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Introduction
HLA, the most genetically diverse loci in the human genome [1], 

play a crucial role in host-pathogen interaction by mediating innate and 
adaptive cellular immune responses [2]. For a vast number of infectious 
diseases various HLA alleles have been associated with disease outcome. 
However, limited information is available about HLA in Central Africa 
where diseases such as HIV/AIDS, Hepatitis, malaria, tuberculosis and 
dengue fever are largely diffused. 

The genetic make-up of a person's HLA affects the rate of HIV 
disease progression [3]. It has been shown that HLA class I alleles B*27 
and B*57 are associated with better disease prognosis, while others 
(such as B*35) are associated with worse outcome. The protection is 
not entirely explained by a confounding effect of a few highly protective 
HLA-B types such as B*57, B*58, B*27, B*51, and B*81 [4,5].

Perinatal HIV-1 infection is influenced by a combination of virologic 
[6], immunologic and host factors. In recent years, a number of studies 
have suggested that host genetic factors are important determinants of 
both the susceptibility to perinatal HIV-1 infection and the subsequent 
pathogenesis of acquired immunodeficiency syndrome (AIDS). Control 
of HIV-1 infection involves the processing of specific viral peptides and 
their presentation to cells of the immune system by highly polymorphic 
human leukocyte antigen (HLA) alleles. The contribution of multiple 
HLA class I and II alleles in modulating pediatric HIV/AIDS outcomes 
has now been confirmed by several independent groups. HLA A*02 

has been shown to have a protective effect for the vertical transmission 
[7]. The haplotypes HLA-A3-B7-DR2 [8,9] and HLA-DR13 [9] have a 
protective effect against the MTCT. The recently described HLA-G 14 
bp depletion [10] have a protective effect for MTCT. On the contrary, 
HLA-A1-B8-DR3 [8,9] and HLA-DQB*1 0604 [11] are associated with 
higher mother to child transmission risk. It has been shown that HIV-1 
co-receptor usage influences on mother to child transmission as well 
as pediatric infection, although with contradictory data like the case of 
CCR2-64I [12].

One study found that mothers with HLA-B variants (*1302, *3501, 
*3503, *4402, *5001) transmitted HIV to their infant even in the context 
of low viral loads, whereas mothers with other variants (*4901, *5301)
did not transmit the virus despite high viral loads [13]. Furthermore,
mother-infant pairs discordant with regards to the HLA-G variants
3743C/T, 634C/G, or 714insG/G have been shown to experience a lower 
risk of HIV MTCT compared to concordant mother-child pairs [14].

HIV-exposed uninfected (HIVe) children are a rapidly growing 
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population. Programs for the prevention of mother to child 
transmission (PMTCT) have reduced the transmission rate of perinatal 
HIV infection to approximately 2% to 5% [15-17]. Such programs 
have therefore effectively reduced the number of HIV infected (HIVi) 
children but identified an increasing population of HIVe children [18].

HIVe children have been overlooked as a group of children who may 
be at an increased risk of illness compared to HIV-unexposed (HIVn) 
children. Recently, increased morbidity and mortality in HIVe children 
compared to HIVn children has been reported [18-24]. Many factors 
may account for this including innate deficiencies in immunity, [25-
27] feeding practices [28], poor protection from maternal antibodies or 
environmental exposures [20]. 

Several research groups [29-32] have reported significant 
phenotypical differences between HIVe and HIVn infants; the most 
consistent finding is that of a more antigen-experienced cellular 
phenotype, which could be driven by exposure to HIV or its proteins.

 In the present study, we describe the diversity of HLA class I in 
infants born to HIV infected mothers and to determine the influence of 
HLA genotype in perinatal HIV transmission in Cameroon.

Material and Methods
Subjects and sample collection

Infants born to HIV-1 infected mothers aged between 0-12 years 
were enrolled in this study. A total of 62 children were enrolled and 
distributed as follow: 28 exposed non infected, 34 exposed and infected. 
Study population characteristics are summarized in Table 1. 

The study protocol was approved by the ethical committee of CIRCB. 
From these infants, 5 ml of blood were collected in EDTA tubes. When 
possible, PBMC was prepared or the buffy coat was collected and stored 
at-80°C until further analysis. DNA was extracted either from PBMC or 
from buffy coat using the Qiagen QiaAmp DNA mini-kit according to 
the manufacturer’s instructions (Qiagen S.A 3 Avenue duCanada, LP 
809, 91974 Courtaboeuf Cedex, France). 

