
Volume 7(5) 174-179 (2014) - 174
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

Research Article Open Access

Wen and Wu,, J Comput Sci Syst Biol 2014, 7:5
DOI: 10.4172/jcsb.1000153

Research Article Open Access

Keywords: Office document processing; Cloud; Collaborative editing

Introduction
Today the office documents can be extremely sophisticated, which

may contain complex formulas, graphic illustrations, video clips, and
control information [1-3]. Correspondingly, the office document
processing has evolved into large, complex and powerful applications
based on user requirements [4-6]. Among them, scientific paper is a
good example, in which researchers need to jointly develop and refine
a document in a collaborative way. To address the requirements of
collaborative editing, many different software systems have been
developed, some commercial and some academic. Since an exhaustive
review of such systems is beyond the scope of this paper, we refer reads
to read articles [7,8]. The requirements of collaborative teams can be
much more difficult than those for standalone software.

As a result, the first problem is the costs that are incurred as
for purchasing, maintaining, and upgrading required software and
hardware. The second problem is more system failures and human
mistakes when the application becomes more complex.

In order to satisfy the rapidly changing user demands and maintain
the market, office document processing developers continue upgrading
their products by constantly adding new functions and features. These
upgrades cost people on not only software but also hardware, since
upgrades demand more storage space and faster CPU. Hence, people
will have to continue to invest on both software and hardware in order
to support their routine document production and processing.

In our previous research [9], we have stated that cloud computing
technology [10] can be an alternative approach to address this problem,
since it enables services and storage facilities to be provided over the
Internet and allows users to access the services and storage facilities
through the Internet. Services provided by the cloud can be a web
application, and office document processing is a suitable candidate for
it. With the web application of office document processing, users can
create, edit, and share their documents without installing a complex
software suite locally. In this case, user can expect to save thousands of
dollars on both hardware and software. Besides, user also can put more
focus on the creative work based on the latest document processing
application, regardless of the cost of upgrading for software and
hardware.

Until now, there are two companies, Google and Microsoft, provide

office document processing as services in the cloud [5,7]. Details of
these applications in the cloud will be introduced in the background
section of this paper. However, in our previous research, we discussed
that neither of them provides the collaboration with a proper
granularity of collaborative editing on shared document. They both
implemented the collaboration without dealing with different logical
objects respectively. In this case, multiple users can edit one sentence,
even one word, on the shared document concurrently, which will
bring confusion and disorder among users. To address this problem,
our previous research proposed a Document Processing Model in the
Cloud (DPC model). The DPC model enables users to process their
office document collaboratively with a proper granularity in the cloud,
which will be introduced briefly in the introduction.

The main purpose of this paper is to describe the implementation
of the proposed DPC model. By the implementation, office document
processing will become a web application available in the cloud with
a proper granularity of the collaborative editing. Users are able to
perform their document processing work through browsers without
installing the office document processing application on their own
computer.

Background
As mentioned before, Google and Microsoft offer office document

processing through the cloud. Google Docs is a free, web-based office
suite, and data storage service offered by Google. It allows users to
create and edit documents online while collaborating in real-time with
other users. Microsoft Office 365 is commercial software plus services
offering a set of products from Microsoft Corporation. Office 365
includes the Microsoft Office suites of desktop applications and hosted

*Corresponding author: Xiaolong Wu, Department of Computer Engineering
and Computer Science, California State University, Long Beach, 1255 Bellflower
Blvd, Long Beach, CA 90840, USA, Tel: 562-985-2910; Fax: 562-985-7823; E-mail:
xiaolong.wu@csulb.edu

Received July 28, 2014; Accepted August 16, 2014; Published August 18, 2014

Citation: Wen J, Wu X (2014) Implementation of a Collaborative Document
Processing in the Cloud. J Comput Sci Syst Biol 7: 174-179. doi:10.4172/
jcsb.1000153

