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Abstract
Many techniques, approaches and tools were used in this Research to achieve the Methodology. Using artificial 

neural network to simultaneous hydraulic parameters is one of these techniques. Transmissivity and storativity 
consider the most important parameter in each aquifer due to the reality of their effect on the aquifer properties. In 
this research, it is assumed that the transmissivity (T) and the storativity (S), represented by coordinates (X), (Y), 
hydraulic head (H), and observation times (t). These variables were chosen depending on the literature review. In 
the present study, the hydraulic head values at each cell (H) and the location of the cells (x, y) are considered as 
input parameters for finding the unknown parameters. The transmissivity (T) and storativity values (S) at cells are 
assumed and used in the finite difference method (Forward model) in order to find the value of hydraulic head at that 
cell. The hydraulic head values were used in the artificial neural networks (Inverse model) to estimate transmissivity 
(T) and storativity values (S) for Wadi El Natrun Depression. The study is based on coupling of forward model and
inverse model. In general, the parameter estimation process consists of identifying a model that would reverse a
complex forward relation.

Keywords: Parameter identification; Simultaneous; Inverse model;
Neural networks; Groundwater flow; Forward model; Wadi El-Natrun

Introduction 
Soft computing techniques analogous to biological nervous 

system are called as artificial neural networks (ANNs). The reason 
for wider acceptability of this technique can be attributed to its 
capability to develop computing tools, which may partially capture 
amazingly faster and complicated information-processing ability of 
the brain. Groundwater is an important source of water for drinking, 
irrigation, and industrial uses. It is also a major source for domestic 
water requirement. Ground water hydrology examines problems 
like prediction of groundwater head, distribution of transmissivity, 
storativity specific yield and estimation of parameters. Involved 
processes are nonlinear, complex, multivariate with variables having 
spatial and temporal variability. These are expressed by complex 
partial differential equations, which are normally solved with 
considerable approximations using complex numerical models. Precise 
conceptualization is nearly impossible for groundwater problems as 
physics of the system cannot be fully understood from the surface. 
ANNs can be used in groundwater hydrology since they do not require 
governing equations and their concomitant assumptions.

Strength of ANNs lies in mapping non-linear system data, 
which are capable of extracting the relation between the input and 
output of a process without adequate knowledge of the underlying 
principles. As the computational burden is primarily managed by 
replacing the numerical model with a surrogate simulator artificial 
neural network the technique of ANN is quite appropriate for 
groundwater problems.

Estimation of aquifer parameters demands large time, financial 
and manpower resources which are always scarce [1]. Therefore, the 
efforts are on increase to assess these by non-field methods using the 
technique of ANNs. The determination of aquifer parameters (also 
termed as inverse problem) has always been a challenge because of 
its ill-posedness [2-7]. Inversion of the trained feed forward neural 
network is done to estimate the transmissivity field for synthetic 
problem [5]. Most of the papers used synthetic or published data to 

assess parameters in confined aquifer [4-6,8] for the reason of non-
availability of sufficient number of patterns. Model sensitivity in terms 
of number of nodes in hidden layers is carried out by Shigdi et al. [5] 
using correlation coefficient, Y-intercept, and slope. An approach with 
a combination of ANNs and type curves based on Papadopoulos and 
Cooper analytical solution was used by Balkhair [4] whereas ANN 
and This solution coupling was performed by Lin GF et al. [9]. It was 
found that Levenberg-Marquardt achieves faster convergence than 
backpropagation algorithm [7]. To solve the problem of range of aquifer 
parameters to be used for training [4] carried out training in macro and 
micro scales. Macro scale is used for very wide and very narrow range 
whereas micro scale is for middle range of parameters. Lohani et al. 
[10] presents an efficient and stable artificial neural network (ANN)
model for predicting groundwater level in south-east Punjab, India.
Lohani et al. [11] used neural network configuration for predicting
groundwater level in Amritsar and Gurdaspur districts of Punjab, India 
is identified. For predicting the model efficiency and accuracy, different 
types of network architectures and training algorithms are investigated 
and compared.

