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Abstract

The concepts of d-Ideals and principal d-ldeals are introduced in an MS-algebra and many properties of these
ideals are studied. It is observed that the class of all 5-deals forms a complete distributive lattice and the class of all
principal o-ldeals forms a de Morgan algebra. A characterization of 5-Ideals in terms of principal 6-ldeals is given.
Finally, many properties of d-ldeals are studied with respect to homomorphisms.
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Introduction

An Ockham algebra is a bounded distributive lattice with a dual
endomorphism. The class of all Ockham algebras contains the well-
known classes for examples Boolean algebras, de Morgan algebras,
Kleene algebras and Stone algebras [1]. Blyth and Varlet [2] defined a
subclass of Ockham algebras so called MS-algebras which generalizes
both de Morgan algebras and Stone algebras. These algebras belong to
the class of Ockham algebras introduced by Berman [3]. The class of all
MS-algebras forms an equational class. Blyth and Varlet characterized
the subvarieties of MS-algebras in Ref. [4]. Recently, Luo and Zeng [5]
characterized the MS-algebras on which all congruences are in a one-to-
one correspondence with the kernel ideals. In Ref. [6], Rao, introduced
the concepts of boosters and f-filters of MS-algebras. In Ref. [7], Rao
introduced and characterized the concepts of D-filters and e- filters of
MS-algebras. Also, in Ref. [8] Rao introduced and characterized the
concept of 6-Ideals in pseudo-complemented distributive lattices. Many
various properties of Ockham algebras and MS-algebras are considered
in Ref. [9-14].

In this paper, we defined §-Ideals and principal §-Ideals in MS-
algebras and some basic properties of §-Ideals and principal §-Ideals
are studied. It is proved that the class I° (L) of all §-Ideals of an MS-
algebra L is a complete distributive lattice. It is proved that the set of
all principal §-Ideals of an MS-algebra can be made into a de Morgan
algebra. A set of equivalent conditions is obtained to characterize
0-Ideals of MS-algebras by means of principal §-Ideals. Finally, some
properties of -Ideals are studied with respect to homomorphisms. The
concept of §-Ideals preserving homomorphism from an MS-algebra
L into another MS-algebra L, is introduced as a homomorphism h
satisfying the condition h(8(F)=(h(F)), for any d-Ideals I=6(F) of L,
where F is a filter of L. It is proved that the images and the inverse
images, under this homomorphism, of a §-Ideals are again §-Ideals. If
an MS-algebras L is homomorphic to an MS-algebra L , then the lattice
Me(L) of all principal é-Ideals of L is homomorphic to M°(L,) the lattice
of all principal 8-Ideals of L, and the lattice (L) of all §-Ideals of L is
homomorphic to the lattice I'(L,) of all §-Ideals of L,.

Preliminaries

In this section, we present certain definitions and results. We refer
the reader to Ref. [1,2,4,9] as a guide references.

Definition 2.1

A de Morgan algebra is an algebra (L, v, A, 7,0,1) of type (2, 2, 1, 0,
0) where (L, v, A, 0, 1) is a bounded distributive lattice and the unary

operation of involution satisfies :

;=x,(xvy) =;/\;,i=0
Definition 2.2

An MS-algebra is an algebra (L, v, A, °,0,1) of type (2, 2, 1, 0, 0)
where (L, v, A, 0, 1) is a bounded distributive lattice and the unary
operation ° satisfies :

X< x°, (x A p)°=x° v y°, 1°=0.

We recall some of the basic properties of MS-algebras which were
proved in Ref. [2].

Theorem 2.3
For any two elements a, b of an MS-algebra L, we have
(1) 0°=1
(2 asb=>b°<a®
() a=a°
(4) (avb)=a®°Ab°
(5) (avb)°=a*°v b*°
(6) (anb)°=a° A b

For any MS-algebra L, let I(L) denote to the set of all ideals of L. It
is known that (I(L); A, V) is a distributive lattice, where I A J=1 N J and
Iv]={ivj:ielje]} Also, [a)={x € Lix < a}((al={x € Lix>a}) isa
principal ideal (filter) of L generated by a.

