Impact of Oxidative Stress and Lipid Peroxidation Induced by Lambda-cyhalothrin on P₄₅₀ in Male Rats: The Ameliorating Effect of Zinc

Moustafa A Abbassy¹, Mamdouh A Marzouk¹, Sameeh A Mansour², Hassan A Shaldam³ and Abdel-Tawab H Mossa**

¹Department of Plant Protection, Faculty of Agriculture, Damanhour University, Egypt
²Environmental Toxicology Research Unit (ETRU), Pesticide Chemistry Department, National Research Centre (NRC), Tahrir Str., Dokki, Cairo, Egypt
³Center for Environmental Monitoring, Ministry of Health, Egypt

Abstract
The present study was designed to investigate the effect of lambda-cyhalothrin (LCH) on lipid peroxidation, oxidative stress biomarkers and the activity of Cytochrome P₄₅₀ in male rats and the protective role of zinc. LCH was administrated orally to rats at dose 2.6 mg/kg b.wt. (Which represents 1/10 LD₅₀) with 3 doses per week for 6 weeks (dose period). Rats were divided into four groups, eight rats for each: (I) control group, (II) zinc group (Zn dose 227 mg/l in drinking water), (III) LCH-treated groups and LCH-Zn group (IV) as in group II and III. The present results demonstrated that LCH induced significant alteration in the activity of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione-s-transferase, GST; glutathione peroxidase, GPx), glutathione reduced (GSH) and lipid peroxidation (LPO) levels and decreased cytochrome P₄₅₀ (P₄₅₀) activity in plasma of male rats. In contrast, zinc-LCH treatment showed insignificant difference, compared to control results, regarding LPO, GST, CAT and P₄₅₀ activity in the plasma of male rats. The overall results reveal the pronounced ameliorating effect of zinc in LCH-intoxicated rats.

Keywords: Lambda-cyhalothrin; Lipid peroxidation; Antioxidants; enzymes; P₄₅₀; Zinc; Rat

Introduction
Synthetic pyrethroids are a diverse class of more than thousand powerful broad spectrum insecticides that are environmentally compatible by virtue of their moderate persistence, low volatility and poor aqueous mobility in soil [1]. They represent approximately one-fourth of the worldwide insecticides market [2]. Lambda-cyhalothrin (cyano-3-phenoxbenzyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclopropene carboxylate) is one of the newer synthetic type II pyrethroid insecticides [3] with effective and persistent activity against a large variety of arthropods harmful both to human and animal health, and to vegetal production [4]. Consistent with its lipophilic nature [5] pyrethroid insecticide such as lambda-cyhalothrin has been found to accumulate in biological membranes leading to oxidative damage. It has been suggested that some effects directly related to pesticide toxicity could be due to changes in membrane fluidity [6,7], in lipid composition [8] and inhibition of enzyme activities [9-11].

In fact, reactive oxygen species (ROS) are produced by univalent reduction of dioxygen to superoxide anion (O²⁻), which in turn disproportionate to H₂O₂ and O₂ spontaneously or through a reaction catalyzed by superoxide dismutase (SOD). Endogenous H₂O₂ may be converted to H₂O either by catalase or glutathione peroxidase (GSH-Px). Otherwise, it may generate a highly reactive free hydroxyl radical (·OH) via a Fenton reaction, which is responsible for oxidative damage. GSH-Px converts H₂O₂ or other lipid peroxides to water or hydroxyl lipids, and during this process glutathione (GSH) is converted to oxidized glutathione [12]. Antioxidants are defense against free radical and oxidative attacks. They act as free radical scavengers and slow down not only radical oxidation but also the accompanying damaging effects in the body [13]. Previous studies [10,11,14-16] reported that ROS were involved in the toxicity of various pesticides.

Zinc (Zn) is an essential trace element, is relatively nontoxic and is integral to several key functions in human metabolism [17,18]. Not only has Zn been identified as a component of key enzymes and regulatory proteins, it was recently suggested that the preventive effects of zinc may partly be mediated through increase in cytochrome P₄₅₀ enzymes in subjects with alcoholic liver disease [19,20].

However, there is still a clear lack of understanding whether the toxic effects of lambda-cyhalothrin mediated through drug metabolizing enzymes, and further if zinc may have any preventive role in such toxic conditions. Therefore, the present study was designed to evaluate the protective potential effect of zinc on oxidative damage induced by lambda-cyhalothrin in male rats.