The determination of aquifer parameters (also termed as inverse 
problem) has always been a challenge because of its ill-posedness 
[2-7,12,13]. ANNs is solving many complex real world-predicting 
problems. ANNs have been applied to predicting groundwater levels 
[14,15], precipitation and runoff modeling, and aquifer parameter 
estimations [3,5,16-19].
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The main objectives of this study may be summarized as follows: 

(1) to develop an ANN model for solving the groundwater inverse 
problem by providing an ANN model to solve complex nonlinear 
relationships. 

(2) to test the performance of the proposed ANN model. 

(3) to simultaneously determine the transmissivity and storativity 
field of an aquifer by using limited observed head values.

Study area (Wadi El Natrun)

The study area lies at El Behera governorate, Western of Nile Delta, 
Egypt between Longitudes 30° 00' and 30° 33' E and Latitude 30° 20' 
and 30° 30' N. It parallels to (Cairo-Alex. Desert Highway) Km 90 to 
Km 110. The study area covers about 2016 Km2 (Figure 1).

The study area comprises a total area of about 770 km2. From 
the hydrological cross section, which pass through Wadi El Natrun 
area in West-East direction. Pliocene aquifer and from electrical 
sounding, this aquifer unit is mainly formed of alternating sand and 
clay and occasionally capped by thin layer of limestone. The Pliocene 
aquifer is considered as multi-layers’ aquifer under confined to semi-
confined condition. Most of these waters bearing layers belongs to 
the Upper and Middle Pliocene. In this study, the information of 111 
pumping well and 14 observation well were collected as well as other 
parameters such as hydraulic conductivity. Table 1 shows the values 
of hydraulic conductivity, transmissivity, and storativity of Pliocene at 
Wadi El Natrun area of different authors. According to the analysis of 
Pliocene aquifer in the area of study, we can notice that, the hydraulic 
conductivity (K) values ranged between 5 m/day at Wadi El Natrun 
area to 40 m/day in the east of Wadi El Natrun. The transmissivity (T) 
values ranged between 500 m2/day to 1600 m2/day in different zones of 
the Depression.

Geologic setting

The study area is occupied sedimentary rocks belonging to the 
Tertiary and Quaternary Eras. The sedimentary succession comprises 

several water-bearing formations, which are particularly influenced 
by structural features and thus affect the groundwater occurrences. 
However, the surface deposits dominating the area are studied through 
the geological map which shown in Figure 2. In the study area, Late 
Tertiary and Quaternary succession were studied by many authors. The 
subsurface geology of the study area is studied from the well logs as 
from the Wadi El Natrun deep well. The Pliocene aquifer is local in 
extent, covers the entire Wadi El Natrun area, and is discontinuously 
covered by Quaternary deposits of the Pleistocene Aquifer. As a result, 
the Pliocene aquifer is considered to be partially confined [20]. The 
Pliocene Aquifer’s thickness ranges from 150 to 300 m thick [20]. 

Hydrologic setting

Hydrogeologic setting in the Wadi El Natrun area is complex, and 
there is still significant uncertainty as to the precise flow regime and 
hydraulic connections between the aquifers. Nonetheless, multiple 
studies have observed both local and regional groundwater flow to be 
concentrated toward the base of the valley where it discharges to eleven 
saline lakes [20].

Govering equation

A general form of the governing equation, which describes the 
three dimensional movement of groundwater flow of constant density 
through the porous media is [21]:

h h h hKx Ky Kz w Ss
x x y y z z t

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + − =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
	              (1)

Where: Kx, Ky, Kz are values of hydraulic conductivity along the x, 
y and z coordinate axes (L/t); h: is the potentiometric head (L); w: is the 
volumetric flux per unit volume and represents sources and/or sinks of 
water per unit time (t-1); Ss: is the specific storage of the porous material 
(L-1); and t: is time (t). The first part of this problem was run to get a 
steady state solution that takes the form:

0.0h h hKx Ky Kz w
x x y y z z

 ∂ ∂ ∂ ∂ ∂ ∂   + + − =    ∂ ∂ ∂ ∂ ∂ ∂    
	                 (2)

Figure 1: Location map of the study area.
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this process is cycled until the convergence is met. On the other hand, 
Garcia et al. [17] solved the same problem in their previous study- i.e., 
Shigidi  et al., by adding a noise term to the observed hydraulic heads 
and they obtained more precise results than their previous study [5].

