Immediate Effect of Bilateral Talocrural Joint Manipulation on Postural Balance in Healthy Subjects

Paes FJV1, da Silva RA2, Freira ALG1, Politti F8, Chiavegato L1, Geraldes AR5 and Amorim CF1*

1Physical Therapy Program, Universidade Cidade de São Paulo (UNICID), São Paulo-SP, Brazil
2Center for Health Science Research, Laboratory of Functional Evaluation and Human Motor Performance, Universidade Norte do Paraná (UNOPAR), Londrina-PR, Brazil
3Masters and Doctoral Program in Rehabilitation Sciences UEL/UNOPAR, Londrina-PR, Brazil
4Rehabilitation Sciences Department, Universidade Nove de Julho (UNINOVE), São-Paulo, SP, Brazil
5Physical Education Department, Universidade Federal de Alagoas (UFAL), Maceio, AL, Brazil

Abstract

The aim of this study was to assess the immediate effect of bilateral talocrural joint manipulation on the postural balance of healthy subjects. Ninety healthy subjects (21 males and 69 females) were included in this study. The mean age, height and weight of the subjects were 22.21 years, 165.1 cm and 62.58 Kg, respectively. Following collection of anthropometric data, the subjects were allocated randomly into an experimental group (receiving real talocrural joint manipulation), a placebo group and a control group. Before and after manipulation, the subjects performed two postural balance tasks, inquiet standing position (eyes open and eyes closed) on a force platform. The stabilometric data were recorded for 60 seconds in each condition. Sway area, medio-lateral (ML) and antero-posterior (AP) velocities and median frequency were calculated from the center of pressure (COP) displacements. The results showed that in the experimental group the COP sway velocity decreased in both directions of movement (AP and ML) and in both visual tasks (eyes open and eyes closed). In general, the placebo and control groups had similar postural balance across balance parameters. Significant effect of the bilateral talocrural joint manipulation was found on main balance parameter like COP velocity in the anteroposterior and mediolateral directions. These results have some much implications for manual therapy rehabilitation of individuals with ankle instability.

Keywords: Posture; Manual therapy; Physical Therapy; Rehabilitation

Introduction

Balance is the ability to maintain equilibrium by positioning the centre of gravity over the base of support of body. It is carried out by a complex process involving afferents from the sensory system, integration of efferents by central nervous system and afferent being sent to an intact musculoskeletal system [1].

Static position sense, or the perception of a stationary joint angle, depends on afferent information from joint receptors along with signals from muscle spindles and Golgi tendon organs [2]. Ruffini receptors and Pacinian corpuscles are both classified as dynamic receptors; however, Ruffini receptors have also been described as static receptors based on their low-threshold, slow-adapting characteristics. It has been suggested that these types of receptors are stimulated when a joint is moved near the end range of motion [3]. Therefore, it is suggested that good proprioception is of concern in promoting of dynamic joint and of functional stability in sports, activities of daily living and occupational tasks.

The ankle joints also play an important role in maintaining postural stability [4]. Loss of postural control has been consistently observed in patients with chronic ankle instability [5] and after an acute ankle sprain [6], which can present poor proprioception and/or poor muscular capacity to protect the joint and physical performance. Ankle manipulation has excellent potential to assist in the treatment of a variety of foot disorders related to postural instability. The understanding of the techniques of ankle manipulation as well as of the recommendations for its use can be a clinical valuable tool for the rehabilitation programs. Some scientific evidences has showed positive effects of joint mobilization on functional balance performance related to changes in sensorimotor system function [7,8]. However, functional tests can measure balance deficit indirectly through the recorded time-limit of physical performance (i.e., one aspect of physical condition or muscular capacity of individual), while centre of pressure (COP) parameters from a force platform can directly analyze balance deficits related to proprioception and postural adjustments (feedback and feedforward) of the neuromuscular system [9]. This is further supported by a recent study [10] suggesting that clinical functional tests such as time-limit to stand one leg and laboratory-based measures from COP parameters may capture different aspects of balance.

Another aspect of these two studies [7,8] was reporting the results with only massage and simple joint mobilization on intervention process. Few studies has investigated the causal talocrural joint manipulation from high-velocity and low-amplitude caudal thrust. Comparing with placebo, López-Rodríguez et al. [11] that investigated the causal talocrural joint manipulation in athletic individuals with grade II ankle sprain showed better balance related to load support at foot level. Although these effects support, at least, positive results on postural system regulation, it is unclear still whether there is an immediate (acute session) effect on postural stability after therapeutic ankle manipulation during a standing position with two different conditions (eyes open and eyes closed) on a force platform measurement.