For any MS-algebra L we can define the set of closed elements L*°={a
€ L:a=a®°}. It is known that (L°°, v, A, °, 0, 1) is a de Morgan subalgebra
of L. An element a € L is called a dense element if a°=0. Then the set
D(L) of all dense elements of L forms a filter in L. An element x € L is
called a fixed point of L if x°=x.
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Properties of §-Ideals

In this Section, the concept of §-Ideals and principal §-Ideals are
introduced in MS-algebras. Many properties of §-Ideals and principal
0-Ideals are investigated in the class of all MS-algebras. We observed
that the class of all principal §-Ideals of an MS-algebra L is a de Morgan
algebra. It is proved that the class of all §-Ideals of any MS-algebra forms
a complete distributive lattice. A characterization of §-Ideals in terms of
principal §-Ideals is obtained.

Definition 3.1

Let L be an MS-algebra. Then for any filter F of L, de ne the set 6(F)
as follows:

0(F)={x € Lix° € F}

Clearly, §([1))={0} and &([0))=L. The following two Lemmas are
direct consequence of the above definition.

Lemma 3.2
Let L be an MS-algebra. Then §(F) is an ideal of L.

Proof: Clearly 0 € §(F). Let x, y € (F). Then x°, y° € F. Hence (x v
y)e=x°Ay° € F. Thus x v y € E Again, let x € §(F) and r° < x. Then r° >
x° € Fimplies r° € F. Therefore §(F) is an ideal of L.

Lemma 3.3

Let L be an MS-algebra. Then for any two filters F, G of L, we have
the following:

(1) Fn6(F)=¢, whenever L €S,

(2) x e §(F) implies x°° € §(F),

(3) x e Fimplies x° € §(F),

(4) F=Lifand only if 6(F)=L,

(5) Fc Gimplies §(F) <6(G),

(6) &(D(L))={0},

(7)  O(F) is a prime, whenever F is a prime filter of L.

Proof: (1) Suppose x € F N §(F). Then x € F and x° € F. Since
F is a filter and L is a Stone algebra, we get 0=x° A x € F, which is a
contradiction. Therefore F M 6(F)=¢.

(2) Letx € §(F). Then x°°°=x° € F implies x°° € §(F).
(3) Letx € F. Then x°° > x € F implies x° € §(F).

(4) Let F=L. Then 0=0° e F implies 1=0° € §(F). Therefore
0(F)= L. Conversely, let §(F)=L. Then 1°°=1 € F. Hence 0=1°€ §(F).
Then 8(F)= L.

(5) Let Fc G. Suppose x € §(F). Then x° € F ¢ G. Therefore x €
8(G) and (8(F) <d(G).

(6) Let x € § (D(L)). Then x° € § (D(L). Hence x< x°°=0.
Therefore & (D(L))={0}.

(7) Let F be a prime filter of L. Assume x A y € §(F) and y ¢ F.
Then x° v y° =(x A y)° 2 Fand y° € F. Since F is prime filter, then x° €
F. Hence x° € §(F). Therefore §(F) is prime ideal of L.

The concept of §-Ideals is introduced in the following.
Definition 3.4

Let L be an MS-algebra. An ideal I of L is called a §-Ideal if I=8(F)
for some filter F of L.

Example 3.5

Let L=(0, x, y,2, 1 : 0 < x < y < z < 1} be a five element chain and
x°=x, y°= z°=0. Clearly (L, ©) is an MS-algebra. We observe that the
ideals {0}, {0, x} and L are §-Ideals of L but the ideals {0, x, y} and {0, x,
y, z} are not.

Lemma 3.6
A proper §-ideal of an MS-algebra L contains no dense element.

Proof: Let I be a proper §-Ideal. Then I=§(F) for some filter F of L.
Suppose x € 6(F) N D(L). Then we get 0=x° € F, which is a contradiction.
Therefore §(F) N D(L)= ¢.

The following lemma produces some more examples for 5-Ideals of
an MS-algebra from the subvariety K.

Lemma 3.7
Let L be an MS-algebra from K,. Then we have
(1) Laisad-Ideal of L,

(2)  Every prime ideal P with P n LA= ¢ and LAC P is a §-Ideal of
L, whenever L has no fixed point.

Proof

(1) It is known that, if L € K, then L={x v x°: x € L} is a filter of L,
L'={xAx:xeL}isanidealof Landx e L"<> x° € Lforallx e L. It
is enough to deduce that §(L¥)= L". Let x € §(L"). Then x° € LY, which
yields x < x°° € L". Then x € L". Conversely, let x € L". Then x° € L".
Therefore x € §(L¥). Consequently L" is a §-ideal of L.