Copyright: © 2014 Wen J, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
Document processing is one of the most widely used and well developed With the recent fast development of

high-speed internet and distributed computing, it is possible to move document processing to web-based, and even
cloud-based. The initial benefits of moving office documents into cloud for small and medium sized are business cost
saving for buying, maintaining, and upgrading both software and hardware. However, the most significant advantage
of doing is to enable users of real-time collaborative editing on a shared cloud-based document. Therefore, moving
office applications into cloud is an inevitable trend for the development of office application. A novel efficient
document-processing model (DPC) in the cloud is proposed. Detailed description and functioning of this model is
briefly discussed first in this paper. Next, we implemented the DPC model in the Google cloud through the Google
App Engine. Our cases testing verified the proposed DPC model enabling users to process their office document
collaboratively by a proper granularity in cloud.

Implementation of a Collaborative Document Processing in the Cloud
Jiafei Wen and Xiaolong Wu*
Department of Computer Engineering and Computer Science, California State University Long Beach, USA

Journal of

Computer Science & Systems BiologyJo
ur

na
l o

f C
om

pu
ter Science & System

s Biology

ISSN: 0974-7230

Citation: Wen J, Wu X (2014) Implementation of a Collaborative Document Processing in the Cloud. J Comput Sci Syst Biol 7: 174-179. doi:10.4172/
jcsb.1000153

Volume 7(5) 174-179 (2014) - 175
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

versions of Microsoft’s Server products, delivered and accessed over
the Internet. Both of these two applications claim to emphasize the
support of collaboration of document editing among users. Through
our testing and evaluation, we consider that the collaborative editing
of these two products do not have a proper granularity. For example,
Google Docs enables multiple users to edit one shared document
online, and it allows different users to edit one sentence, even one word,
concurrently. However, in Google docs, even though users are notified
where the change happened, they are not notified of the content of any
changes, since changes are not highlighted by Google docs.

As shown in Figure 1, when a user is typing the word of “paragraph”
in the second line, another user begins to type characters at the same
place as the first user. In this case, the first user will be confused by the
characters, since there is no visual difference between the characters he
typed and the character typed by others. The first user only is noticed
that there is another user editing this sentence but he does not know
what the change is. This issue of confusion and disorder may become
even worse when more users are working on a shared document. The
reason for this issue is the editing operation does not base on different
objects respectively. The content of the document is processed as one
single object. We also found that the same problem exists in Microsoft
office 365 (Figure 1).

To address this problem and enable users to process their office
document collaboratively by a proper granularity in the cloud, our
previous research proposed DPC model, which will be introduced
briefly in the next section. Similar to Google Docs, the implementation
of the DPC model described in this paper build a web application of it
and deploy it as a “software as a service” in the cloud.

DPC Model
The DPC model is Document Processing in the Cloud model. It is

object-oriented based on XML logical structure [10]. It treats editable
components in a document as distinct objects, and it gives users respective
access to each object. As a result, multiple users working on a shared
document can do collaborative editing based on distinct objects in real
time. Such mechanism provides a more logical granularity for document
processing collaboration, since the DPC model processes the content of a
document as logical objects rather than treating it as a string stream.

Defined in the DPC model, firstly, a whole document will be
divided into thirteen objects listed in Table 1, based on which the whole
document is divided. DPC Objects includes nine composites object
which include basic object, and four basic objects which are atomic.
Each of the DPC objects cannot be edited by more than one user at any
time (Table 1).

After being divided into DPC objects, the whole document becomes
a unit of DPC objects. Each DPC objects is a unit of work distribution,
which will be sent to processors in the cloud. The combination of all
units is the entire document. User will be led to the target object in the
cloud to finish their editing work. After all editing works finish, DPC
objects will be collected and combined to form the final result document.
In order to get a complete utilization in the cloud environment, DPC
model also defined eight formulas as follow: (Table 2)

The detailed information about these formulas is introduced by
[4]. It is worthwhile to note that in formula six, the DPC model use
ACCESS_PATH, described by XPath [2], to indicate the different
objects after division and to lead users to the target objects they want
to edit. Figure 2 shows DPC objects after division with its ACCESS_
PATH in the cloud. Since the XPath of each node is unique in XML
document, it can be identifiers of DPC objects in the cloud (Figure 2).