Postural stability has traditionally been examined by spatial
measures of the center of pressure (COP), where greater COP
movements are considered signs of postural instability. COP parameters
are defined as the coordinates of the resultant force applied through
the feet on a force plate along anteroposterior (AP) and mediolateral
(ML) orthogonal axes [12]. The stabilometric parameters that are most
commonly reported in the literature describe the statistical properties
of the COP trajectory, which is considered a stationary signal, in the
time and frequency domains [13,14]. The most commonly used COP
parameters are mean velocity and sway area, with the mean velocity
considered the most reliable [15,16].

Although one study found that talocrural joint manipulation
immediately affects on postural stability [7], a similar effect was not
observed in another study [12]. These discrepancies in the results may
be related to methodological differences regarding protocol or equipment
(functional performance, balance scale, force platform baropodometer,
functions), patient age (adults versus elderly) and patient activity
level (athletes and non-athletes). The aim of this study was thus to
assess immediate effect of bilateral talocrural joint manipulation on
the postural balance of healthy subjects during a standing position in
two tasks (eyes open and eyes closed) on a force platform, which is of
cerain to determine the effects of intervention on biomechanical and
neuromuscular strategies of postural control.

Materials and Methods

Subjects

Ninety healthy subjects (21 males and 69 females) were recruited
voluntary and by convenience to participate of this study. The subjects
characteristics were in mean age 22.21 years (SD 2.42), height 165.1
cm (SD 0.7) and body weight 62.58 Kg (SD 12.70). An orthopedic
physician examined all subjects before each trial to ensure that they had
no musculoskeletal injuries, neuromuscular disorders, lower extremity
injuries, spine pathology, balance problems or pain. Subjects reporting
an acute ankle sprain within the past 6 months, a previous history of
musculoskeletal injuries, neuromuscular disorders, lower extremity
injuries, spine pathology, balance problems or pain. Subjects reporting
no musculoskeletal injuries, neuromuscular disorders, lower extremity
injuries, spine pathology, balance problems or pain. Subjects reporting

Procedure and data collection

The bilateral talocrural joint manipulation procedure in the
experimental group was similar to that described by López-Rodríguez
et al. [11]. A trained therapist applied a high-velocity, low-amplitude
caudal thrust directed at the talocrural joint in the following manner:
with the patient in the supine position, the therapist wrapped his or her
hands around the leg with the fingers at the level of the neck of the talus
and then applied caudal traction, increasing the dorsiflexion at the
talocrural joint. In the placebo group, the positioning of the physical
therapist and the subjects remained the same, but the handgrip was
also excluded from the study.

Following the collection of anthropometric data, the subjects
were allocated randomly by using a computer software into an experimental
group, a placebo group and a control group (Table 1). All subjects were
informed about the experimental protocol and the potential risks of the
study and gave written consent before their participation. The protocol
and the consent form had been previously approved by the local Ethics
committee (UNICID, SP).

Statistical analyses

The statistical data was analyzed in SPSS 16.0 for Windows
(SPPS Inc., Chicago, IL, USA); the Shapiro-Wilk test was used to
check for normal data distribution. Since the data were not normally
distributed, the Kruskal-Wallis test was used to test the homogeneity of
stabilometric parameters (sway area, velocity and median frequency)
between the three groups (experimental, placebo and control) before
manipulation of the talocrural joint. The manipulation effect of the
talocrural joint in the two conditions visual (eyes open and eyes closed)
conditions was determined by the Wilcoxon test for each group of subjects (experimental, placebo and control) with an alpha level of 0.05.

Results and Discussion

To analyse the effect of talocrural joint manipulation, it was necessary to verify whether the stabilometric data presented significant differences between groups (experimental, placebo, control) before the intervention. There were no significant differences in the values for sway area, velocity and median frequency in the COPap and COPml displacement between the groups in both balance experimental condition (eyes open and eyes closed) (Table 2).

In relation to interventions effects on balance after the manipulation, experimental group reduced in mean 0.4 cm/s the sway COP velocity values in the two directions (AP and ML) in both tested conditions (Table 3). The median frequency was significantly lower in the experimental group after manipulation at the eyes open condition only. These results support the improve of postural stability on experimental manipulation group. In general, similar postural balance results were found between placebo and control groups across balance parameters. Interestingly, the control group poored the balance of 0.34 cm² from sway COP area results for eyes open condition (Table 3).

The results of the present study are in agreement with previous studies, despite the protocols and sample differences. Similar effects have been described after caudal talocrural joint manipulation [11] and an association of massage and mobilization of the feet and ankles [7,8]. Apparently, high-velocity and low-amplitude caudal thrust directed at the talocrural joint helps to improve the balance by stimulating the afferent inputs arising of mechanoreceptors in the ankle ligaments and capsule. These changes were only observed in the experimental group and demonstrate that change occurs in sensorimotor system function following joint mobilization. Muscle spindles play a large role in kinesthesia and provide information about muscle length changes, while joint receptors respond primarily at the end ranges of movement [20]. Thus, stimulating the mechanoreceptors of the ankle joint by this type of manipulation may lead to an increase in neuromuscular activity.