(2) Suppose that P is a prime ideal of L such that P L"= ¢ and L*
cP.Letxe P.ThenxAx® e L"and x v x° € LV. Hence x v x° ¢ P. Thus
we get x° ¢ P, which yields that x° € (L-P). Thus x € §(L-P). Therefore P
< 8(L-P). Conversely, let x € §(L-P). Then x° € (L-P). Thus x° ¢ P. Now
X A x° € Pand P is prime imply x € P. Hence §(L-P) < P. Therefore P
is a §-ideal of L.

Now, let us denote the set of all §-Ideals of L by I°(L). Then, in the
following Theorem, we prove that I’(L) forms a complete distributive
lattice.

Theorem 3.8

Let L be an MS-algebra. Then I°(L) forms a complete distributive
lattice.

Proof: It is obviously that {0} and L are the smallest and the greatest
0-Ideals of L. Now, for every two §-Ideals I and J we prove that I N J
and I v J are again §-Ideals. Since I and ] are §-Ideals, then there exist
filters F and G of L such that I=8(F) and J=8(G). So we have to show the
following:

O(F N G)=8(F) N 8(G) and 8(F v G)=4(F) v &(G).

Since FN G c Fand F N G c G, then by Lemma 3.2(5), we get §(F
N G) < 6(F) N 8(G). Conversely, let x € §(F) N §(G). Then x° € FN G.
Hence x € 8(F N G). Therefore 8(F) N 8(G) < 8(F N G). Now, 6(F v G)
is a §-Ideal of L. Since &(F), 8(G) < 6(F v G), then 8(F v G) is an upper
bound of §(F) and 6(G) in P’ (L). Let §(H) be a §-Ideal of L such that (F)
< 0(H) and 8(G) < §(H) where H is a filter of L. We claim that §(F v G)
c 0(H). Letx € 8(F v G), then x° € Fv G. Hence x° =f A g for some f €
Fand g € G. Since f € §(F) and g° € 6(G) (see Lemma 3.3(3)), then f°
€ §(H) and g° € 6(H). Now we have

J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

Volume 9(2) 028-032 (2016) - 29



Citation: Abd EI-Mohsen B (2016) 6-Ideals in MS-Algebras. J Comput Sci Syst Biol 9: 028-032. doi:10.4172/jcsb.1000217

fed(H)and g € 6(H) = fvge e §(H)
= x°°=(f A g)° € §(H)
= x € §(H) by Lemma 3.3(2).

Hence 8(F v G) is the supreumum of both §(F) and 8(G) in I’(L).
Therefore (I°(L), M, v, {0}, L) is a bounded sublattice of the lattice I (L)
of all ideals of L. Hence I°(L) is a bounded distributive lattice. It is clear
that I°(L) is a partially ordered set with respect to set-inclusion. Then
by the extension of the properties §(F N G)=0(F) N 6(G) and §(F v
G)=8(F) v 6(G), we can obtain that I’(L) is a complete lattice. Therefore
I’(L) is a complete distributive lattice.

Definition 3.9

A §-Ideal I of an MS-algebra L is called principal §-Ideal if there
exists x € L such that I=0([x)).

It is observed in the following Theorem that any principal ideal
generated by a closed element of an MS-algebra is a §- Ideal.

Theorem 3.10

Let L be an MS-algebra. Then for any x € L, §([x)) is a principal
0-Ideal of L.

Proof: It is enough to show that (x°]=0([x)). Let a € (x°]. Then a
< x°. Hence a° 2 x°° > x implies a° € (x°]. Thus a € §([x)). Conversely,
suppose that a € §([x)). Then a € §([x) implies a° > x. Hence a < a*° <
x. This yields that a € (x°]. Therefore (x°] is a §-Ideal of L.

Some properties of principal §-Ideal are given in the following:
Lemma 3.11
Let L be an MS-algebra. Then we have the following statements:
(1) foralla e L, §([a))=(a°],
(2) foralla e L, 8([a))=6([a>)),
(3) foralld e D(L), §([d))={0},
(4) forallx € F, §([x))=6(F) for any filter F of L.
Proof: (1) It is clear from the above Theorem 3.10.
(2) Using (1) and the fact, a°°=a°, we get,
(3)8([a°))=(ace°]=(a°]= &([a)).
(5) Foreveryd € D(L), we have §([d))=d°= (0].
(6) Letx € F.Suppose y € §([x)). Then we get,
yed([x) =y e [x)
=>yzxeF
=y eF
= y° € §(F)

Therefore 6([x)) <O(F).
Let us denote that M°(L)={d([x)):x € L}={(x°] : x € L}. Then, in the
following Theorem, it is observed that M°(L) is a de Morgan algebra.