Implementation
The web application of the DPC implementation offers document

processing and makes the document accessible to authorized users
form browsers. The owner of the document is able to invite others to
work on the same document at the same time. The implementation
is coded in Java for the backend and JavaScript for the frontend. In
the frontend, we use the JQuery library [3] in JavaScript library to
process the basic text editing, such as adding and deleting characters,
changing the style and the size of characters, and so on. Meanwhile, in
order to provide better editing functions, we integrate the CKEditer Figure 1: Collaborative Editing in Google Docs.

Object Name Object Description
Composite
Objects

Content Specifies document’s properties
Meta Data Specifies meta data
Header & Footer Specifies headers and footers
Style& Fonts Specifies styles and fonts setting
Footnote & Endnote Specifies foot note and end note
Comments Specifies comments
Paragraph Specifies paragraphs’ properties
Table Specifies tables
Run Specifies runs’ properties of content in the

parent field
Basic Objects Hyperlink Specifies hyperlinks

Region Specifies regions
Text Specifies literal text of runs which shall be

displayed in the document
Picture Specifies pictures

Table 1: DPC Objects Description.

DPC={DOC, MIDDLEWARE, PROCESSORS《bag PROCESSOR》} (1)
DOC={ROOT, ASSIST_INFO} (2)
PROCESSOR = { APPS《bag APP》} (3)
ROOT={NONLEAF《bag COMPOSITE _OBJ》, LEAF《bag BASIC _OBJ》} (4)
COMPOSITE_OBJ={OBJECT, DESCENDANT《bag ROOT》} (5)
BASIC_OBJ={OBJECT} (6)
OBJECT={NAME, ACCESS_PATH, ON_EDITING} (7)
ON_EDITING ::=Busy | Idle (8)

Table 2: DPC model defined eight formulas.

http://www.iciba.com/worthwhile/
http://www.iciba.com/that/

Citation: Wen J, Wu X (2014) Implementation of a Collaborative Document Processing in the Cloud. J Comput Sci Syst Biol 7: 174-179. doi:10.4172/
jcsb.1000153

Volume 7(5) 174-179 (2014) - 176
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

“[Content_Types].xml” document and two file folders named “_rels”
and “word” respectively. In the file folder named “word”, there are
several XML documents constituting the main content of the example
document.

In order to divide the example document to draw out DPC objects
easily, the parser creates a new XML document to contain all of the
individual XML documents in the source document. By doing so, it
is easy to record the XPath of each DPC object, and it is also easy for
keeping the integrity of DPC objects. In the new XML for integrating
all XML documents in the source document, the parser marks each
XML document by its own title, such as “workbook.xml”, used to mark
the piece from workbook.xml. After this step of integration, the source
document is as shown in (Figure 6).

We use Extensible Style sheet Language Transformations (XSLT)
technology to integrate these individual documents. XSLT is a XML-
based language used for the transformation of XML documents [12],
which is used to generate a new XML document without changing the
original XML document it based on. For example, Figure 7 shows the
main steps of the Stylesheet of XSLT for integration, through which all
the XML documents in the source document are integrated into one
XML document. As mentioned before, after integration, the source
document is as shown in Figure 6 as one single XML document.

Through the result document of integration, the parser records
each node’s XPath. For example, the <document.xml> node’s XPath is

[11] in our implementation. CKEditor is a text editor used inside web
pages. Since our implementation is a web application for processing
text on web page, the CKEditer is a good tool for us to accomplish this
goal. Besides, CKEditer is licensed under flexible Open Source and
commercial licenses [6], so that it can be integrated in our application
legally.

