alexa Identification of and#400;-Caprolactam and Melamine in Polyvinyl- Pyrrolidone Powder by Double Injection Micellar Elektrokinetic Chromatography | OMICS International
ISSN : 2153-2435
Pharmaceutica Analytica Acta

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Identification of Ɛ-Caprolactam and Melamine in Polyvinyl- Pyrrolidone Powder by Double Injection Micellar Elektrokinetic Chromatography

Ahmad Amini1,2*

1Medical Products Agency, P.O. Box 26, SE-751 03 Uppsala, Sweden

2Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, P.O. Box 574, SE-751 23, Uppsala,Sweden. 46 18 471 00 00

*Corresponding Author:
Ahmad Amini
Division of Analytical Pharmaceutical Chemistry
Department of Medicinal Chemistry
Uppsala University, Biomedical Centre
P.O. Box 574, SE-751 23, Uppsala, Sweden
Tel: 46 18 471 00 00
E-mail: [email protected]

Received Date: October 28, 2015 Accepted Date: November 23, 2015 Published Date: November 26, 2015

Citation Date: Amini A (2015) Identification of ?-Caprolactam and Melamine in Polyvinyl-Pyrrolidone Powder by Double Injection Micellar Elektrokinetic Chromatography.Pharm Anal Acta 6:442. doi: 10.4172/2153-2435.1000442

Copyright: © 2015 Amini A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Pharmaceutica Analytica Acta


A double-injection micellar electrokinetic chromatography (DIMEKC) method for the identification of Ɛ- caprolactam and melamine deliberately added to povidone (polyvinylpyrrolidone) products has been developed. The separations were performed in 89 mM phosphate buffer (pH 7.4) containing 52 mM sodium dodecyl sulfate (SDS) in fused silica capillaries with UV absorption detection at 200 nm. The identification relied on the agreement between the calculated migration time (tmig(c)) of the analytes and the migration time (tmig) of their corresponding reference standards being analysed simultaneously within a double injection run. The migration time of the analytes was calculated from the partial migration times (tmig(p)) as described in this paper. The migration time ratios (tmig(c) / tmig) varied between 0.997 and 1.005 (i.e., 1.001 ± 0.004), indicating good agreement between the observed and calculated migration times.


DIMEKC; RMT; Povidone; Paracetamol; ?-Caprolactam; Melamine


Polyvinylpyrrolidone (povidone) as an important excipient is used in a variety of pharmaceutical formulations [1]. The European Pharmacopoeia recommends application of the Kjeldahl method [2] for the determination of povidone which contains approximately 12% nitrogen by mass [3]. The Kjeldahl method is because of its lack of specificity unable to selectively differentiate between different nitrogen containing compounds such as ?-caprolactam, or melamine which increases the apparent amount of povidone [4]. Melamine and ?-caprolactam contains 66% and 12% nitrogen by mass respectively [5]. These compounds are considered as possible economically motivated adulterants [2]. Melamine can cause kidney damage and renal failure [6]. Therefore, development of selective methods for the purity determination of povidone is of great importance to ensure its safety [2].

The aim of the present study has been to develop a CE method based on double-injection micellar electrokinetic chromatography for the identification of ?-caprolactam and melamine as nitrogen containing compounds in povidone products [2,7].

Chemicals and Reagents

Paracetamol reference standard was obtained from the European Directorate for the Quality of Medicines and Health Care (EDQM, Strasbourg, France). Kollidon® SR, polyvinylpyrrolidone (average molecule weight 40,000), polyvinylpyrrolidone (average molecule weight 10,000), ?-caprolactam and melamine were purchased from Sigma-Aldrich (St Louis, USA). Sodium hydroxide, disodium hydrogen phosphate and sodium di-hydrogen phosphate were purchased from Merck (Darmstadt, Germany). Sodium dodecyl sulfate solution (10% w/v) was purchased from BIO RAD (Hercules CA, USA). Water was purified by Elga Maxima LC water cleaning system. All samples to be analysed were filtered through a 0.22 μm MILLEX® GV filter (MILLIPORE, Carrigtwohill Co. Cork, Ireland). Before use, all sample solutions were stored in a refrigerator at 8oC.