Theorem 3.12: For any MS-algebra L, M°(L) is a sublattice of the
lattice I°(L) of all §-Ideals of L and M°(L) can be made into a de Morgan

algebra. Moreover, the mapping x ~ (x°] is a dual homomorphism of
L into M%(L).

Proof: Let §([x)), 8([y)) € M°(L) for some x, y € L. Then we get

8(12) A &([y))= 8(1x v 7)) € Mo(L) and &([x)) v ()= ([x v ) e
Me(L). Also, {0}=6([1)) € M°(L) and L= §([0)) € M°(L). Hence M°(L)
is a bounded sublattice of I°(L) and hence a distributive lattice. Now,
define a unary operation on ~ M°(L) by 5([x))=5([x)). Then we have

5([x)) =8(x°))
(]
= (=]
= 8([x),

and
S([x) v ([»)=56(x A »))
=6([xA»)")
=6([x"vy°))
=3([x)N[¥°))
=5([x*)N([»°))

= o) N (),

o([) = ([0

Therefore M°(L) is a de Morgan algebra. The remaining part can
be easily observed. A characterization of §-Ideals in terms of principal
d-Ideals is investigated in the following.

Theorem 3.13: For any ideal I in an MS-algebra L, then the
following conditions are equivalent:

(1) Tisad-Ideals
2 I=v.e [a%)
(3) Foranyx, yinL, 8([x°))=6([y°)) andx € Iimply y € L

Proof: (1) = (2): Let I be a §-Ideal. Then I=8(F) for some filter F of
L. Let x € 1. So we get

xeld(F)=>x°eF
= x°° e §([x°)) < §(F)
= x e 3(1e) € U 8(la).
Then Ic U, 8([a°)) Conversely, let x € U,., 8([a°)). Then we have,
x eU,, 6([a°)) = x € §([y°)) for some y € I
=xe(@°]clasyrel
= U (lao) cL
ThenI= Ljil 8([a°)).

(2) = (3): Let I =U,_; 8([a°)). Suppose 8([x°))= &([y°)) and x € I
Then we get,

8([x)=8([y)) and x € I = 6([y°))=0([x°)) ggl 8([a°))=I

= yoo C I

=>yrel=yel

(3) = (1): Assume the condition (3). Consider F={x € L: x° € I}.
Letx, y € F. Then x°, y° € I. Hence (x A y)°>=x°v y° € L Thusx A y €
F. Nowlet x € Fand z € L such that z > x. Then z° < x° € I implies z° €

I. Thus z € F and F is a filter of L. We claim that I= §(F). Let x € 6(F).
Then we get,

xed(F)=>x°eF
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=>x°el
=>xel=6F) cl
For the converse, let y e I. We have,
y € Iand §([y°))=0([y>*°)) = y>° € I by (3)
=y eF
=y e d(F)
=I1cd(F).
Therefore I is a §-ideal.
8-Ideals and Homomorphisms of MS-algebras

In this section, some properties of the homomorphic images and
the inverse images of §-Ideals are studied. By a homomorphism on an
MS-algebra L, we mean a lattice homomorphism # satisfying (h(x))
o=h(x°) forall x € L.

Theorem 4.1

Let h: L>M be a homomorphism of an MS-algebra L onto an MS-
algebra M. Then we have,

(1) foranya e L, h(8([a)))=6(h([a)),
(2) forany é-Ideal I of L, h(I) is a -Ideal of M,
for any 8-Ideal I of L, h(I)= U,; 8([((h(1))°))).
for any filter F of L, h(8(F))=6(h(F))
Proof: (1) For all a € L, we get,
h(&([a)))=h((a°])=((h(a))°]= 8([h(a))= 8(h([a))).
(2) Let I be a -ideal of L. Then I=§(F) for some filter F of L. Now
h(I)= h(6(F))=h{x € L: x° € F}
= {h(x) € M: h(x°) € h(F)}
= {h(x) € M: (h(x))° € h(F)}
= 8(h(F)):
Then h(I) is a §-ideal of M as h(F) is a filter of M.

