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Introduction
Synthetic pyrethroids are a diverse class of more than thousand 

powerful broad spectrum insecticides that are environmentally 
compatible by virtue of their moderate persistence, low volatility and 
poor aqueous mobility in soil [1]. They represent approximately one-
fourth of the worldwide insecticides market [2]. Lambda-cyhalothrin 
(cyano-3-phenoxybenzyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-
dimethylcyclopropane carboxylate) is one of the newer synthetic type II 
pyrethroid insecticides [3] with effective and persistent activity against 
a large variety of arthropods harmful both to human and animal health, 
and to vegetal production [4]. Consistent with its lipophilic nature [5] 
pyrethroid insecticide such as lambda-cyhalothrin has been found 
to accumulate in biologicalmembranes leading to oxidative damage. 
It has been suggested that some effects directly related to pesticide 
toxicity could be due to changes in membrane fluidity [6,7], in lipid 
composition [8] and inhibition of enzyme activities [9-11].

In fact, reactive oxygen species (ROS) are produced by univalent 
reduction of dioxygen to superoxide anion (O-2), which in turn 
disproportionate to H2O2 and O2 spontaneously or through a reaction 
catalyzed by superoxide dismutase (SOD). Endogenous H2O2 may be 
converted to H2O either by catalase or glutathione peroxidase (GSH-
Px). Otherwise, it may generate a highly reactive free hydroxyl radical 
(-OH) via a Fenton reaction, which is responsible for oxidative damage. 
GSH-Px converts H2O2 or other lipid peroxides to water or hydroxyl 
lipids, and during this process glutathione (GSH) is converted to 
oxidized glutathione [12]. Antioxidants are defense against free radical 
and oxidative attacks. They act as free radical scavengers and slow down 
not only radical oxidation but also the accompanying damaging effects 
in the body [13]. Previous studies [10,11,14-16]reported that ROS were 
involved in the toxicity of various pesticides.

Zinc (Zn) is an essential trace element, is relatively nontoxic and 
is integral to several key functions in human metabolism [17,18]. 
Not only has Zn been identified as a component of key enzymes and 
regulatory proteins, it was recently suggested that the preventive effects 

of zinc may partly be mediated through increase in cytochrome P450 
enzymes in subjects with alcoholic liver disease [19,20].

However, there is still a clear lack of understanding whether 
the toxic effects of lambda-cyhalothrin mediated through drug 
metabolizing enzymes, and further if zinc may have any preventive 
role in such toxic conditions. Therefore, the present study was designed 
to evaluate the protective potential effect of zinc on oxidative damage 
induced by lambda-cyhalothrin in male rats.

Materials and Methods
Chemicals and reagents

Lambda-cyhalothrin (Lambda EG®, EC %) was obtained from 
Arab Company for Chemical Industries Co., Egypt. Zinc sulfate 
(ZnSO4•7H2O) was obtained from Merck (Germany). Kits of SOD, 
CAT, GST, GSH, GR and GPx were obtained from Bio-diagonistic, 
Dokki, Giza, Egypt. Kit of cytochrome P450 was obtained from 
Boehringer Mannheim Gmbh Diagonstics, Germany.All other 
chemicals were of reagent grades and obtained from the local scientific 
distributors in Egypt.
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Animals

Male albino rats weighing 120 ± 10 g were obtained from the Animal 
Breeding House of the National Research Centre (NRC), Dokki, Cairo, 
Egypt, and were used in this study. The animals were housed in plastic 
cages and allowed to adjust to the new environment for a week before 
starting the experiment. Rats were fed on standard food pellets and 
tap water ad libitum. The rats were housed at 23 ± 2ºC and in daily 
dark/light cycle. The experimental work on rats was performed with 
the approval of the Animal Care & Experimental Committee, college 
of agriculture in Damanhour, Egypt, and according to the guidance for 
care and use of laboratory animals [21].

Experimental design

Animals were divided into four groups, eight animals each as the 
following: Group I:Rats were served as control and given tap water. 
Group II: Rats were given zinc in drinking water dally at a concentration 
of 227 mg L-1 as Zn [22]. Group III: Rats were given LCH at a dose 
2.6 mg/kg b.w, 1/10 LD50 [23] orally repeated dose day after day over 
period of 6 weeks (3 doses/week). Group IV: Rats were given LCH and 
Zn as descript in groups II and III. Animals were weighed weekly and 
the dose was adjusted accordingly.