Materials and Methods
Chemicals and reagents
Lambda-cyhalothrin (Lambda EG², EC %) was obtained from Arab Company for Chemical Industries Co., Egypt. Zinc sulfate (ZnSO₄·7H₂O) was obtained from Merck (Germany). Kits of SOD, CAT, GST, GSH, GR and GPx were obtained from Bio-diagonistic, Dokki, Giza, Egypt. Kit of cytochrome P₄₅₀ was obtained from Boehringer Mannheim GmbH Diagnostics, Germany. All other chemicals were of reagent grades and obtained from the local scientific distributors in Egypt.

*Corresponding author: Abdel-Tawab H. Mossa, Environmental Toxicology Research Unit (ETRU), Pesticide Chemistry Department, National Research Centre (NRC), Tahrir Str., Dokki, Cairo, Egypt. Tel: 0202-0105038504; Fax: 202-33370931; E-mail: abdeltawab.mossa@yahoo.com
Moustafa A. Abbassy, Department of Plant Protection, Faculty of Agriculture, Damanhour University. Tel: 0020122404383, Fax: 0020453316535, E-mail: maabbassy@yahoo.com

Received February 20, 2014; Accepted April 16, 2014; Published April 18, 2014
Copyright: © 2014 Abbassy A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Animals

Male albino rats weighing 120 ± 10 g were obtained from the Animal Breeding House of the National Research Centre (NRC), Dokki, Cairo, Egypt, and were used in this study. The animals were housed in plastic cages and allowed to adjust to the new environment for a week before starting the experiment. Rats were fed on standard food pellets and tap water ad libitum. The rats were housed at 23 ± 2°C and in daily dark/light cycle. The experimental work on rats was performed with the approval of the Animal Care & Experimental Committee, college of agriculture in Damanhour, Egypt, and according to the guidance for care and use of laboratory animals [21].

Experimental design

Animals were divided into four groups, eight animals each as the following: Group I: Rats were served as control and given tap water. Group II: Rats were given zinc in drinking water daily at a concentration of 227 mg L⁻¹ as Zn [22]. Group III: Rats were given LCH at a dose of 2.6 mg/kg b.w, 1/10 LD₉₀ [23] orally repeated dose day after day over period of 6 weeks (3 doses/week). Group IV: Rats were given LCH and Zn as descript in groups II and III. Animals were weighed weekly and the dose was adjusted accordingly.

Blood collection

At the end of exposure period, blood samples were withdrawn from the animals under ether anesthesia by puncturing the retro-orbital venous plexus of the animals with a fine sterilized glass capillary. Blood was collected into heparinized tubes and left for 20 min at room temperature, then centrifuged at 3000 rpm (600 g) for 10 minutes using BOECO model C 28, Germany, to separate the plasma. The plasma was kept in a deep freezer (-20°C) until analyzed within one week.

Oxidative stress biomarkers

Lipid peroxidation (LPO): Lipid peroxidation was estimated by measuring thiobarbituric acid reactive substances (TBARS) and was expressed in terms of malondialdehyde (MDA) content by a colorimetric method according to Satoh [24]. The MDA values were expressed as nmols of MDA/ml.

Glutathione reduced (GSH): GSH was assessed spectrophotometrically according to the method of Nishikimi et al. [26]. The method based on the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) with reduced glutathione (GSH) in a reaction catalyzed by GST. Increase in absorbance was monitored for 3 min at 340 nm. Results were expressed as µmol/ml.

Antioxidant enzymes: Superoxide dismutase (SOD, EC 1.15.1.1) activity was determined according to the method of Nishikimi et al. [26]. The method is based on the ability of SOD enzyme to inhibit the phenazine methosulphate-mediated reduction of nitroblue tetrazolium dye. Briefly, 0.05 ml sample was mixed with 1.0 ml buffer (pH 8.5), 0.1 ml nitroblue tetrazolium (NBT) and 0.1 ml NADH. The reaction was initiated by adding 0.01 ml phenazine methosulphate (PMS), and then incubated at 3000 rpm for 10 minutes. Results were expressed as nmoles/ml.