Choose the appropriate architecture of network among the available 
networks based on the type of the data and the problem. After many 
trials, Multilayer Perceptron network (MLP) has been chosen because 
of its high capabilities to generalize well in problems plagued with 
significant heterogeneity and nonlinearity. The Multilayer Perception 
(MLP) trained with the back-propagation algorithm is perhaps the 
most popular network for hydrologic modeling [22]. The majority 
of the ANN applications in water resources engineering involve 
the employment of a conventional Feed Forward Back Propagation 
Method (FFBP).

The important feature of this network is its ability to self-adapt 
the weights of neurons in intermediate layers to learn the relationship 
between a set of patterns given as examples and their corresponding 
outputs. So that after having been trained it can apply the same 
relationship to new input vectors and produce appropriate outputs 
from inputs that the system has never seen before, a feature known as 
the generalizability of an ANN [1]. The artificial neural network with 
a multilayer back propagation network has been used successfully in 
several studies [5,14,23-26].

Conceptual model of Wadi el Natrun

On the light of the hydrogeologic properties of the Pliocene aquifer 
in Wadi El Natrun Depression (chapter five), a pictorial representation 
(conceptual model) of the water flow system is constructed to this 
aquifer. The constructed conceptual model depends on the following 
facts:

1) The aquifer of Wadi El Natrun consists of five Geoelectric layers 
appear as follows: 

- The first Geoelectric layer consist of dry sand, gravel and rock 
fragments, called the subsurface. The thickness of this layer is ranged 
between (0.9 m) and (3.8 m). 

- The second Geoelectric layer is formed from shaly, sand and 
presence of shale interbedded with sand and differential amounts of 
water. The thickness of this layer is ranged between (2.4 m) and (22 m). 

- The third geoelectric layer is made up of clayey, sand and gravel 
and underground water included in this layer, the thickness is ranged 
between (61.6 m) and (69 m).

- The fourth geoelectric layer is composed of clayey, sand and 
gravel, and considered the continuation of the third geoelectric layer. 
It includes the same lithology. These values give indication about the 
presence of underground water in this layer, as shown as shown the 
thickness of this layer is ranged between (86.7 m) and (92.4 m).

-The fifth geoelectric layer is barrier separating it and from the 
fourth geoelectric layer. 

At the end, this section includes two water bearing layers, the third 
and the fourth geoelectric layers, that are saturated with water. These 
layers are considered the main aquifer of the study area. 

2) The groundwater flow generally from NE to SW direction 
toward Wadi El Natrun Depression. The recharge from irrigation and 
the evapotranspiration will be neglected. The main discharge source is 
the present flowing productive well (48 wells). 

From the steady state solution, the hydraulic conductivity for 
model aquifers can be found. Then the equation is solved for transient 
case in order to solve for storage coefficient.

Karahan et al. identified transmissivity distribution of a two-
dimensional aquifer system under steady-state flow conditions. In 
that study, randomly selected Cartesian coordinates and error-free 
hydraulic heads are used as input and corresponding transmissivity 
values are used as output in the ANN model [18].

Shigidi et al. determined aquifer parameters by using ANN. In 
order to obtain observed hydraulic heads, they used MODFLOW with 
a stochastically generated transmissivity distribution [5]. Their network 
architecture uses the transmissivity values as input and the hydraulic 
heads as output. The error residuals between computed and observed 
hydraulic heads are reduced by adjusting the transmissivity field, and 

Author Location of the test zone
Hydraulic parameters
K T S

Ahmed [27] North of Wadi El Natrun - 1043.9 -
Shata et al. [28] Northeast Wadi El Natrun 11 - -

Desert research [28] Northeast Wadi El Natrun 31.9 - -
General Petroleum [29] East Wadi El Natrun 26 2600 3.9*10-3

