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Abstract

The aim of this paper is to prove the celebrated Riemann Hypothesis. | have already discovered a simple proof of
the Riemann Hypothesis. The hypothesis states that the nontrivial zeros of the Riemann zeta function have real part
equal to 0.5. | assume that any such zero is s=a+bi. | use integral calculus in the first part of the proof. In the second
part | employ variational calculus. Through equations (50) to (59) | consider (a) as a fixed exponent, and verify that
a=0.5. From equation (60) onward | view (a) as a parameter (a <0.5) and arrive at a contradiction. At the end of the
proof (from equation (73)) and through the assumption that (a) is a parameter, | verify again that a=0.5.
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Introduction

The Riemann zeta function is the function of the complex variable
s =a + bi (i :Jf), defined in the half plane a >1 by the absolute
convergent series.

> 1
=2 (1)
T n
and in the whole complex plane by analytic continuation.

The function { (S) has zeros at the negative even integers -2, -4,
... and one refers to them as the trivial zeros. The Riemann hypothesis
states that the nontrivial zeros of { (S) have real part equal to 0.5 [1].

Proof of the Hypothesis
We begin with the equation,
{(9=0 @
And with,
s=a+bi 3
{ (a+bi)=0 4)

It is known that the nontrivial zeros of { (S) are all complex. Their
real parts lie between zero and one.

If 0 < a < 1 then,

Tlx]-x
g(s) = s!wdx (0O<a<l) (5)
[x] is the integer function.
Hence,
[ (©)
o %S +1
Therefore,
T([x] _xplmasbig g 7)
T([x] —xx 1T =g 8)
Tx_ = ([x]-x)(cos(blog x) — isin(hlog x))dx = 0 ©)

Separating the real and imaginary parts we get,

1= @ ([x]-x)cos(blog x)dx =0 (10)

x 174 ([x] = x)sin(blog x)dx = 0 11)

S8 o3

According to the functional equation, if { (S)=0 then { (1- S)=0.
Hence we get besides equation (11)

[y 17401 ) sinblog yydy =0 (12)
0

In equation (11) replace the dummy variable x by the dummy
variable y,

[ 1791y~ yysin(blogy)dy =0 (13)

We form the product of the integrals (12) and (13).This is justified
by the fact that both integrals (12) and (13) are absolutely convergent.
As to integral (12) we notice that [2]
[x72%4(x] - 0)sin(blogx)dx < [|x
0

0

-2+a

([x] — x) sin (blog x)‘ dx < Tx_z Ta((x))dx

(where ((2)) is the fractional part of z, 0 < ((2))<1)
1-t 0
= lim(t - 0) [ x~ 94y + lim(t—0) [ x279((x))dx
0 I+t

(tis a very small positive number) (Since ((x))=x whenever 0< x<1)

= é+ lim(t - O)j x_2+a ((x))dx

Ly lim(t—)O)_[x_2+adx S
a o a a-1
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<[y =4 )ay

oo 2
[y 62 2 - (] - pcos(blog w)drdy
00

Page 2 of 5
And as to integral (13) T y_1 ~%([y]- y)sin(blog y)dy Thus equation 17 becomes,
(. ) [ 27 - (3] ) costblogag)ddy =
<[ 7 U= y)sinblogy)|dy 1
: —2a (24)
l

= lim(r —0) _[y “dy + lim(t - 0) fy = ay

1+t

(tis a very small positive number) (since ((y))=y whenever 0<y<1)

:iJrhm(t—)O)l!‘ -1- “()dy

1 1
+7
-a a

+ Ty_l_“a’y:1

—a 1+t

Since the limits of integration do not involve x or y, the product can

be expressed as the double integral,

~9([x]-x)([y]- y)sin(blog y)sin(blog x)dxdy =0 (14)

” 2+a

Thus,”x 2+a

(cos(blog y + blogx) — cos(blog y —blogx))dxdy =0

(= XN~ ) 15)

{372+ 93712901 - 0131 - ycostblog ) — cos(blog S)dsdy =0 (16)

—xX)([¥]- y)cos(blog xy)dxdy = (17)

x‘2+“y‘l‘“([x]fxx[y]fy)cos(blogf)dxdy

Consider the integral on the right-hand side of equation (17)

[ 47 =401 ) cosblogLydsay (18)
00 X
. _— 1 —dz
In this integral make the substitution x =~ dx =—-
z z

The integral becomes,

[] 22*“y**“([1]—é)([y]—y)cos(blogzy)_jfzdy (19)
That is,
J[= A= - peostlogznisay 0