CD4 count and Viral load

CD4+ T cells were quantified on a FACSCalibur flow cytometer 
(Becton Dickinson Immuno-cytometry System (BDIS), San Jose, CA, 
USA). 

The HIV-1 viral load was determined from plasma by Abbott 
Real-time HIV-1 assay (Abbott Molecular Diagnostics, Wiesbaden, 
Germany).

HLA typing

HLA genotyping was done using the Micro SSP kit from One 

Lambda according to the manufacturer’s instructions (One Lambda 
21001 Kittridge St Canoga Park, CA 91303-2801, USA). 

Statistical analysis

Data is presented as percentage. Fisher’s exact test and Chi-square 
test have been used for comparisons between groups as appropriate. 
Bonferroni’s correction has been used for multiple comparison 
correction. The Hardy-Weinberg equilibrium (HWE) was determined 
using popgene software. (http://www.ualberta.ca/~fyeh/popgene.
html).

Results 
The number of alleles, their frequency and the phenotypic 

frequencies were identified in the study population for HLA class I A 
and B loci, respectively in the whole study population. Multiple allelic 
group of the HLA-A (N=19) and HLA-B (N=21) were identified, of 
which A*02 allele frequency (AF=25%) and B*58 (AF=14%) were the 
most frequent individual group alleles identified. All allelic groups 
resulted in HWE equilibrium.

Difference in the HLA-A and -B allelic frequencies between HIV-
exposed infected and not-infected children is presented in Table 2 
and 3 respectively. Only HLA-B*44 resulted with an increase allelic 
frequency in exposed non infected (12.5% in HIVe versus 2.9% in HIVi, 
p=0.04). As well the phenotypic frequencies of HLA A and HLA B 
(presented respectively in Tables 4 and 5) showed a statistical difference 
in HLA B*44 to be associated with the protection of Mother to Child 
Transmission with p value=0.03.

However, no differences where found after Bonferroni’s correction 
likely for the small size study groups.

Finally, the HLA-A and HLA-B allelic groups were grouped 
accordingly to carry Bw4 or its counterpart Bw6 epitope. No differences 
were observed in the distribution of Bw4 and Bw6 epitopes between 
infected and not infected children (data not shown). 

Parameter
Exposed infected 

(34)
Exposed non 
infected (28)

Sex distribution (% female) 59 46
Age distribution 
Median age (years)

1.2 ± 0.95 6.8 ± 3.2

Viral load range (copies/ml) 143-3273260 Not applicable
CD4+ range (absolute (%)) cells/mm3 283(16)-2366(18) Not applicable

Clinical stage (N)

CDC stage 1:18
CDC stage 2:12
CDC stage 3:3
CDC stage 4:1

Not applicable

Table 1: Study population characteristics.

Group Allele A
Allele frequency in 
Exposed infected n 

(%)

Allele frequency in 
Exposed non infected n 

(%)
P value

A*01 2(2.9) 1(1.8) 0.67
A*02 18(26.5) 14(25) 0.84
A*03 8(11.8)  4(7.1) 0.38
A*11 / 4(7.1) /
A*23 6(8.8) 5(8.9) 0.98
A*24 1(1.5) 1(1.8) 0.88
A*25 / 2(3.6) /
A*26 2(2.9) 2(3.6) 0.84
A*29 7(10.3) 5(8.9) 0.79
A*30 9(13.2) 6(10.7) 0.66
A*31 1(1.5) 1(1.8) 0.88
A*32 1(1.5) 1(1.8) 0.88
A*33 2(2.9) 1(1.8) 0.67
A*34 / 2(3.6) /
A*36 2(2.9) 1(1.8) /
A*66 / 2(3.6) /
A*68 5(7.4) 3(5.4) 0.65
A*74 4(5.9) / /
A*80 / 1(1.8) /