As defined by formula one in the Chapter three, on the first
level of the DPC model, there are three main components which
are DOC, Middleware, and Processors. Accordingly, there are three
corresponding main parts in the implementation (Figure 3).

As shown in Figure 3, the DOC part includes the source document
which is going to be uploaded to the cloud, and the result document
which is downloaded from the cloud. In the cloud environment,
middleware includes the parser, the manager, and the combiner. The
workflows of the parser and the manager are shown in Figures 4 and 5.
The workflow of the combiner is to combine the results from manager
according to the XPath of each result piece, which is similar to the
reverse direction of the parser workflow.

As shown in Figure 4, after receiving a source document, the
parser records the XPath of each node in the source document. Then,
the parser divides the source document into pieces based on the DPC
model, after which the parser packs each piece with its corresponding
XPath into DPC objects. Finally, the parser sends the DPC objects to
the manager. We use ISO 29500 format document as an example to
illustrate this process. An ISO 29500 document is described by several
XML documents, so actually it is a collection of XML documents (Figure
5). In Figure 5, docx format is based on ISO 29500, which contains a

Figure 2: DPC Objects with Their ACCESS_PATH.

Figure 3: Overview of the Implementation of the DPC Model.

Figure 4: Main Workflow of the Parser.

Figure 5: Structure of an ISO 29500 Document.

http://ckeditor.com/license
http://ckeditor.com/license

Citation: Wen J, Wu X (2014) Implementation of a Collaborative Document Processing in the Cloud. J Comput Sci Syst Biol 7: 174-179. doi:10.4172/
jcsb.1000153

Volume 7(5) 174-179 (2014) - 177
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

to be refreshed in time.

If the input consists of user request, the manager will check whether
the request is coming from the owner of the target document or not.
The owner of the document, who uploaded the document, decides
which user can edit the document. The owner needs to send invitations
to users who will be allowed for collaborative editing. Then those users
will be authorized for such editing once they log in. If it is coming
from the owner, the manager will display the whole document on the
browser. If it is not, the manager will validate the user firstly, and then
the browser will display the document after validation. If the user wants
to edit the uploaded document, the request will indicate which part in
the document the user wants to edit. By such request, the manager will
check whether the object in the document is available for editing or
not. If it is available, the manager will authorize user to edit. Otherwise,
the user needs to wait in line for the target object. Since the document
is saved on demand, the manager will refresh the display periodically.

The implementation of the DPC model in this paper is deployed
in the Google Cloud through Google App Engine [13]. Google App
Engine is a cloud computing platform providing platform as service
and hosting web application in the Google-managed data centers. The
application implemented the DPC model will be enabled by it as a web
application hosted in the Google-managed data centers [20-22].

Testing
In this section, we designed test cases to test uploading, editing by a

single user, and collaborative editing by multiple users functions of the
DPC model implementation. Four main test cases and their results are
described in the following paragraphs respectively. These test cases run
on the browser of Firefox 7.0 for functional testing of black box testing
(Figure 9).

“xxx.docx/word.xml/document.xml”.

After recording the XPath, the parser divides the result document
based on the specification of DPC and then draws out the corresponding
DPC objects. If a user wants to edit the content of a paragraph, he must
have access to that object. Obviously, there will be some nodes which
do not belong to any DPC object. These nodes will also be sent to the
manager as backup.

After receiving the data from the parser or user, the manager will
call the corresponding java servlet to handle the data. The workflow of
the manager is shown in Figure 8 [13-19].

As shown in Figure 8 the manager processes two kinds of inputs.
The first kind of input consists of user requests and the second consists
of DPC objects. If the input consists of DPC objects, the manager will
determine whether these DPC objects have been saved. If the input
has not been saved which means this document is uploaded into the
cloud for the first time, the manager will save them in its storage. Then,
manager will send the DPC objects to corresponding processors. If
the input has been saved which means those DPC objects come from
processors rather than from the parser, the manager will refresh the
DPC Objects saved before according to the input. DPC objects in
storage are used to display the whole document to users, so they need

Figure 6: Source Document after Integration.