Blood collection

At the end of exposure period, blood samples were withdrawn 
from the animals under ether anesthesia by puncturing the retro-
orbital venous plexus of the animals with a fine sterilized glass capillary. 
Blood was collected into heparinized tubes and left for 20 min at room 
temperature, then centrifuged at 3000 rpm (600 g) for 10 minutes using 
BOECO model C 28, Germany, to separate the plasma. The plasma was 
kept in a deep freezer (-20°C) until analyzed within one week.

Oxidative stress biomarkers

Lipid peroxidation (LPO): Lipid peroxidation was estimated 
by measuring thiobarbituric acid reactive substances (TBARS) and 
was expressed in terms of malondialdehyde (MDA) content by a 
colorimetric method according to Satoh [24]. The MDA values were 
expressed as nmoles of MDA/ml.

Glutathione reduced (GSH): GSH was assessed 
spectrophotometrically according to the method of Goldberg and 
Spooner [25] using Boehringer Mannheim Gmbh Diagonstics kits. The 
method was based on Glutathione reductase catalysis the reduction of 
glutathione (GSSG) in the presence of NADPH. The GSH values were 
expressed as nmoles/ml.

Antioxidant enzymes: Superoxide dismutase (SOD, EC 1.15.1.1) 
activity was determined according to the method of Nishikimi et al. 
[26]. The method is based onthe ability of SOD enzyme to inhibit the 
phenazine methosulphate-mediated reduction of nitroblue tetrazolium 
dye.Briefly, 0.05 ml sample was mixed with 1.0 ml buffer (pH 8.5), 0.1 
ml nitroblue tetrazolium (NBT) and 0.1 ml NADH. The reaction was 
initiated by adding 0.01 ml phenazine methosulphate (PMS), and then 
increased in absorbance was read at 560 nm for five minutes. SOD 
activity was expressed in µmol/ml.

Catalase (CAT, EC 1.11.1.6) activity was determined according to 
the method of Abei [27]. The method is based on the decomposition 
of H2O2 by catalase. The sample containing catalase is incubated in the 
presence of a known concentration of H2O2. After incubation for exactly 
one minute, the reaction is quenched with sodium azide. The amount 
of H2O2 remaining in the reaction mixture is then determined by the 

oxidative coupling reaction of 4-aminophenazone (4-aminoantipyrene, 
AAP) and 3,5-dichloro-2-hydroxybenzenesulfonic acid (DHBS) in the 
presence of H2O2 and catalyzed by horseradish peroxidase (HRP). The 
resulting quinoneimine dye (N-(4-antipyrl)-3-chloro-5-sulfonate-p-
benzoquinonemonoimine) is measured at 510 nm. The catalase activity 
was expressed in μmol/ml.

Glutathione peroxidase (GPx; EC 1.8.1.7) was assessed 
spectrophotometrically according to the method of Paglia and 
Valentine [28] using Boehringer Mannheim Gmbh Diagonstics kits. 
The method was based on indirect measure of the activity of c-GPx. 
Oxidized glutathione (GSSG), produced upon reduction of organic 
peroxide by c-GPx, and is recycled to its reduced state by the enzyme 
glutathione reductase (GR). Results were expressed as µmol/ml.

Glutathione-s-transferase (GST; EC 2.5.1.13) activity was assessed 
spectrophotometrically according to the method of Habig et al. [29]. The 
method was based on the conjugation of 1-chloro-2 4-dinitrobenzene 
(CDNB) with reduced Glutathione (GSH) in a reaction catalyzed 
by GST. Increase in absorbance was monitored for 3 min at 30 sec 
intervals at wavelength of 340 nm. Results were expressed as µmol/ml.

Cytochrome P450  

Cytochrome P450 was determined according to the method 
of Masters et al. [30]. The method was based on the most common 
reaction catalyzed by cytochromes P450 is a monooxygenase reaction, 
e.g., insertion of one atom of oxygen into an organic substrate (RH) 
while the other oxygen atom is reduced to water. The function of the 
cytochrome P450 enzymes is to metabolize xenobiotic compounds with 
which an organism comes into contact. Results were expressed as 
nmoles/ml.

Spectrophotometric measurements

The spectrophotometric measurements were performed by 
using JENWAY 6305 UV-Vis spectrophotometer designed and 
manufactured in the U.K.