Capillary electrophoresis experiments were performed on a ProteomeLab PA 800 system (Beckman Instruments Inc., Fullerton, CA, USA), equipped with a photodiode array (PAD) system that monitored the wavelengths between 190 nm and 400 nm. Detection was performed at 200 nm. The background electrolyte (BGE) was prepared by adjusting the pH of 1.5 ml orthophosphoric acid (85%) to 7.4 with NaOH (3.0 M) and 37.5 ml of 100 mg/ml SDS solution. The volume was then adjusted to 250 ml with water. The final concentration of SDS was thus15 mg/ml (52 mM). A 118 cm fused silica capillary (108 cm effective length) x 50 μm I.D. (O.D. 375 μm) from Polymicro Technologies, Phoenix, AZ, USA was used. The capillary was cut to the desired length using a SGT Shortix capillary column cutter (Middelburg, The Netherlands).

Before the first injection, the capillary was consecutively preconditioned with water (5 min), and 0.5 M NaOH (10 min), followed by the BGE for 10 min at 80 psi (550.7 kPa). Injections were performed hydrodynamically at 1.2 psi (8.3 kPa) for 10 seconds. Immediately after the first injection a plug of the BGE was injected with pressure at 0.3 psi (2.1 kPa) for 3 seconds. Between the injections the capillary was washed with the BGE for 10 minutes. Separations were performed in normal polarity mode by applying +30 kV voltages across the capillary for 40 minutes. The capillary cartridge and the sample storage were thermostated at 22oC and 10oC, respectively. The separation vials were changed after every five runs.

In double injection mode, the separations are carried out by performing two injections. Between each injection the first injected sample plug was electrophoresed for 15 min (tPE) [7] at 30 kV in order to keep the two sample plugs separated during the final analysis.

Results and Discussion

Povidone, melamine and ε-caprolactam were separated at neutral pH (89 mM phosphate buffer) in the presence of 52 mM sodium dodecyl sulfate (SDS). The relatively high SDS concentration was necessary to baseline separate povidone and melamine which migrated close to each other. At the used pH value the EOF was sufficiently strong to sweep the negatively charged solute-SDS complexes towards the cathode. The counter current flow of the EOF and the SDS micelles contributed to the resolution of the solutes.

In order to enable the identification of the solutes the method was transferred to double injection mode by adjusting the time span for the partial electrophoresis (tPE) of the first injected sample plug (tPE>Δtmig) [7,8]. The difference between the migration times (Δtmig) was evaluated by taking into account the migration time of water and that of the last migrating solute, i.e., ?-caprolactam (Figure 1). The first injected plug was therefore electrophoresed for 15 min (tPE>Δtmig≈12 min) prior to the second injection in order to avoid an inter-plug interference between the injected plugs. The full migration time (tmig(c)Analyte) of the analytes was calculated from the partial migration time (tmig(p)Analyte) by means the following equation:


Figure 1: An example electropherogram from analysis of a mixture of povidone (20 mg/ml), melamine, paracetamol and є-caprolactam in double injection mode. Running conditions: background electrolyte composed of 89 mM phosphate buffer (pH 7.4) containing 52 mM SDS. Other separation conditions as those given in the experimental section.

tmig(c)Analyte=tmig(p)Analyte+t (1)

the t-term was determined by using an either internal (IM) or external marker (EM) [7]. Paracetamol as a very weak acid eluted between melamine and ?-caprolactam (Figure 1), therefore it was added as IM in both reference and analyte solutions. The magnitude of the tIM is calculated by Equation (2). A more selective and analyterelated t-value may be obtained when reference standards are used as external markers [7].

tIM=tmig(IM) −tmig(p)IM (2)

where tmig(IM) and tmig(p)IM stand for the observed and partial migration times of the IM, respectively.

tEMi=tmig(STD)i−tmig(p)STDi (3)

where tmig(STD)i and tmig(p)STDi are the observed and partial migration times of the reference standard, respectively.

The determined tEM values were used for the calculation of migration times in the bracketing SDS-DIMEKC runs, i.e., in the runs before and after the reference run. The identification of the analyte was carried out by comparing the calculated migration times of the analytes and the observed migration times (tmig(STD)i) of the reference standards:

RMT=tmig(c)Analyte/tmigSTD (4)

The precision of the determined migration times and the RMT values are summarized in Table 1 and 2. As seen the RSD values for both calculated migration times and observed migration times of the solutes in the first and second injected plug, respectively, were less than 7% (Table 1). However, variations in the migration time differences (tEMi or tIM), being used for the migration time calculations, were less than 1%, i.e., significantly smaller than variation in the migration times (Tables 1 and 2).