Ahmed [27] 2 km from El hamara lake - 794 -

Saad [30] East side of Wadi El 
Natrun 52.9 1291.7 3.95*10-3

RIGW [31] Wadi El Natrun area 9.8 500-327 1.7*10-2

Mostafa [32] East Wadi El Natrun 47 943 7*10-4

Saad [30] East Wadi El Natrun 38.9 695.5 1.35*10-3

Ahmed [27] South Wadi El Natrun - 1660 -
El-Sheikh [33] Beni Salama 7.29 838 8.5*10-4

Sayed East Wadi El Natrun 
(Jacob) - 3618 0.10466

El Sayed East Wadi El Natrun 
(Recovery) - 2745 -

Table 1: Hydraulic parameters of the Pliocene aquifer.

Figure 2: Geological map of Wadi El Natrun and its vicinities (Modified after 
Abu Zeid, 1984).
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3) The Pliocene aquifer of Wadi El Natrun occurs under the 
confining conditions. 

4) The base of the aquifer is not detected. 

Model application

The model domain was selected to cover 770 km2 (55 × 14 km). The 
model domain was discretized using 144 row and 224 columns square 
cells. This discrimination produces 32,250 cells in the model layer. The 
width of the cells along rows (in x-direction) is equal to the length 
along columns (in y-direction) 250 m as shown in Figure 3. 

Estimating of hydraulic head

After finish the calibration of the MODFLOW model, and reached a 
good match between observed and calibrated head, as shown previous, 
the model will be ready to estimate the hydraulic distribution for all 
cells (Figure 4) which will use in the artificial neural network model. 
The values of hydraulic head in each cell as well as the coordinates of 
these cells can be exported as a .txt. File which will used later in the next 
chapter to predict the transmissivity and storativity using ANNs.

Construction of ANN model

Construction ANN model utilization FFBP Neural Networks 
(MLP) which built in MATLAB program version 7. Different ANN 
structure had been investigated to find optimum ANN model. The 
optimum neuron number in each hidden layer was also investigated. 

In the ANN model architecture, the input layer includes 4 input 
(hydraulic head, Cartesian coordinates, and the time of observation), 
and the output layer include 2 outputs (transmissivity and storativity). 
In order to find the best number of hidden layers of ANN model many 
networks with different structure have been developed. These models 
had two hidden layers. The number of neuron in each hidden layer 
is also very important in the structure of ANN. The low number of 
neurons in each layer decreases the learning performance. In contrast, 
a high number of neurons increase the training time. Therefore, the 
optimum number of neurons in each layer is essential to build the 
ANN structure. In the present research, a different number of neurons 
(10-17) have been tested to find the best ANN structure. By comparing 
performance of developed ANN models the optimum number of 
neurons in each hidden layer for different structure (3 × 6 × 2), (3 × 
10 × 2), (3 × 6 × 4 × 2), (3 × 8 × 4 × 2), (3 × 10 × 4 × 2), (3 × 12 × 6 × 
2), (3 × 14 × 6 × 2), (3 × 14 × 8 × 2), (3 × 16 × 8 × 2) and (3 × 17 × 8 × 
2). They had the same input and output layer, so they just differ with 
the hidden layers. The best results obtained from the network with two 
hidden layers with 17 and 8 hidden neurons, respectively.

For present study, FFBP (3 × 17 × 8 × 2) architecture is selected in 
the model. The logsig transfer function is applied in the first hidden 
layer and the purelin transfer function is applied in the second hidden 
layer (Figure 5).

Construction data matrix of ANN model

The matrixes of ANNs are different as compare with other matrixes, 
because that every parameter value should be arranged at one a row of 
this matrix. There are three matrixes need to be constructed in older to 
use in artificial neural networks model. Two matrixes for training the 
ANNs model, while the third matrix used as input parameters that we 
want to get its output (Table 2).

Network training, validation, and testing

Generally, the default setting of artificial neural network divided 
date into three divisions, which are training, validation and testing with 
a proportion of 60%, 20% and 20% of data respectively. The training 
set the large proportion of data to learn pattern present in the data. 

Figure 3: Flow model boundaries, grid, and pumping wells.