00

This is equivalent to,
J‘ Jz a y—l a(
00

If we replace the dummy variable z by the dummy variable x, the

)([y] y)cos(blog zy)dzdy 21

integral takes the form [3]

[[ro =
00 x
Rewrite this integral in the equivalent form,

0o 2—-2a
_ _1- — 1, x
”‘x 2+ay 1 a(x2 2a[;]_

- i)([ y1- y)cos(blog xy)dxdy (22)

)([y]- y)cos(blogxy)dxdy (23)

Write the last equation in the form,

0w 2 2
J‘J‘xfz + ay71 (- y)cos(hlogxy){[x2 - 20’[7] ] - ([r] x)}dx (25)
x x

dy=0

Let p<0 be an arbitrary small positive number. We consider the

following regions in the x —y plane [4].

The region of integration I=[0,c0 )x[0, o0 ) (26)
The large region I1=[p, oo )x [ p, o) (27)
The narrow strip I 2=[ p, e )x [0,p ] (28)
The narrow strip I 3=[0,p]x [ 0, =) (29)
Note that,

I=nuI2ul3 (30)

Denote the integer and in the left hand side of equation (25) by:

F(xy) =229 =4 y)cos(blog xy)

{(x2 “2 —xz;zaJ ~([x] —x)} o

Let us find the limit of F (x,y) as x>c0 and y oo, This limit is given by:

limy =@y~ 1= 4 [_ ((»)) ] cos (blog xy )[—[GD+ ((x))XZa —2} (32)
((2)) is the fractional part of the number z, 0< ((2)) < 1

The above limit vanishes, since all the functions

[7((y)) ],COS (blog xy ),7((?) , and ((x)) remain bounded as x >0 and
y >ee

Note that the function F (x,y) is defined and bounded in the region

I 1. We can prove that the integral,

HF x,y) dxdy is bounded as follows (33)
<|H ~[(())Joos(blog 1)) +
(<x>>x2“—21 dx dy|

<[4 T Jeos(olog D)) +

()4 72) dx

T 8

[T x%cos (blog xy ) [—((i)) +((x))x% =2 dx}

P

Y
ﬁxacos(blog xy) [{(i)) + ((x))xza - 2] dx] ‘)71 —a [*(( y))]dy

SI[Ix_a () )y

<

= —3

cos (blog xy )‘ ‘[*((i)) + ((x))xza _2]‘de v
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f [(( M+ ((x))x24 2]dxjy

- a;a wx‘”[((é N +((x))x24 2] ax (34)

P

- ﬁ{ lim(r = 0) I X «i)) +((x))2%4 ™ 21dv + lim(t > 0>i R <<§)) ()2 21y
Where tis a very small arbitrary positive number. Since the integral:
1=t
lim(r — 0) [ x ™9 )+ ((x))x>*~21dx is bounded, it remains to
P X
show that lim(t>0)

I ¥ ) +((x))x>* 2 is bounded.

1+t

Sincex>1,then ((l)) 1 andwehave =lim( - 0)_[ + ((x))x2a ~“29ax
X

X 14

=lim(z — 0) T X

1+1

a[l + ((x))xza - 2]dx
x

-1 + ((x))xa B 2]dx

:1im(t—>0)T[x a

I+t

< lim(t —0) [ (x4 29" 2 Jax

1+1
_ 1
a(l-a)
Hence the boundedness of the integral 'UF (x,y ) dx dy is proved.
11

Consider the region:
I4=12013 (35)
We know that,
0= ﬂF(x,y) dx dy = HF(x,y) dx dy + ﬂF(x,y) dxdy  (36)
1 n 14
and that,

ﬂF(x,y) dx dy isbounded (37)
i

From which we deduce that the integral [5]

gF (%,) dx dy is bounded (38)
Remember that,

JI.J:F(x,y) dx dy:QF(x,y) dx dy+gF(x,y) dx dy (39)
Consider the integral,

HF(x,y) dx dy S‘ HF(x,y) dx dy‘ (40)

T o—a, L 2a-2 1
(;[ x {((x)) ((x))x }cos(hlog xy)dx) I dy|

<

(x4 ((i)) - ((x))xZa —2}‘ | cos(blogxy)dx)| %dy

SV Oy
T =38

@y «i))— ((x))x2a 2

.
s“
0

we—8

[ ‘“{« D= ()22 axx] %dy

0

17'—-.%

(This is because in this region ((y))=y). It is evident that the integral
[]xa - 2a=2y|  dx is bounded, this was proved in the
| (( D= ((x)x™ 75

course of provmg that the integral HF x,y) dx dy is bounded. Also it
is evident that the integral,

P

1
J e

is bounded. Thus we deduce that the integral (40) HF x,y) dx dy i
bounded.