Catalase (CAT, EC 1.11.1.6) activity was determined according to the method of Abei [27]. The method is based on the decomposition of H₂O₂ by catalase. The sample containing catalase is incubated in the presence of a known concentration of H₂O₂. After incubation for exactly one minute, the reaction is quenched with sodium azide. The amount of H₂O₂ remaining in the reaction mixture is then determined by the oxidative coupling reaction of 4-aminophenazone (4-aminooaptipyrrene, AAP) and 3,5-dichloro-2-hydroxybenzenesulfonic acid (DHBS) in the presence of H₂O₂ and catalyzed by horseradish peroxidase (HRP). The resulting quinoneimine dye (N-(4-antipyril)-3-chloro-5-sulfonate-p-benzoquinonemonoimine) is measured at 510 nm. The catalase activity was expressed in µmol/ml.

Glutathione peroxidase (GPx; EC 1.11.1.7) was assessed spectrophotometrically according to the method of Paglia and Valentine [28] using Boehringer Mannheim GmbH Diagnostics kits. The method was based on indirect measure of the activity of c-GPx. Oxidized glutathione (GSSG), produced upon reduction of organic peroxide by c-GPx, and is recycled to its reduced state by the enzyme glutathione reductase (GR). Results were expressed as µmol/ml.

Statistical analysis

The results were expressed as mean ± S.D. All data were done with the Statistical Package for Social Sciences (SPSS 17.0) for windows. The results were analyzed using one way analysis of variance (ANOVA) followed by Duncan’s test for comparison between different treatment groups. Statistical significance was set at p ≤ 0.05.
Results

Plasma MDA level was markedly increased by LCH administration as compared to control group (Figure 1). The difference between the two groups was statistically significant (2.32 nmoles of MDA/ml vs. 1.35 nmoles of MDA/ml, p ≤ 0.05). Co-administration of Zn to rats of LCH group alleviated lipid peroxidation induced by LCH in LCH-treatment and modulated significantly (1.92 nmoles of MDA/ml vs. 1.35 nmoles of MDA/ml, p ≤ 0.05) the levels of MDA in plasma compared to control. Results indicated that treatment with Zn produced a significant reduction in TBARS in LCH-treated rats; however Zn per se did not alter TBARS. As shown in Figure 2, significant decrease in GSH was observed after treatment of rats with LCH compared to control group (50.88 nmoles/ml vs. 85.37 nmoles/ml). Co-administration of Zn with LCH modulated significantly the level of GSH to the normal control value (82.21 nmoles/ml vs. 85.37 nmoles/ml).

The effects of LCH treatment on the activities of SOD, CAT, GPx and GST in plasma are shown in Figure 3. Activities of SOD (88.08 μmol/ml vs. 104.87 μmol/ml), GPx (0.76 μmol/ml vs. 0.87 μmol/ml) and GST (0.80 μmol/ml vs. 1.07 μmol/ml) in plasma were significantly decreased (p ≤ 0.05), while CAT activity (0.69 μmol/ml vs. 0.48 μmol/ml) was significantly increased compared to control group. Co-administration of Zn with LCH modulated significantly the level of GSH to the normal control value (82.21 nmoles/ml vs. 85.37 nmoles/ml).

Plasma P450 activity was markedly decreased by LCH administration as compared to control group (Figure 4). The difference between the two groups was statistically significant (0.035 nmoles/ml vs. 0.136 nmoles/ml). Zn administered to rats of LCH+Zn group alleviated P450 activity induced by LCH treatment and modulated significantly (0.115 nmoles/ml vs. 0.136 nmoles/ml, p ≤ 0.05) the activity of P450 in plasma compared to control. Results indicated that treatment with Zn produced a significant increase in P450 in LCH-treated rats.

Discussion

Free radicals have become an attractive means to explain the toxicity of numerous xenobiotics (e.g. pesticides) and some of these free radicals interact with various tissue components, resulting in dysfunction [10,14]. In fact, oxidative damage due to excessive production of reactive oxygen species (ROS) has been associated with defective organs dysfunction [14,31] and the inhibition of enzymes involved in free radical removal led to the accumulation of H2O2, which promoted lipid peroxidation and modulation of DNA, altered gene expression and cell death [32].

SOD, CAT and GPx are known to play an important role in...
le in the detoxification of xenobiotics or other xenobiotics [49-51]. Co-administration of zinc to LCH-treated animals improved the activity of cytochrome P₄₅₀, compared to LCH-treated rat. This change may due to the antioxidant role of zinc and alter the enzyme activities associated with antioxidant defense mechanisms.

Conclusion

The results of the present study demonstrated that exposure to LCH induced oxidative stress; lipid peroxidation and reduced P₄₅₀ activity in the plasma of LCH-treated male rats. The overall results reveal the pronounced ameliorating effect of zinc in LCH-intoxicated rats.

References