Figure 4: Head contour map of the model area. Figure 5: Numbers of neuron of each layer.
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The conditions to stop training processes were set before the network 
is trained. Training was controlled by some of conditions as: the 
maximum number of iterations, target performance which specifies 
the tolerance between the neural network prediction and actual output, 
the maximum run time and the minimum allowed gradient and. The 
overall training of the ANN will involve the following processes; the 
input values of the first layer are weighted and passed on to the hidden 
layer; the neurons in the hidden layer will produce outputs by applying 
an activation function to the sum of the weighted input values; the 
resulting outputs are then weighted by the connections between the 
hidden and output layer.

The network technique enable the user to make good training by 
shows the result with network calculated by submitted a figure shows 
the training fitting. Figure 6 shows good fitting which mean that the 
network gives a result data closed to the data that we had insert as 
output. The training coefficient R represent the fitting of observed 
invers calculated which is 0.98296, and this number is very closed to 1, 
so that mean we had good match.

Validation is the simple check of the model which used 20% 
of data to ensure that the training is able to give accepted result and 
good match between observed and calculated data model is controlled 
using the same synaptic weights in the validation part. For validation 
R=0.898 consider well because that, there is a good fitting between both 
observed and validate data (Figure 7).

Testing is an important process, which consider as the final check 
of the network to check the ability of this network to predict and gives 
accurate. Then we can decide that the model is good and show good 
match between observed and calculated data. Figure 8 is a simple chart 
shows the coefficient (R) and the result of the fitting between validate 
data and the calculated data (Table 3).

Performance: The performance of the ANN model can be 
quantified by statistical measure addressing the magnitude of the 
variable. The model can be validated in terms of root mean square error 
(RMSE), correlation coefficient (R) and scatter index (SI) as follows
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y x
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−
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x−= 		                                                                     (5)

Where xi is the observed values at the ith time step, yi is the simulated 
values, N is the number of time increment and x- and y- are the mean 
values of observation and simulation, respectively.

The desired results are generated in the output layer. The network 
achieves the desired learning by adjusting its interconnected weights 
continuously until there is a close match between the outputs from the 
neurons and the output from the training data. The difference between 
the predicted outputs and the original outputs is referred to as error. 
Figure 9 shows the fitting and the coefficient for all training, validation, 
and testing.

N X Y h T S
1 219921.6 3378928 -10 1100 0.000155
2 219735.4 3378244 -11 731 0.0000554
3 221375.6 3373596 -18.25 955 0.0000152
4 224584.5 3374936 -12.5 1366 0.00288
5 227479.5 3375523 -8.5 613 0.00265
6 223747 3371761 -18 840 0.00135
7 228461.4 3370956 -16.25 827 0.00183
8 237002.8 3371180 -6.5 1435 0.00177
9 243511.9 3365666 -7.25 650 0.017

10 238908.6 3359950 -17.75 719 0.0075
11 248609.4 3360650 -8 1460 0.00181
12 250137.2 3359494 -6.75 870 0.0017
13 251607.1 3358735 -6.85 718 0.0012
14 252927.7 3357222 -7.25 595 0.0095
15 243511.9 3365666 -8.1 920 0.10466
16 238908.6 3359950 -13 1235 0.0166
17 248609.4 3360650 -7.5 630 0.0845
18 243887.9 3361092 -16 575 0.0124
19 247490.7 3356758 -16.5 535 0.0099
20 249098.6 3356194 -13.5 719 0.0075

Table 2: Data for training ANN.

Figure 6: Training chart.

Figure 7: Validation chart.
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Sensitivity analysis: Input variables are not, in general, 
independent- that is, there are interdependencies between variables. 
Sensitivity analysis rates variables according to the deterioration 
in modeling performance that occurs if that variable is no longer 
available to the model. In so doing, it assigns a single rating value 
to each variable. However, the interdependence between variables 
means that no scheme of single ratings per variable can ever 
reflect the subtlety of the true situation. Consider, for example, 
the case where two input variables encode the same information 
(they might even be copies of the same variable). A particular 
model might depend wholly on one, wholly on the other, or on 
some arbitrary combination of them. Then sensitivity analysis 
produces an arbitrary relative sensitivity to them. Moreover, if 
either is eliminated the model may compensate adequately because 
the other still provides the key information. It may therefore rate 
the variables as of low sensitivity, even though they might encode 
key information. Similarly, a variable that encodes relatively 
unimportant information, but is the only variable to do so, may 
have higher sensitivity than any number of variables that mutually 
encode more important information.