(3) For any d-ideal I of L, I= Uie[ 4([i°)). Let x € h (I) then x=h(i) for
some i € I Then (8([x°))=8([(h(1)°)) < U._, 8([(h(i))°)). Conversely,
let, y € U, 8([(h(0))?). Now,

y e Jah@)) =y e s([(h@))ael
=y e ()]

=ye<h(a)e eh(l)asar el

iel

=yeh()

= U 8(((nGi)) < h (1)
(4) Let x € 6(h(F)). Then we get,
x € 8(h(F)) = x° € h(F)
=xeh(f),feF
= x=x°°= h(f°)
= x € 8(h(F)) as f° € 8(F) by lemma 3.3(3).
Then 8(h(F)) < h(8(F)). For the converse we have,

x € 8(h(F)) = x=h(y), y € 6(F)
= x°=h(y°),y° € F
= x°=h(y°),y° € (h(F)asy° € F
= x € h(6(F)).
Theorem 4.2

Let f: L > M be a homomorphism of an MS-algebra L into an MS-
algebra M. Then we have,

(1) for any 6-ideal H of M, f '(H) is a §-ideal of L,
(2) Kerfisa d-ideal of L.

Proof: (1) Since H is a §-ideal of M, then H=48(F) for some filter F
of M. We claim f'(H)= 6(f '(F)), where f '(H) is an ideal of L. Now,

x € f(H) = fix)=y, y € H=4(F)
= (flx))°=flx)=y,y° € F
= x e (1) <f ()
=x € §(f* (F)).
Conversely, x € 6(f'(F)). Then we have,
xed(f (F) =xef(F)

= (fix))°=f(x°) € F

= fix) € §(F)=H

= x° € f(H)

= 8(f (F) < f '(H)
Therefore f'(H) is a §-ideal of L.

(2) Since fis a homomorphism, then Ker f ={x € L: f{x)=0} and
Coker f={x € L: f(x)=1 are ideal and filter of L respectively. We claim
Ker f=(Coker f). Now

x € Ker f= f(x)=0
= f(x)=f)o=1
= x° € Coker f
= x € §(Coker f).
Then Ker f < 8(Coker f). Conversely,
x € 8(Coker f) = x° € Coker f
= flx)e=fx)=1
= flx))=f(x%)=0
= x € ker f
Then 8(Coker f) < ker f. Therefore ker fis a §-ideal of L.
Theorem 4.3

Let h: L > L, be an onto homomorphism between MS-algebras
L=(L,v,A,%0,1)and L =(L, Vv, A,°0,,1,). Then we have,

L’

(1)  M°(L) is homomorphic of M°(L)),
(2)  P(L) is homomorphic of I*(L,).

Proof: (1) Define g:M°(L) > M°(L,) by g(6([a)))=0([h(a))). Clearly,
g({0,})=L, and g(L)=L . For every §([a))), 8([b))) € € M°(L) we get,

J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

Volume 9(2) 028-032 (2016) - 31



Citation: Abd EI-Mohsen B (2016) 6-Ideals in MS-Algebras. J Comput Sci Syst Biol 9: 028-032. doi:10.4172/jcsb.1000217

8(8([a)) N 8([(8)))=g(([a A b)))

=0([h(a A b))
=0([h(a) A h (D))
= 0([h(a)) M 8([h(D))
=g(8([a))) N g(8([b))),
and
8(8([a)) v 8([(b))) =g(6([a v b)))
=0([h(a v b))
=0([h(a) v h (b))
= 8([h(a)) v &([h(b))
=g(8([a))) v g(&([b))),
also,
g(5([a))=e(((a*))
= &([A[a®)))
=0[h[a))
=5(6([a))

Therefore g is a homomorphism of de Morgan algebras M°(L) and

Me(L).

(2) Define the map m: (L) - I*(L,) by n(I)= 8(h(F)) where I= &(F).
It is clear that n{0 }={0, ,} and n(L)=L,. Let I, ] € I’(L). Then I= §(F) and
J= 0(G), where F and G are filters of L. Then we get,

n(Iv]) = 8(h(Fv G))
= 8(h(F) v h(G))
= 8(h(F)) v 8(h(G))
=n(I) v n(J)),

and

n(INJ)=8h(F N G))

= 8(h(F) N h(G))
= 8(h(F)) N 8(h(G))
=7(I) N n(J)

Therefore 7 is a (0, 1)-lattice homomorphism and the proof is

completed.
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