Hence, according to equation (39), the integral .U F X, y dx dy
is bounded [6].

Now consider the integral,
[[F(x.y) dx dy (41)
13

We write it in the form:

{((= )) x }dx (42)

HF x,y) dx dy = I(I ¥ )cos(b logxy)dy)

(This is because in this region ((x))=x )

2 (=2

< [ 2 () cos(b logey)dy)—*———a]

P 0 {((i)) _x2a71}
< —~l-a X
—{ | (i ¥((»)) cos (b logxy) dy )| | s

> -y

< () )l =] o

X

Now we consider the integral with respect to y,

o

[ () & (43)

0

1-t
= (]imt_>0)j y “xydy+ (11mt—>0)j y—l a (y)) dy
0

1+

(where ¢ is a very small arbitrary positive number). (Note that ((y))=y
whenever 0<y<1).

Thus we have (lim 7 — O)T y"((v)) dv < (lim ¢t —> 0)j Yy = 1

1+t 1+t

1

1-t
and (lim ¢ > 0) [ y™"“xy dy =——
o I-a

Hence the integral (43) I y’l’”(( y)) dy is bounded.

Since | J () cos (b logxy)dy| <_[ y'((»)) dv» we conclude
that the integral | Iy - y)) cos (blogwy)dy| is a bounded

function of x. Let this functlon be H(x). Thus we have,

| J ¥ ()

number) (44)

cos (b logxy)dy| =H(x)<K (K is a positive
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Now equation (44) gives us,
x (limx—)O)if: (limx%O)lxxl’“xM:O (58)
-K< I ye ((y)) cos (b logxy)dy <K (45) x a x
Accord(i)ng to equation (42) we have, We conclude from (56) that the product,
{((l)) —x¥ 0x (limx — 0){((1)) _2a- 1} must remain bounded. (59)
—* _ dx (46) X

”F(x,y) dx dy = _T(T y""‘((y)) cos (b logxy) dy )

() -x)
x—KI—dx

P

PR e
2 oK) ———
x

2a-1
Since ”F(x,y) dx dy s bounded, then .(f{(( ))_ b oaxis
13

also bounded. Therefore the integral,

f{(( )) X ]} is bounded (47)

We denote the integer and of (47) by:

F=tgty-x2ly (48)
X X

Let § G [F] be the variation of the integral G due to the variation of
the integrand § F.

Since,

G [F]=[F dx (the integral (49) is indefinite) (49)

(here we do not consider a as a parameter, rather we consider it as
a given exponent)

We deduce that — 2 5G[F]
OF(x)
that is,
8G [F]=6F (x) (50)
But we have,

é‘G[F] _'[d 7()]5F(x) (the integral (51) is indefinite) ~ (51)

Using equation (50) we deduce that,
OG[F]=[dxF(x)( the integral (52) is indefinite) (52)

Since G[F] is bounded across the elementary interval [0,p], we must
have that,

dG[F] is bounded across this interval (53)
From (52) we conclude that,

5G = de&F(x) = j.dx%&x =[F&x](at x=p)~[FSx](at x = 0) (54)

Since the value of [Fdx] (at x=p)is bounded, we deduce from
equation (54) that,
lim (x>0) F § x must remain bounded. (55)

Thus we must have that

(111’1’1 x— O) [5}6%{ ((%)) _ x2a — 1}] is bounded. (56)
First we compute,
. ox
(lim x — 0)— (57)
X

Applying L 'Hospital ' rule we get,

Assume that a=0.5. (Remember that we considered a as a
given exponent)This value a=0.5 will guarantee that the quantity

1 _
n-x27h

X
will remain bounded in the limit as (x >0). Therefore, in this case
(a=0.5) (56) will approach zero as (x 0) and hence remain bounded.

