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Editorial

The tumor microenvironment is a complex network of tumor cells,
immune cells, stromal cells and extracellular matrix accomplishing
proliferation, migration, and dissemination of tumor cells. The
reactivity of the immune system towards the growing tumor
determines its capacity to reject the tumor, but this reactivity is
increasingly appearing to be critically dependent on tumor
microenvironmental factors. These factors include secreted molecules,
type of infiltrating cells, and metabolic component such as hypoxia.
Microenvironmental hypoxia is a prominent feature of solid tumors
and is involved in fostering the neoplastic process and in modulation
of immune reactivity. It results from inadequacies between the tumor
microcirculation and the oxygen demands of the growing tumor mass,
which leads to a lowering of oxygen partial pressure and a metabolic
switch towards glycolysis [1]. Tumor hypoxia is a negative prognostic
and predictive factor due to many effects on the selection of hypoxia-
surviving clones [2], activation of the expression of genes involved in
apoptosis inhibition [3], angiogenesis [4], invasiveness and metastasis
[5], epithelial-to-mesenchymal transition [6], and loss of genomic
stability [7]. Accumulating evidence indicates that tumor hypoxia is
also involved in loss of immune reactivity either by decreasing tumor
cell sensitivity to cytotoxic effectors or promoting immunosuppressive
mechanisms [8].

The major effects of hypoxia are mediated through the stabilization
of Hypoxia-inducible factors (HIFs) composed of a basic helix-loop-
helix/PAS protein (HIF-α) and the aryl hydrocarbon nuclear
translocator (ARNT or HIF-β). Under normoxia, HIF-α subunit is
degraded following hydroxylation at proline residues by prolyl-
hydroxylases (PHD), which allows the binding of the E3 ubiquitin
ligase pVHL for proteasome-targeted degradation [9-11]. Under
normoxia, HIF-α is also hydroxylated at asparagine residues by the
asparaginyl-hydroxylase Factor Inhibiting HIF-1 (FIH) to prevent
interactions with co-activators such as p300 and aberrant
transcriptional activation [10,11]. In contrast, the β-subunit is not
regulated by oxygen levels and is constitutively expressed in the
nucleus. Hypoxia inhibits the hydroxylation of proline and asparagine
residues, allowing HIF-α nuclear translocation and binding to HIF-β
for full transcriptional activation.

Recently, we provided evidence indicating that hypoxia induced
resistance of tumor cells to the lytic action of cytotoxic effector cells
via several HIF-1α -dependent mechanisms involving activation of
Stat3 [12], induction of the embryonic factor Nanog [13], induction of
miR-210 [14], autophagy activation [15] and Granzyme B degradation
in autophagosmes [16]. It has also been reported that hypoxia was able
to inhibit the activity of MICA, a ligand for activating receptor
NKG2D, by increasing the shedding of MICA at the surface of target

cells [17], or down-regulating MICA expression [18] leading to tumor
escape from NK cells and CTLs.

More interestingly, the expression of T cell inhibitory checkpoints
was found to be regulated by hypoxic stress. We have recently shown
that hypoxia induced up-regulation of Program Death-Ligand 1 (PD-
L1), ligand of the inhibitory checkpoint PD-, on both tumor and
Myeloid-Derived Suppressor Cells (MDSC) via direct binding of
HIF-1 to PD-L1 promoter [19]. This establishes a direct link between
immunosuppressive mechanisms and hypoxic signalling. Based on
these findings, the combination of HIF-targeting molecules to
immunotherapies and conventional anti-cancer therapies may provide
a more efficacious and enduring response in cancer patients. HIF
factors are also involved in the regulation of tumor celI response to
cytotoxic effectors independently of oxygen levels in the context of
inactivating VHL mutations. These mutations induce a constitutive
stabilisation of HIFs, a process known as pseudo-hypoxia. In this
regard, we reported that, in VHL-mutated clear cell renal cell
carcinoma (RCC) cells, HIF-2 stabilization caused by mutated VHL
induces upregulation of ITPR1 that mediates RCC resistance to NK via
modulation of NK-induced autophagy [20].

Several other intra-cellular signalling pathways activated by hypoxia
remains to be explored for their role in target response to CTL/NK
effectors such as the glycolytic pathway or hypoxia-induced epithelial-
to-mesenchymal transition.

Hypoxia also contributes to the shaping of the tumor
microenvironment by promoting immune tolerance through
regulation of differentiation of regulatory T cells (Treg), macrophages,
and myeloid-derived suppressor cells. In particular, under hypoxic
stress and in the presence of TGF-β, CD4+ T cells upregulate Foxp3
through direct binding of HIF-1 to Foxp3 promoter region, inducing
Treg formation [21]. Tumor hypoxia also attracts Treg inside the
tumor bed by impacting the cytokinic profile inside the
microenvironment. Facciabene et al. have recently reported that
hypoxic stress increases the expression and secretion of CCL28 by
tumor cells [22]. CCL28 act as a chemoattractant for Treg cells, whose
immunosuppressive functions on CD8+ T cells are well documented.
We have demonstrated that hypoxia-induced Nanog binds directly to
TGF-β promoter and upregulates TGF-β1 expression and secretion,
which is involved in majority Treg and macrophage infiltration into
tumors [23]. Targeting Nanog reverses this trend with clear increase in
CD8+ T cell and inhibition of Treg and macrophage infiltration. We
cannot exclude that other hypoxia-induced factors (including
cytokines and chemokines) may cooperate with TGF-β1 to regulate
Nanog-mediated immune suppression, but these findings connect
stem cell–associated factors with inhibition of the immune response in
the hypoxic tumor environment.
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Clearly, solid tumors develop a hostile hypoxic microenvironment
that hamper cell-mediated immunity and dampen the immune
response efficacy. Counteracting hypoxic signaling represents
challenging strategy to avoid immune resistance and
immunosuppressive signaling, and increase cancer immunotherapy
efficacy.
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