Discussion
From the previous section, it is shown that the proposed ANN 

model may be used to identify the transmissivity and storativity 
distributions of an aquifer in an inverse modeling framework. For 
real-world problems, there are some important issues that require 
further analysis. Note that the same input structure, network 

architecture, and solution parameters are used in this section. The 
contours of predicted vs. actual transmissivities and storativities for 
noise data conditions can be seen in Figures 10 and 11, respectively. 
It is clearly seen from Figures 10 and 11 that the increase in the 
standard deviations may not significantly change the prediction 
performance of the proposed ANN model. This situation states 
that the proposed ANN model may have generalization ability. 
Therefore, it may be used in the real-world parameter estimation 
problems.

Results of Ann Model
After finish, the training by obtained good match between 

observed and predicted data with good validation and testing fitting 
then I saved the network in order to use it in prediction. The saving 
part of network mean saving of all weights that the network reached 
for obtaining good results. Then we use the same network to predict 
the distribution of both transmissivity and storativity. For that, we 
imported the new matrix of input, which include the distribution of 
head, which represented by the head (h) and the coordinates (x and 
y) which obtained from the MODFLOW model. By run the model 
to simulate the new data. The result appears directly in anew matrix 
include predicted transmissivity and storativity. Figures 12 and 13 
shows the distribution of transmissivity and storativity respectively.

As shown before the actual values of transmissivity ranged between 

Figure 8: Chart shows the validation coefficient (R).

Models No.
No. of coefficient

Training Validation Testing
1 0.6361 0.64 0.5443
2 0.7135 0.5443 0.6577
3 0.7974 0.6577 0.7411
4 0.8773 0.7411 0.7974
5 0.8812 0.7562 0.7934
6 0.91545 0.837 0.8253
7 0.9154 0.8423 0.8517
8 0.9626 0.8674 0.8742
9 0.9795 0.8734 0.8734

10 0.9995 0.87824 0.89091

Table 3: Coefficient of training, validation and testing of ANN models.

Figure 9: Fitting and the coefficient for training, validation, and testing.

Figure 10: Actual and predicted distribution of transmissivity.
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500 and 1600 m2/day (Figure 10) and the actual values of storativity 
randed between 0.001 to 0.05. The values of predicted transmissivity 
are in the same range of the actual, also the distribution of the predicted 
transmisivity is closed to the actual one (Figure 14). Also, the values 
of predicted storativity are in the same range of the actual, also the 
distribution of the predicted storativity is closed to the actual one 
(Figure 11).

Conclusion
An ANN solution technique is proposed to simultaneously identify 

the transmissivity and storativity distributions of an aquifer system. 
A hypothetical aquifer is modeled on MODFLOW for transient flow 
conditions, and its results are used as observed values to train and 
validate the developed ANN model. The proposed ANN model requires 
Cartesian coordinates, sampled piezometric heads, and sampling times 
as input and associated transmissivities and storativities as output. The 
number of hidden layer neurons is determined using try and error. The 
synaptic weights of the ANN model are defaults. To prevent potential 
over-training problems, the available data set is divided into three 
parts (training, validation, and testing) and overtraining in the model 
is controlled using the same synaptic weights in the validation part. 
After obtaining the synaptic weights, transmissivity and storativity 
distributions are predicted head values for different simulation 
times. Results showed that predicted transmissivity and storativity 
distributions are very close to actual values. In addition, the performance 
of the ANN model is tested for noise data conditions in the observed 
head values. For this purpose, the available observed piezometric heads 
are corrupted with Gaussian noise of zero mean and different standard 
deviations. Results showed that there is no significant change in the 
prediction performance of the proposed ANN model and this model 
may be applied to real aquifer parameter estimation problems.
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