Analyte tmig
tmig(c) IM
tmig(c) EM
Povidon 24.111
Melamin 24.830
Paracetamol 28.746
Caprolactam 31.322

Table 1: Precision of observed and calculated migration times (n=80). The separation conditions as those given in Figure 1.

The RMT ratios, determined using both tIM (RMT(IM)) and tEM (RMT(EM)), varied between 0.997-1.005 (Figure 2). The RMT ratios obtained using the external markers, as expected, were more accurate (1.0000-1.0001) than those determined applying tIM (0.9990-1.0020) (Table 2). As Figure 2 demonstrates the RMT(EM) ratios, compared with RMT(IM) ratios, are more closely clustered around the average value. The closeness of the mean and median values indicates that the obtained RMT ratios are scattered more or less symmetrically around the mean values (Table 2 and Figure 2). This also indicates that variation in the data sets has mainly been caused by random errors.


Figure 2: Run-to-run variation of the RMTEM(average) (▲) ratios and RMTIM(average) (Δ). RMT(average)=(RMTpovidone+RMTmelamine+RMTcaprolactm) /3. Operation conditions as those given in the experimental section

Analyte RMTEM±RSD% Median RMTIM(±RSD%) Median tIM(±RSD%)
Povidon 1.0001(±0.10%) 1.0001 1.0006(±0.22%) 0.10001 14.95(±0.61%)
tEM(Povidon)(±RSD%) 14.94(±0.32%)      -          -         -         -
Melamin 1.0000(±0.10%) 1.0000 0.9999(±0.25%) 0.9993          -
tEM(Melamin)(±RSD%) 14.97(±0.82%)       -        -         -          -
Caprolactam 1.0002(±0.3%) 1.0001 1.0020(±0.15%) 1.0020          -
tEM(Caprolactam)(±RSD%) 14.86(±0.98%)

Table 2: SDS-DIMEKC identification of povidone, melamine and Ɛ-caprolactam.Paracetamol was used as internal marker (IM). The relative migration times werecalculated by using either internal marker (RMTIM) or external markers (RMTEM).The separation conditions as those given in Figure 1, (n=80).


The above experimental results demonstrated the ability of the double-injection SDS-MEKC method for the identification of ?-caprolactam and melamine in povidone samples. As compared to the internal marker, the use of the external markers, because of their analyte specificity, provides more accurate results. The migration time ratios varied between 0.997 and 1.005 (i.e., 1.001 ± 0.004), indicating good agreement between the observed and calculated migration times (Figure 2). It is to be noted that the use of capillary electrophoresis in combination with other techniques sharply enhances trueness of the identification [9].


  1. Haaf F, Sanner A, Straub F (1985) Polymers of N-vinylpyrrolidone synthesis, characterization and uses. Polym J 17: 143-152.
  2. Amini A (2014) Identification of ε-caprolactam, melamine and urea in polyvinylpyrrolidone powders by micellarelectrokinetic chromatography. J Pharm Biomed Anal 91: 12-16.
  3. Povidone, European Pharmacopoeia 07/2011:0685.
  4. Wang J, Jiang L, Chu Q, Ye J (2010) Residue analysis of melamine in milk products by micellarelektrokinetic capillary chromatography with amperometric detection. Food Chemistry 121: 215-219.
  5. Bann B, Miller SA (1958) Melamine and derivatives of melamine, Chem Rev 58: 131-172.
  6. Wiwanitkit V (2009) Geometric analysis of melamine crystal: A problematic molecule inducing renal failure in melamine intoxication. Renal Failure 31: 421-422.
  7. Amini A (2014) Double-injection capillary electrophoresis for the identification of analytes. J Pharm Biomed Anal 35: 2915-2921.
  8. Amini A, Lodén H, Pettersson C, Arvidsson T (2008)Principles for different modes of multipleinjection CZE.Electrophoresis 29: 3952-3958.
  9. Amini A, Rundlöf T, Rönquist K, Tydén M, Turunen T, et al. (2015) A protocol for the quality assessment of illegally distributed human growth hormones with respect to identity, purity, endotoxin level and microorganism content. Anal Met 7: 8857-8864.
Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 8205
  • [From(publication date):
    November-2015 - Jul 19, 2018]
  • Breakdown by view type
  • HTML page views : 8136
  • PDF downloads : 69

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version