<table>
<thead>
<tr>
<th>Eyes Open (Mean ± SD)</th>
<th>Experimental Group</th>
<th>Placebo Group</th>
<th>Control Group</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (cm²)</td>
<td>1.55 ± 0.80</td>
<td>1.37 ± 0.90</td>
<td>1.47 ± 0.64</td>
<td>0.27</td>
</tr>
<tr>
<td>Velocity COPap (cm/s)</td>
<td>0.66 ± 0.11</td>
<td>0.64 ± 0.08</td>
<td>0.69 ± 0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Velocity COPml (cm/s)</td>
<td>0.58 ± 0.09</td>
<td>0.54 ± 0.08</td>
<td>0.56 ± 0.09</td>
<td>0.21</td>
</tr>
<tr>
<td>Median Frequency COPap (Hz)</td>
<td>0.15 ± 0.06</td>
<td>0.15 ± 0.06</td>
<td>0.17 ± 0.06</td>
<td>0.48</td>
</tr>
<tr>
<td>Median Frequency COPml (Hz)</td>
<td>0.22 ± 0.08</td>
<td>0.26 ± 0.09</td>
<td>0.23 ± 0.07</td>
<td>0.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eyes Closed (Mean ± SD)</th>
<th>Experimental Group</th>
<th>Placebo Group</th>
<th>Control Group</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (cm²)</td>
<td>2.61 ± 2.32</td>
<td>1.66 ± 0.76</td>
<td>2.19 ± 1.11</td>
<td>0.38</td>
</tr>
<tr>
<td>Velocity COPap (cm/s)</td>
<td>0.83 ± 0.17</td>
<td>0.78 ± 0.16</td>
<td>0.67 ± 0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>Velocity COPml (cm/s)</td>
<td>0.65 ± 0.13</td>
<td>0.60 ± 0.11</td>
<td>0.64 ± 0.10</td>
<td>0.13</td>
</tr>
<tr>
<td>Median Frequency COPap (Hz)</td>
<td>0.19 ± 0.08</td>
<td>0.21 ± 0.05</td>
<td>0.21 ± 0.06</td>
<td>0.49</td>
</tr>
<tr>
<td>Median Frequency COPml (Hz)</td>
<td>0.22 ± 0.06</td>
<td>0.26 ± 0.08</td>
<td>0.22 ± 0.06</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Mean and standard deviation (SD) values of the variables sway area of COP, velocity and frequency in both directions (AP and ML). The Kruskall-Wallis test was performed to compare the estabilometric parameters between the three groups (experimental, placebo and control groups) before talocrural joint manipulation. P > 0.05: no significant difference between-group.

<table>
<thead>
<tr>
<th>Eyes Open</th>
<th>Placebo</th>
<th>Control</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (cm²)</td>
<td>1.37 ± 0.90</td>
<td>1.32 ± 0.73</td>
<td>0.98</td>
</tr>
<tr>
<td>Velocity COPap (cm/s)</td>
<td>0.64 ± 0.08</td>
<td>0.62 ± 0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>Velocity COPml (cm/s)</td>
<td>0.54 ± 0.08</td>
<td>0.52 ± 0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Median Frequency COPap (Hz)</td>
<td>0.15 ± 0.06</td>
<td>0.16 ± 0.05</td>
<td>0.34</td>
</tr>
<tr>
<td>Median Frequency COPml (Hz)</td>
<td>0.26 ± 0.09</td>
<td>0.22 ± 0.07</td>
<td>0.03*</td>
</tr>
</tbody>
</table>

Placebo group						

T1	T2	P-Value				
Area (cm²)	1.37 ± 0.90	1.32 ± 0.73	0.98	1.66 ± 0.76	1.72 ± 0.82	0.27
Velocity COPap (cm/s)	0.64 ± 0.08	0.62 ± 0.09	0.06	0.78 ± 0.16	0.75 ± 0.14	0.12
Velocity COPml (cm/s)	0.54 ± 0.08	0.52 ± 0.08	0.06	0.60 ± 0.11	0.59 ± 0.09	0.11
Median Frequency COPap (Hz)	0.15 ± 0.06	0.16 ± 0.05	0.34	0.21 ± 0.05	0.20 ± 0.05	0.48
Median Frequency COPml (Hz)	0.26 ± 0.09	0.22 ± 0.07	0.03*	0.26 ± 0.08	0.24 ± 0.09	0.06

Control group						

T1	T2	P-Value				
Area (cm²)	1.47 ± 0.64	1.81 ± 0.93	0.004*	2.19 ± 1.11	2.48 ± 1.76	0.38
Velocity COPap (cm/s)	0.69 ± 0.12	0.66 ± 0.10	0.08	0.67 ± 0.17	0.66 ± 0.17	0.14
Velocity COPml (cm/s)	0.56 ± 0.09	0.55 ± 0.09	0.19	0.64 ± 0.10	0.64 ± 0.14	0.13
Median Frequency COPap (Hz)	0.17 ± 0.06	0.15 ± 0.07	0.34	0.21 ± 0.06	0.21 ± 0.06	0.49
Median Frequency COPml (Hz)	0.23 ± 0.07	0.19 ± 0.06	0.01*	0.22 ± 0.06	0.23 ± 0.05	0.88

Means and standard deviation (SD) values are presented.

