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Abstract

We explore the general form of two sided ideals of the enveloping algebra of the Lie su-
peralgebra osp(1, 2). We begin by disclosing the internal structure of U(osp(1, 2)) computing
the decomposition of adjoint representation. The classification of the ideals we reach is done
via presenting generators for the each ideal and by showing that each ideal is generated
uniquely.
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1 Introduction

Until today there exists no example of enveloping algebra with complete classification of all two-
sided ideals with the exception of U(sl2) [1]. In this article we present this complete classification
for the enveloping algebra of Lie superalgebra osp(1, 2). This Lie superalgebra contains Lie
algebra sl2 as subalgebra, but the classification of all both-sided ideals of U(osp(1, 2)) is richer
and is not simply related to the classification of ideals of U(sl2). The classification of all primitive
ideals was done in the paper [2] and is contained in our more general result.

2 Structure of U(osp(1, 2))

The five dimensional Lie superalgebra g = osp(1, 2) has enveloping algebra U = U(g) which
is complex associative algebra generated by elements E±, H and F± satisfying the following
commutation relations:

[H, E±] = ±E±, [E+, E−] = 2H, [H,F±] = ±1
2 F±

{F+, F−} = 1
2 H, [E±, F∓] = −F±, {F±, F±} = ±1

2 E±

Here [x, y] = xy − yx denotes the commutator and {x, y} = xy + yx the anti-commutator. It
is well known that the Poincaré-Birkhoff-Witt theorem holds in this algebra and the basis of U
can be taken as ordered monomials

E−α
E+β

HγF−δ
F+ε

, α, β, γ ≥ 0, δ, ε ∈ {0, 1}

The adjoint representation of g, i.e the mapping ad : g → L(U) defined for a = a1 . . . ak ∈
U, x, a1, . . . , ak ∈ g by

ad(x)a = Jx, aK = xa− (−1)deg x deg aax (2.1)

1Presented at the 3rd Baltic-Nordic Workshop “Algebra, Geometry, and Mathematical Physics“, Göteborg,
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where the degree is defined by the formulas

deg E± = deg H = 0, deg F± = 1
deg a1 . . . ak = deg a1 + . . . + deg ak for a1, . . . , ak ∈ g

acts as a (super)derivation. It means that if we want to define adjoint representation on the
whole space U we can take

ad(u)a = ad(x1) . . . ad(xn)a = Jx1, J. . . , Jxn, aK . . .KK for u = x1 . . . xn, xi ∈ g

and proceed by linearity.
Now we compute the decomposition of U similarly as in the case of U(sl2). The enveloping

algebra U possess a natural filtration {Un}n≥0, Un ⊂ Un+1, given by degree n of elements in
Un. It is easily seen that adjoint representation has Un as its invariant subspace (by applying
supercommutator we can not obtain element of higher degree). It is completely reducible on
each Un [3] i. e. we can see Un as a direct sum of invariant subspaces generated by certain
highest weight vectors. The highest weight vector v of weight m satisfies relations

JE+, vK = 0, JF+, vK = 0, JH, vK = mv

From these relations we can directly find that all highest weight vectors of small degree. Let us
denote JXK = ad(U)(X), where X ⊂ U is any subset; for set containing only one element we
shorten J{x}K = JxK. Commuting highest weight vectors of small degree we see that

U0 = J1K
U1 = JE+K⊕ U0

U2 = JE+2K⊕ JAK⊕ JCK⊕ U1

. . .

where

C = 2E−E+ + 4F−F+ + 2H2 + H

is Casimir element which generates the center of the algebra [3]; element

A = 3F+ + 4E+F− − 4HF+

has the weight 1
2 . Note that the element CαE+β

Aγ has the weight β + 1
2 γ and dimension of

the space generated by the highest weight element with the weight m is 4m + 1. Because the
elements F+ and F− satisfy the relations

F+2 = 1
4 E+, F−2 = −1

4 E− (2.2)

we deduce that the highest weight element A can’t be presented in the decomposition in the
power greater than one. Thus we can claim that for any n ≥ 0

Un =
⊕

α,β≥0, γ∈{0,1}
2α+β+2γ≤n

JCαE+β
AγK (2.3)

The proof of this claim is based on dimensional check. It’s not difficult to see that the sum Jv1K+
Jv2K, where v1, v2 are highest weight vectors, is direct if and only if v1, v2 are linear independent.
The vectors CαE+β

Aγ are linear independent for different α, β, γ. The representation generated
by the highest weight vector CαE+β

Aγ has the dimension 4β + 2γ + 1.
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On the other hand the dimension of Un is also easy to determine. The dimension of vector
space of homogeneous polynomials of degree d in k variables is

(
k+d−1

d

)
. Due to the relation

(2.2) we must consider only monomials which have zero or one factor equal to F±. For the
dimension of Un we have the following recurrence relation:

dimUn = dimUn−1 +
(

n

n− 2

)
+ 2

(
n + 1
n− 1

)
+

(
n + 2

n

)

(if we want to construct monomial of degree n we take into account monomials from three
elements E±, H of degree n−2 to which we append F−F+, monomials of degree n−1 to which
we append F− or F+ and finally monomials of degree n). Simplifying we get

dimUn = 1
3 (2n3 + 6n2 + 7n + 3)

For the dimension of the space on the right hand side of (2.3) we get the same result:
∑

α,β≥0, γ∈{0,1}
2α+β+2γ≤n

(4β + 2γ + 1) = 1
3 (2n3 + 6n2 + 7n + 3)

The following decomposition of adjoint action therefore takes place:

U =
⊕

α,β≥0

γ∈{0,1}

JCαE+β
AγK (2.4)