Now suppose that a< 0.5. In this case we consider a as a parameter.
Hence we have,

G,[x]= J'dxmx (the integral (60) is indefinite ) (60)
x
Thus,
5Ga[x] — F(x9a) (61)
ox X

But we have that,

6G,[x]= J dx 5x (the integral (62) is indefinite) (62)

Substituting from (61) we get,

5G,[x]= demax (the integral (63) is indefinite) (63)
X

We return to equation (49) and write,

P
G = lim (t > 0) I Fdx (tisavery small positive number 0< t <p) (64)

={F x(at p)—lim (t —> 0)Fx(at ¢) } —lim (+ > O)J,:xdF

Let us compute, t

lim(r — 0)Fx(at ) =lim (t - O)t‘l’“((%)) —t“=0 (65)
Thus equation (64) reduces to,

G- Fx(atp )=—lim (t > O)TxdF (66)

Note that the left - hand side of equation (66) is bounded. Equation
(63) gives us,

Va
5G, =lim (t - O)deESx (67)
t X

(t is the same small positive number 0<t<p)

£ P
We can easily prove that the two integrals _[XdF and I dx£§x
t : X

are absolutely convergent. Since the limits of integration do not involve
any variable, we form the product of (66) and (67)

=lim(t —> 0)j j xdF x dx Sx = lim(t — 0) j FdF x j Sxdx (68)
(K is a bounded quantlty)
That is,
F? F?
K =lim(t > 0)[7(atp)—7(at 1)]x[6x(at p)—Sx(at 1)] (69)

We conclude from this equation that,
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F? F? ) Thus the limit (78) becomes:
{[7( at p) - lim(t - 0)7(3t t) X[ Sx(at p)]} is bounded. (70) 1
(=-2) . .
im(a x a = lim(x ©5+x" -2 72: im (x 7(0.54§x) -2
(Since lim(x>0)d x=0, which is the same thing as lim (¢ >0) & x=0) fim@=>0.9) ¢ _)OEOX’5“+ x)lfl (_5 O fim (= 0 e
2 2 = lim(x - 0)———57—— (Since lim (x >0) x*=1) (80)

F
Since T (at p) is bounded, we deduce at once that must

2
remain bounded in the limit as (£ >0), which is the same thing as saying

that F must remain bounded in the limit as (x>0). Therefore,

1 a
' () -x" must remain bounded (71)
lim (x — 0)—% -
But,
1 2a-1 1 2a-1
() -x we (O)-x (72)
lim (x — 0)—2% lim (x > 0) = x—*———
X X
1241
(=) -1 -1
lim (x > 0)——X——=1lim (x > 0)—;
X X

It is evident that this last limit is unbounded. This contradicts our
conclusion (71) that:

(L -2 -
lim (x> 0)—% must remain bounded (for a< 0.5)

a

Therefore the case a<0.5 is rejected. We verify here that, for a=0.5
(71) remains bounded as (x>0).

We have that:

((l)) R (73)
x

Therefore:

(-
lim(a — 0.5) (x = 0)—=X
X

—y (74)

a

< lim(a = 0.5) (x > 0)

We consider the limit:

2a-1

lim(a — 0.5) (x - 0)1_+ (75)
X

We write:

a=(lim x >0) (0.5+x) (76)

Hence we get:
lim(a—> 0.5) (x = 0)x>*" = lim (x > 0)x***" =lim (x > 0)x*>* =1 (77)
(Since lim(x >0) x*=1)

Therefore we must apply L Hospital ' rule with respect to x in the
limiting process (75)

2a-1 2a-2
lim(a - 0.5) (x - 0) "% = lim(a —0.5) (x 5 0) "2 DX (7g)
X
1
(=-2)
lim(a — 0.5) (x —> 0)-4 —
Now we write again,
a=(lim x >0) ( 0.5+x ) (79)

We must apply L 'Hospital ' rule,

M:lim (02X 4 (81)
0.5x™7 (0.5+x)°

L
lim (x 02 =2 _ji (v 50)
5

Thus we have verified here that, for a=0.5 (71) approaches zero as
(x >0) and hence remains bounded.

We consider the case a >0.5. This case is also rejected, since
according to the functional equation, if ({ (S)=0) (s=a+bi) has a root
with a>0.5, then it must have another root with another value of a<0.5.
But we have already rejected this last case with a<0.5

Thus we are left with the only possible value of a which is a=0.5
Therefore a=0.5

This proves the Riemann Hypothesis.

Conclusion

The Riemann Hypothesis is now proved. The hypothesis states that
the nontrivial zeros of the Riemann zeta function have real part equal to
0.5. T assume that any such zero is s=a+bi. I use integral calculus in the
first part of the proof. In the second part I employ variational calculus.
Through equations (50) to (59) I consider (a) as a fixed exponent, and
verify that a=0.5. From equation (60) onward I view (a) as a parameter
(a <0.5) and arrive at a contradiction. At the end of the proof (from
equation (73)) and through the assumption that (a) is a parameter, I
verify again that a=0.5.
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