Table 2: HLA A Allele frequency in exposed non infected and exposed infected 
infants.
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Discussion
The population distribution of HLA alleles and its association to 

susceptibility or resistance to HIV infection in Cameroon has not been 
studied but is of particular interest given the HIV/AIDS epidemics 
afflicting this population. We investigated the genetic diversity of 
HLA-A, HLA-B alleles in a pediatric population of Cameroon (N=62), 
born to HIV infected mothers. HLA-B*44 resulted associated with 
protection from HIV-infection. It is worth noticing, that in our small 

patient serie we have a pair of twins, exposed but HIV-negative, both 
exhibiting the HLA B*44 allele. Their mother did not have this allele, as 
they may have inherited this allele from their father. In Cameroon, HIV 
transmission rate is lower in male than in female (5.6%) [33]. Secondly 
there are a lot discordant couples where the female is HIV positive 
and the male HIV negative [33]. HLA B*44 allele might be involved in 
protecting the males.

Immunogenetic determinants of host susceptibility and resistance 
to HIV-1 infection have been an area of intense investigation. In this 
context, our findings on mother to child transmission of HIV are 
consistent with the data of the literature. In particular, de Sorrentino 
et al. [34] reported that the frequencies of HLA A*24, B*18 and B*39 
were increased in HIV-1 positive subjects, while HLA B*44 and B*55 
were not found in HIV-1 positive subjects, thus suggesting their 
protective effect. Similarly, Li et al. [35] found that HLA B*44 allele was 
significantly increased in HIV-1 seronegative subjects. 

Likely due to the small size of our cohort, we did not observe 
potential protective role of other HLA alleles, such as B*18, B*45, B*49 
and B*50, that have been described to impact HIV disease. For example, 
HLA B*18 has been associated with a significantly lower risk of early 
HIV-1 transmission from mother to child [36]. HLA-B*45, -B*49, and 
-B*50 have been found at a moderately increased frequency among 
individuals responding to HIV-1 infection with a marked circulating 
and infiltrative CD8 T-cell lymphocytosis, and presenting a slow rate 
of CD4 T-cell decline, very low frequency of opportunistic infections, 
and low viral strain heterogeneity [37]. Although HLA-B*57 (B57) has 
associated with slow progression to disease following HIV-1 infection, 
B57 heterozygotes displayed a wide spectrum of outcomes, including 
rapid progression, viremic slow progression, and elite control [38]. 

Interestingly, other studies showed that HLA B*44 has a protective 
role in autoimmune lymphoproliferative syndrome in patients with 
C95 defect [39].

Group Allele B
Allelle frequency in 

Exposed infected n (%)
Allelle frequency in 

Exposed non infected n (%)
P value

B*07 7(10.3) 5(8.9) 0.79
B*08 3(4.4) 1(1.8) 0.41
B*13 / 1(1.8) /
B*14 6(8.8) 3(5.4) 0.45
B*15 6(8.8) 5(8.9) 0.98
B*18 2(2.9) 5(8.9) 0.14
B*27 1(1.5) / /
B*35 5(7.4) 6(10.7) 0.5
B*37 / 2(3.6) /
B*42 1(1.5) / /
B*44 2(2.9) 7(12.5) 0.04*
B*45 1(1.5) 4(7.1) 0.1
B*48 / 1(1.8) /
B*49 8(11.8) 3(5.4) 0.2
B*50 / 1(1.8) /
B*51 / 1(1.8) /
B*52 / 1(1.8) /
B*53 7(10.3) / /
B*57 7(10.3) 2(3.6) 0.14
B*58 9(13.2) 8(14.3) 0.86
B*81 3(4.4) / /

Table 3: HLA B Allele frequency in exposed non infected and exposed infected 
infants.

Group Allele A
Phenotypic frequency 
in Exposed infected 

N (%)

Phenotypic frequency in 
Exposed non infected N 

(%)
P value

A*01 2(5.9) 1(3.6) 0.67
A*02 16(47.1) 11(39.3) 0.54
A*03 8(23.5)  4(14.3) 0.35
A*11 / 4(14.3) /
A*23 6(17.6) 5(17.9) 0.98
A*24 1(2.9) 1(3.6) 0.88
A*25 / 2(7.1) /
A*26 2(5.9) 2(7.1) 0.84
A*29 6(17.6) 4(14.3) 0.71
A*30 9(26.5) 5(17.9) 0.41
A*31 1(2.9) 1(3.6) 0.88
A*32 1(2.9) 1(3.6) 0.88
A*33 2(5.9) 1(3.6) 0.67
A*34 / 2(7.1) /
A*36 2(5.9) 1(3.6) 0.67
A*66 / 2(7.1) /
A*68 5(14.7) 3(10.7) 0.63
A*74 4(11.8) / /
A*80 / 1(3.6) /

Table 4: HLA A phenotypic frequency in exposed non infected and exposed 
infected infants.