Statistical analysis

The results were expressed as mean ± S.D. All data were done with 
the Statistical Package for Social Sciences (SPSS 17.0 for windows). The 
results were analyzed using one way analysis of variance (ANOVA) 
followed by Duncan’s test for comparison between different treatment 
groups. Statistical significance was set at p ≤ 0.05.

Figure 1: Effect of oral administration of lambda-cyhalothrin (LCH) on lipid 
peroxidation (LPO) in serum of male rats and the protective role of zinc (Zn). 
Bars represent the group means ± S.D; a,b,c & d values are not sharing 
superscripts letters (a,b,c & d) differ significantly at p ≤ 0.05.
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Results
Plasma MDA level was markedly increased by LCH administration 

as compared to control group (Figure 1). The difference between the 
two groups was statistically significant (2.32 nmoles of MDA/ml vs. 
1.35 nmoles of MDA/ml, p ≤ 0.05). Co- administration of Zn to rats 
of LCH group alleviated lipid peroxidation induced by LCH in LCH- 
treatment and modulated significantly (1.92 nmoles of MDA/ml vs. 1.35 
nmoles of MDA/ml, p ≤ 0.05) the levels of MDA in plasma compared 
to control. Results indicated that treatment with Zn produced a 
significant reduction in TBARS in LCH-treated rats; however Zn per se 
did not alter TBARS. As shown in Figure 2, significant decrease in GSH 
was observed after treatment of rats with LCH compared to control 
group (50.88 nmoles/ml vs. 85.37 nmoles/ ml). Co-administration of 
Zn with LCH modulated significantly the level of GSH to the normal 
control value (82.21 nmoles/ml vs. 85.37 nmoles/ml).

The effects of LCHtreatment on the activities of SOD, CAT, GPx and 
GST in plasma are shown in Figure 3. Activities of SOD (88.08 μmol/
ml vs. 104.87 μmol/ml), GPx (0.76 μmol/ml vs. 0.87 μmol/ml) and GST 
(0.80 μmol/ml vs 1.07 μmol/ml) in plasma were significantly decreased 
(p ≤ 0.05), while CAT activity (0.69 μmol/ml vs. 0.48 μmol/ml) was 
significantly increased compared to control group. Co- administration 
of Zn with to rats caused significantly improvement the activities of 
CAT and GST in plasma compared with control values. The activity of 
SOD and GPx was returned to their control values in LCH+Zn-treated 
rats, while the decrease of GST and increase of CAT were significant (p 
≤ 0.05) compared with LCH+Zn-treated group (Figure 3).

Plasma P450 activity was markedly decreased by LCH administration 
as compared to control group (Figure 4). The difference between the 
two groups was statistically significant (0.035 nmoles/ml vs. 0.136 
nmoles/ml). Zn administered to rats of LCH+Zn group alleviated 
P450 activity induced by LCH treatment and modulated significantly 
(0.115 nmoles/ml vs.0.136 nmoles/ml, p ≤ 0.05) the activity of P450 in 
plasma compared to control. Results indicated that treatment with Zn 
produced a significant increase in P450 in LCH-treated rats.

Discussion 
Free radicals have become an attractive means to explain the 

toxicity of numerous xenobiotics (e.g. pesticides) and some of these 
free radicals interact with various tissue components, resulting 
in dysfunction [10,14]. In fact, oxidative damage due to excessive 
production of reactive oxygen species (ROS) has been associated with 

defective organs dysfunction [14,31] and the inhibition of enzymes 
involved in free radical removal led to the accumulation of H2O2, which 
promoted lipid peroxidation and modulation of DNA, altered gene 
expression and cell death [32]. 

SOD, CAT and GPx are known to play an important role in 

Figure 2: Effect of oral administration of lambda-cyhalothrin (LCH) onglutathione 
reduced(GSH) level in serum of male rats and the protective role of zinc (Zn). 
Bars represent the group means ± S.D; a, b, c, d values are not sharing superscripts 
letters (a,b,c & d) differ significantly at p ≤ 0.05.

