1,2,3, and 4 from 
the central vertex. Observe that |B1|=m,|B2|=2m,|B3|=2m, and |B4|=2m.

c5	=total number of vertices that lie at distance 3 from each other

	 =distances of vertices of B1+distances of vertices of B2

 +distances of vertices of B3+distances of vertices of B4

 =	(|B1| × 0)+(|B2| − m)+m((2m − 3)+(2m − 2))+(|B4| × (m − 1))

 =	(|B1| × 0)+(|B2| − m)+m((|B3| − 3)+(|B3| − 2))+(|B4| × (m − 1))
 =	0+(2m − m)+((4m − 5) × m)+(2m × (m − 1))

 =	6m(m − 1)
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3. c3 is computed in four steps:

Step 1: Moving in clockwise direction mark subscript i of a vertex 
vi under the vertex vj lying at distance 3 from it; to handle the situation 
we mark such subscripts inside the main circle.

Step 2: Mark the subscript 7m+1 of the central vertex v7m+1 under 
the vertices that lie at distance 3 from it.

Step 3: Now consider the m number of 3-degree vertices v7i−6,1 ≤ i 
≤m. Starting from v1 mark the subscript of v1 under the vertices that lie 
at distance 3 from it via the central vertex v7m+1.

Step 4: Now count the number of subscripts marked under each 
vertex and write that counted number over each vertex, outside the 
main circle; you can see in the figure where such numbers are encircled.

In order to count the total distances let B1,B2,B3, and B4 be the sets 
that contain the vertices lying respectively at distances 1,2,3, and 4 from 
the central vertex. Observe that |B1|=m,|B2|=2m,|B3|=2m, and |B4|=2m.

c3	=total number of vertices that lie at distance 3 from each other

	 =distances of vertices of B1+distances of vertices of B2

 +distances of vertices of B3+distances of vertices of B4

 =	(|B1 × 1)+(|B2| × m)+(|B3| × 2)+(|B4| × 1)

 =	m+(2m × m)+(2m × 2)+(2m × 1)
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Figure 3: Clockwise direction mark subscript i under the vertex vj.



Citation: Nizami AR, Farman T (2018) Hosoya Polynomial and Topological Indices of the Jahangir Graph J7,m. J Appl Computat Math 7: 389. doi: 
10.4172/2168-9679.1000389

Page 4 of 5

Volume 7 • Issue 1 • 1000389J Appl Computat Math, an open access journal
ISSN: 2168-9679 

6. c6 is computed in six steps:

Step 1: Moving in clockwise direction mark subscript i of a vertex 
vi under the vertex vj lying at distance 6 from it; to handle the situation 
we mark such subscripts inside the main circle.

Step 2: Now consider the m number of 3-degree vertices v7i−6,1 ≤ i 
≤ m. Starting from v1 mark the subscript of v1 under the vertices that lie 
at distance 6 from it via the central vertex v7m+1.

Step 3: Now consider 2m number of 2-degree vertices which are 
adjacent to 3-degree vertices on the circle. Starting from v2 mark its 
subscript under the vertices that lie at distance 6 from it via the central 
vertex and repetition not included.

Step 4: Now consider 2m number of 2-degree vertices of the set 
B2 on the circle. Starting from v3 mark its subscript under the vertices 
that lie at distance 6 from it via the central vertex and repetition not 
included.

Step 5: Now count the number of subscripts marked under each 
vertex and writes that counted number over each vertex, outside the 
main circle; you can see in the figure where such numbers are encircled.

In order to count the total distances let B1,B2,B3, and B4 be the sets 
that contain the vertices lying respectively at distances 1,2,3, and 4 from 
the central vertex. Observe that |B1|=m,|B2|=2m,|B3|=2m, and |B4|=2m.

c6	=total number of vertices that lie at distance 6 from each other

 =	distances of vertices of B1+distances of vertices of B2

 +distances of vertices of B3+distances of vertices of B4

 =	(|B1| × 0)+(|B2|) × 0)+[2(1+3+···+(m − 1))+2(n − 1)]+(|B4| × (2m −3)

 =	0+0+((m − 1)2+(m − 1)) × 2)+(2m × (2m − 3)

 =	2m(3m − 4).

7. c7 is computed in five steps:

Step 1: Moving in clockwise direction mark subscript i of a vertex 
vi under the vertex vj lying at distance 7 from it; to handle the situation 
we mark such subscripts inside the main circle.

Step 2: Now consider 2 m number of 2-degree vertices of the set 
B2 on the circle.Starting from v3 mark its subscript under the vertices 
that lie at distance 7 from it via the central vertex and repetition not 
included.

Step 3: Now count the number of subscripts marked under each 
vertex and write that counted number over each vertex, outside the 
main circle; you can see in the figure where such numbers are encircled.

In order to count the total distances let B1, B2, B3, and B4 be the sets 
that contain the vertices lying respectively at distances 1,2,3, and 4 from 
the central vertex. Observe that |B1|=m,|B2|=2m,|B3|=2m, and |B4|=2m.

c7=	total number of vertices that lie at distance 3 from each other

	=distances of vertices of B1+distances of vertices of B2

 +distances of vertices of B3+distances of vertices of B4

 =	(|B1| × 0)+(|B2| × 0)+(|B2| × 0)+(|B4| × (2m − 3))

 =	0+0+0+(2m × (2m − 3))

 =	2m(2m − 3).

8. c8 is computed in six steps:

Step 1: Moving in clockwise direction mark subscript i of a vertex 
vi under the vertex vj lying at distance 8 from it; to handle the situation 
we mark such subscripts inside the main circle.

Step 2: Now count the number of subscripts marked under each 
vertex and write that counted number over each vertex, outside the 
main circle; you can see in the figure where such numbers are encircled.

In order to count the total distances let B1,B2,B3, and B4 be the sets 
that contain the vertices lying respectively at distances 1,2,3, and 4 from 
the central vertex. Observe that |B1|=m,|B2|=2m,|B3|=2m, and |B4|=2m.

	c8	=total number of vertices that lie at distance 6 from each other

=	distances of vertices of B1+distances of vertices of B2

 +distances of vertices of B3+distances of vertices of B4

 =	(|B1 × 0)+(|B2) × 0)+(|B3| × 0)+((2m − 5) × m

 =	0+0+((m − 1)2+0+((2m − 5) × m

	 =m(2m − 5).

The topological indices, Wiener, hyper Wiener, Harary, and 
Tratch-StankevitchZefirovof (TSZ), of J7,m are given in the result

Proposition 

The Wiener, hyper Wiener, Harary, and TSZ indices of J7,m are:

1. W(J7,m)=87m2 − 14m – 21

2. ( ) 2
7,

1 683 513 168
2mWW J m m = − − 

3. ( ) 2
7,

131 3629 3
30 280 7mHa J m m= + −

4. ( ) 2
7,

2614 2584 252
3 3mTSZ J m m= − −

This completes the proof.

Proof:We prove these relations one by one using the above theorem 
and the relations given in Introduction section:
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