Group Allele B
Phenotypic frequency in 
Exposed infected N (%)

Phenotypic frequency in 
Exposed non infected N (%)

P value

B*07 7(20.6) 5(17.9) 0.78
B*08 3(8.8) 1(3.6) 0.4
B*13 / 1(3.6) /
B*14 6(17.6) 3(10.7) 0.44
B*15 6(17.6) 4(14.3) 0.71
B*18 2(5.9) 5(17.9) 0.13
B*27 1(2.9) / /
B*35 5(14.7) 5(17.9) 0.72
B*37 / 2(7.1) /
B*42 1(2.9) / /
B*44 2(5.9) 7(25) 0.03*
B*45 1(2.9) 4(14.3) 0.1
B*48 / 1(3.6) /
B*49 8(23.5) 3(10.7) 0.19
B*50 / 1(3.6) /
B*51 / 1(3.6) /
B*52 / 1(3.6) /
B*53 6(17.6) / /
B*57 6(17.6) 2(7.1) 0.21
B*58 9(26.5) 8(28.6) 0.85
B*81 3(8.8) / /

Table 5: Phenotypic frequency in exposed non infected and exposed infected 
infants.
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Most peptides that bind to a particular MHC class I molecule 
share amino acid residues that are thought to anchor the peptide to the 
polymorphic pockets within the binding site. For HLA B*44, sequence 
analysis of endogenous peptides bound revealed two potential 
dominant residues: Glu at pocket P2 and Tyr, or occasionally Phe at 
P9. In vitro assembly assays using synthetic peptides and recombinant 
HLA B*44 revealed that an acidic amino acid at P2 was necessary for 
promoting stable binding. Although Tyr is almost exclusively found at 
P9, a wide variety of amino acid residues such as Leu, Ala, Arg, Lys, His 
and Phe could be tolerated at this position [40]. 

There are two major HLA B*44 alleles: HLA-B*4402 and B*4403 that 
are both found at a high frequency in all human populations, and yet 
they only differ by one residue on the α2 helix (B*4402 Asp156→B*4403 
Leu156). CTLs discriminate between HLA-B*4402 and B*4403, and 
these allotypes stimulate strong mutual allogeneic responses reflecting 
their known barrier to hemopoeitic stem cell transplantation. Although 
HLA-B*4402 and B*4403 share >95% of their peptide repertoire, 
B*4403 presents more unique peptides than B*4402, consistent with the 
stronger T cell alloreactivity observed toward B*4403 compared with 
B*4402 [41].

On the other hand, HLA-B*44 is carrying the Bw4 epitope. Although 
we did not find any differences in the Bw4/Bw6 epitope variants in 
our study population, it is possible that on HLA-B*44 specific bound 
peptide(s) might modulate the Bw4 epitope interaction with its ligand 
for KIR3DL1, an NK’s inhibitory receptor, [42,43] suggesting a potential 
role for the innate immune response in controlling the early event of 
the HIV infection as well as in the slow progression to AIDS. It is well 
known that HIV-specific T-cell response, and in particular Cytotoxic T 
lymphocyte , plays a key role in controlling HIV infection [44,45] As the 
T-cell response is dictated by HLA molecules, the individual’s variation 
in the HLA class I and II alleles has a profound effect on the outcome 
of infection and disease progression to AIDS [45,46]. The interaction of 
NK’s inhibitory receptor with HLA regulate innate immune response 
and might have important implications for a better disease control [47]. 
In addition, some specific combination of HLA-B*44 with KIR alleles 
might be at the basis of the prevention of HIV infection in the mother 
to child transmission as already described for HIV progression [48]. 

Conclusion
HLA-B*44 is associated with the resistance to HIV infection upon 

exposure in vertical transmission. The resistance to HIV-1 infection might 
be in part determined by the binding capability of specific HLA-B restricted 
epitopes that might either stimulate specific CD8+ T-cell response and/or 
modulate the interaction with NK’s inhibitory receptor.
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