Figure 3: Effect of oral administration of lambda-cyhalothrin (LCH) on SOD, 
CAT,GPx and GST activity in serum of male rats and the protective role of 
zinc (Zn). Bars represent the group means ± S.D; a, b, c, d values are not sharing 
superscripts letters (a, b, c, d) differ significantly at p ≤ 0.05.
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scavenging ROS. SOD catalyzes the destruction of the superoxide 
radicals to H2O2, while CAT together with GPx reduces the H2O2 
into water and oxygen to prevent oxidative stress and in maintaining 
cell homeostasis. Also, GST is play essential role in the detoxification 
process. In the present study LCH induced significant decrease in the 
activity SOD, GPx and GST and increase in CAT activity in plasma of 
treated rats. So, the change in SOD, GPx, GST and CAT might be in 
response to increased oxidative stress. When a condition of oxidative 
stress strongly establishes, the defense capacities against ROS becomes 
insufficient [32], in turn ROS also affects the antioxidant defense 
mechanisms, reduces the intracellular concentration of GSH, lipid 
peroxidation and alter the activity of antioxidant enzymes e.g., SOD, 
CAT, GPx and GST. The changes in these oxidative stress biomarkers 
have been reported to be an indicator of tissue’s ability to cope with 
oxidative stress [10,14,33]. ROS has also been known to decrease the 
detoxification system produced by GST [34]. Considering that GSTs 
are detoxifying enzymes that catalyze the conjugation of a variety 
of electrophilic substrates to the thiol group of GSH, producing less 
toxic forms [35], the significant decrease of GST activity in plasma 
of male rats after LCH administration may indicate insufficient 
detoxification of LCH in rat. Also, an important function of GST in 
response to oxidative stress is its ability to conjugate GSH with lipid 
peroxidation products [36]. Previous studies demonstrated that 
pyrethroids exposure altered antioxidant defense mechanisms and 
enhanced lipid peroxidation in rat liver [14,37-39], erythrocytes [37] 
and in fish [40]. Exposure of rats to a single dose of the pyrethroids, 
cypermethrin (25 μg kg−1) and fenvalerate (4.5 μg kg-1), lowered the 
activities of the antioxidant enzymes SOD and CAT, resulting in both 
lipid peroxidation and decreased levels of GSH in erythrocytes [41].

Lipid peroxidation has been suggested as one of the molecular 
mechanisms involved in pesticide-induced toxicity [10,11,14]. 
Malondialdehyde (MDA) level in LCH treatment was significantly 
higher than that in control. These indirectly suggest an increased 
production of oxygen free radicals in rats. Highly reactive oxygen 
metabolites, especially hydroxyl radicals, act on unsaturated fatty 
acids of phospholipid components of membranes to produce 
malondialdehyde, a lipid peroxidation product. Previous studies 
indicate that insecticides in both in vivo [10,11,42] and in vitro tests 
[43] alter the enzyme activities associated with antioxidant defense 
mechanisms.

Our results revealed that co-administration of zinc with LCH to 
treated animals retained the level of GSH and the activity SOD and 

GPx at the normal values. Catalase, CAT, GST activity and LOP level 
were improved, and such alterations were still significant in zinc-
LCH-treated rats. The observed normalization trend of GSH, SOD 
and GPx following zinc treatment could possibly due to dismutation 
of O2.- to H2O which is catalyzed by SOD. Zinc is known to induce 
the production of metallothionein, which is very rich in cysteine, and 
is an excellent scavenger of -OH [44,45]. Also, the NADPH oxidases 
are a group of plasma membrane associated enzymes, which catalyze 
the production of O2.

- from oxygen by using NADPH as the electron 
donor. Zinc is an inhibitor of this enzyme [46].

Cytochrome P450 enzymes are essential for the metabolism and 
detoxification of many xenobiotics (e.g. pesticides). It has been reported 
that many chemicals (e.g. pesticides, drug) interactions are the result 
of an alteration of CYP450 metabolism [47]. In the current study, LCH 
decreased cytochrome P450 activity in LCH-treated rat. This may be due 
to the inhibition of heme synthesis and destruction of cytochrome P450 
[48]. Previous studies showed that many pesticides have been reported 
to inhibit the activity and alteration in the expression of various 
cytochrome P450 isoforms (e.g. parathion, methomyl). These changes 
may increase the sensitivity of cells against reactive endogenous 
metabolites or other xenobiotics [49-51]. Co-administration of zinc 
to LCH-treated animals improved the activity of cytochrome P450 
compared to LCH-treated rat. This change may due to the antioxidant 
role of zinc and alter the enzyme activities associated with antioxidant 
defense mechanisms.

Conclusion
The results of the present study demonstrated that exposure to LCH 

induced oxidative stress; lipid peroxidation and reduced P450 activity 
in the plasma of LCH- treated male rats. The overall results reveal the 
pronounced ameliorating effect of zinc in LCH-intoxicated rats.
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