3 Important relations in U(osp(1, 2))

By direct calculation, we see that if I is any both-sided ideal of U , the following important
implications hold in U :

E+n ∈ I ⇒
(
C − 1

2 n(n− 1)
)
E+n−1 ∈ I (3.1)

E+n
A ∈ I ⇒

(
C − 1

2 n(n + 1)
)
E+n−1

A ∈ I (3.2)

E+n
A ∈ I ⇒

(
C + 1

8

)
E+n+1 ∈ I (3.3)

Using these relations, the structure of ideals generated by the highest weight elements E+n and
E+n

A can be obtained. Let s, n ∈ {0, 1, 2, . . .} and denote

fn,s =
n∏

k=s+1

(
C − 1

2 k(k − 1)
)

Then

(
E+n

)
=

∞⊕

s=0

(
fn,sC[C]JE+sK⊕ fn,s+1C[C]JE+s

AK
)

(
E+n

A
)

=
∞⊕

s=0

((
C + 1

8

)
fn+1,sC[C]JE+sK⊕ fn+1,s+1C[C]JE+s

AK
)

where (x) means ideal generated by element x.
Let’s now have any both-sided ideal I ⊂ U . Because U is Noetherian ring, I is finitely

generated, so we can write

I = (x1, . . . , xn) (3.4)
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for some xi ∈ U . Thanks to decomposition (2.4) we can replace xi’s by certain highest weight
vectors. There exist numbers ni ≥ 0, γi ∈ {0, 1} and complex polynomials Pi, i = 1, . . . , m such
that

I = (P1(C)E+n1Aγ1 , P2(C)E+n2Aγ2 , . . . , Pm(C)E+nmAγm) (3.5)

Now we reduce the number of generators used in (3.5) by successive replacing the generators
by more suitable ones.

First, if there are two generators having the same n’s and same γ’s, say P1(C)E+n
Aγ and

P2(C)E+n
Aγ , we can replace them by one generator gcd{P1(C), P2(C)}E+n

Aγ .
Further simplification is possible due to the relations (3.1) and (3.2). Let there be, say,

two generators, P1(C)E+n1 and P2(C)E+n2 , where n1 < n2. First, we may assume without
loss of generality that P2|P1. Next, we can replace the two generators by the suitable couple
P (C)Q(C)E+n1 and P (C)E+n2 , where P (C) = gcd{P1(C), P2(C)} and Q(C)|fn2,n1 . (The
similar simplification applies to the generators having γ’s= 1.)

And thirdly, assume there are two generators in the list of the form Q(C)E+n1 and E+n2 ,
n1 < n2, Q(C)|fn2,n1 . Then it is possible to replace them by new couple Q(C)fn1,0 and E+n2 .
(Again, the similar simplification applies to the generators having γ’s= 1.)

After finite number of steps, we are able to get the following: Every ideal I can be written
of the form

I =
(
P1(C)E+n

, P1(C)Q1(C), P2(C)E+m
A, P2(C)Q2(C)A

)
(3.6)

where n,m ≥ 0 and P1(C), Q1(C), P2(C) and Q2(C) are four polynomials such that
(
C − 1

2 n(n− 1)
)∣∣Q1(C)

∣∣fn,0 ,
(
C − 1

2 m(m + 1)
)∣∣Q2(C)

∣∣fm+1,1

The form (3.6) can still be simplified using the relation (3.3). Finally we can reach the form

I =
(
P (C)

(
C + 1

8

)γ
E+N+1

, P (C)
(
C + 1

8

)γ
Q(C)Cδ, P (C)E+N

A,P (C)Q(C)A
)

(3.7)

where M ≥ 0, γ, δ ∈ {0, 1}, P is some polynomial and Q is such that
(
C − 1

2 M(M + 1)
)∣∣Q(C)

∣∣fM+1,1(C)

The uniqueness of ideal (3.7) is proven by exploring its internal structure. It can be shown
that I having the form (3.7) decomposes as the following:

I =
+∞⊕

s=0

C[C]JI0
s E+sK⊕ C[C]JI1

s E+s
AK (3.8)

where

I0
s = gcd

{(
C + 1

8

)γ
PfM+1,s,

(
C + 1

8

)γ
CδPQ

}

I1
s = gcd

{
PfM+1,s+1, PQ

}

Using (3.8) we can state that the form (3.7) is unique, i. e. for different numbers M , γ, δ
and polynomials P , Q we get different ideals.

4 Conclusion

We have shown that the most general form of every two sided ideal of the enveloping algebra
U(osp(1, 2)) is given by formula (3.7). We have found that this form is unique for each ideal
and thanks to this uniqueness we have obtained complete classification of both sided ideals of
U . It would be nice to explore the origin of the fact that the surprisingly richer structure arises
when we compare to the case of U(sl2).
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Acknowledgement

This work was partially supported by GACR 201/05/0857.

References

[1] S. Catoiu. Ideals of the Enveloping Algebra U(sl2). J. Algebra, 202 (1998), 142-177.
[2] G. Pinczon. The Enveloping Algebra of the Lie Superalgebra osp(1, 2). J. Algebra, 132 (1990), 219-

242.
[3] M. Scheunert. The Theory of Lie Superalgebras. Springer-Verlag, New York, 1979.
[4] J. Dixmier. Algebres Enveloppantes. Gauthier-Villars Editeur, Paris, 1974.
[5] B. Konstant. Lie group representations on polynomial rings. Am. J. Math. 85 (1963), 327-404.
[6] A. Kirillov. Elements of Representation Theory. Nauka, Moscow, 1972 (in Russian).
[7] D. Flath. Decomposition of the enveloping algebra of sl3. J. Math. Phys. 31 (1990), 1076-1077.

Received December 12, 2007
Revised March 08, 2008