* Significant differences between times measures from Wilcoxon test in each group from each COP parameter analysis.

Table 3: The influence of manipulation of the talocrural joint, in the time 1 and 2 (T1 and T2) on COP parameters for two conditions (eyes open and eyes closed).
and enhanced joint stability through co-activation of the musculature surrounding the joint. This hypothesis can be further supported from a combination of diminished proprioception and increasing muscle weakness when related as possible causes of chronic ankle instability [21]. Moreover, the effects of lateral ankle ligament anesthesia on time-to-boundary measures of single limb postural control in healthy adults are similar to deficits found in individuals with chronic ankle instability [22,23].

Postural balance control depends on the integrity of the visual, vestibular and mechanoreceptor feedback regarding the lower limbs. Any malfunction or improper feedback from these receptors would cause inappropriate motor reaction and poor balance control [19]. Parameters that describe well COP excursions are frequently used to measure stability and discriminate pathological mechanisms. This is possible since the COP signal is proportional to ankle torque, a combination of descending motor commands as well as mechanical properties of the surrounding musculature. Thus, the results obtained by means of stabilometric recording demonstrated that talocrural joint manipulation produces an immediate effect on the velocity of body sway in quiet standing in both conditions (eyes open and eyes closed). According to a recent review of the test–retest reliability of COP measures in bipedal static task conditions, the reliability of the eyes closed condition is greater than that of the eyes open condition, and the mean velocity is one of the most commonly used (and the most reliable) COP parameter [16]. This parameter was also the most sensitive to discriminate the manipulation effects in the two directions (AP and ML) in both conditions. A recent study [17] also pointed out the reliability of this parameter for both young adults and elderly subjects, both healthy, during a challenging balance tasks such as unipodal condition.

The manipulation of the talocrural joint can provide mechanical benefits for postural control. Therefore, manipulation interventions can be combined with lower limb proprioceptive training programs and other rehabilitation strategies such as balance training. Such a combination of therapies may lead to greater improvement in self-reported function and changes in static postural control. In addition, clinical measurements of stabilometric parameters can be used to track progress during the rehabilitation process.

Finally, the overall results of this study cannot necessarily be generalized to all subjects, since they may not represent the full heterogeneity of balance status among the patients with ankle disorders. Another limitation is the use of standing position on a force platform that not reveal all functionality of limb, altougth the use of stabilometric recording demonstrated that talocrural joint manipulation produces an immediate effect on the velocity of body sway in quiet standing in both conditions (eyes open and eyes closed). According to a recent review of the test–retest reliability of COP measures in bipedal static task conditions – A systematic review of parameters that describe well COP excursions are frequently used to measure stability and discriminate pathological mechanisms. This is possible since the COP signal is proportional to ankle torque, a combination of descending motor commands as well as mechanical properties of the surrounding musculature. Thus, the results obtained by means of stabilometric recording demonstrated that talocrural joint manipulation produces an immediate effect on the velocity of body sway in quiet standing in both conditions (eyes open and eyes closed). According to a recent review of the test–retest reliability of COP measures in bipedal static task conditions, the reliability of the eyes closed condition is greater than that of the eyes open condition, and the mean velocity is one of the most commonly used (and the most reliable) COP parameter [16]. This parameter was also the most sensitive to discriminate the manipulation effects in the two directions (AP and ML) in both conditions. A recent study [17] also pointed out the reliability of this parameter for both young adults and elderly subjects, both healthy, during a challenging balance tasks such as unipodal condition.

In conclusion, the significant effect of the bilateral talocrural joint manipulation was found on main balance parameter like COP velocity in the anteroposterior and mediolateral directions. These results have some much implications for manual therapy rehabilitation of individuals with ankle instability.

Clinical Messages

- Immediate bilateral talocrural joint manipulation is efficient to improve the postural balance.
- Improper feedback from the ankle joint receptors could cause inappropriate motor reaction and poor balance control.

Acknowledgements

Rubens A. da Silva, was funded by the National Foundation for the Development of Private Higher Education (FUNADESP, Brazil). We gratefully acknowledge the assistance of Physiotherapist students for the recruitment of subjects.

References