Figure 7: XSLT Style sheet for Integration.

Figure 8: Workflow of the Manager.

Citation: Wen J, Wu X (2014) Implementation of a Collaborative Document Processing in the Cloud. J Comput Sci Syst Biol 7: 174-179. doi:10.4172/
jcsb.1000153

Volume 7(5) 174-179 (2014) - 178
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

Test Case I: Upload the example document.
Purpose: Upload the example document into the cloud through the

implementation of the DPC and display its content on the
browser.

Test data: Docx document with two paragraphs.
Test steps: Start the application of the implementation of the DPC by a

browser; select the example document; click upload button;
Test result: Pass.
Screenshot: Shown in Figure 9

As tested in Test Case I, the paragraphs in black fonts are the
content of the example document, and they are also editable paragraphs
on the browser. Users can edit them after login by clicking the content,
as described in the Test Case II. When a user clicks the paragraph, the
paragraph will change to an editable field (Figure 10).

Test Case II: Edit the example document on the browser.
Purpose: Edit one paragraph of the example document displayed

on browser.
Test data: Example document uploaded by test case one.

Test steps: Click the first paragraph and edit the content.
Test result: Pass.
Screenshot: Shown in Figure 10.

When a paragraph is under editing, it cannot be edited by other
users through other browsers. If a user clicks the paragraph which is
under editing, he will receive the information saying “another user is
editing this paragraph”, as described in the Test Case III (Figures 11
and 12).

Test Case III: Edit a paragraph which is under editing.
Purpose: Edit a paragraph which is under editing by using

different user name. The browser will give the invalid
information to user.

Test data: Example document in the cloud.
Test steps: Two users login by two different user names through

two different browsers; One user clicks the first
paragraph, and then the other user also clicks the first
paragraph.

Test result: Pass.
Screenshot: Shown in Figure 11.

Test Case IV: Two users edit two paragraphs of one shared
document through different browsers at same time.

Purpose: Collaborative editing through different browsers.
Test data: Example document in the cloud.
Test steps: Login the application through two browsers by

different user names; Click the first paragraph in
one browser; Click the second paragraph in another
browser. Two paragraphs can be edited at same time
through different browser.

Test result: Pass.
Screenshot: Shown in Figure 12.

Conclusion
Moving office document processing into the cloud is a trend in IT

industry, since it not only help user save cost on their software and
hardware upgrading, but also enable user to do collaborative editing
on a shared document through internet. Our previous research has
proposed the DPC model for efficient office document processing in
the cloud. In this paper, we introduce the implementation of the DPC
model, which is deployed in the Google cloud through Google App
Engine. The implementation works well and the results confirm that

Figure 9: Screenshot of Test Case I.

Figure 10: Screenshot of Test Case II.

Figure 11: Screenshot of Test Case III.

Citation: Wen J, Wu X (2014) Implementation of a Collaborative Document Processing in the Cloud. J Comput Sci Syst Biol 7: 174-179. doi:10.4172/
jcsb.1000153

Volume 7(5) 174-179 (2014) - 179
J Comput Sci Syst Biol
ISSN: 0974-7230 JCSB, an open access journal

DPC model provides a proper granularity of collaborative editing by
eliminating editing confusion and disorder among users.

References

1. Adler A, Nash JC, Sylvie N (2006) Evaluating and implementing a collaborative
office document system. Interacting with Computers 4: 1-18.

2. Buyya R, Yeo CS, Venugopal S, Broberg J, Brabdic I (2009) Cloud Computing
and Emerging IT Platforms: Vision, Hype, and Readily for Delivering Computing
as the 5th Utility. Future Generation Computer Systems 6: 599-616.

3. Kim E, Severinson Eklundh K (1998) How Academics Co-ordinate their
Documentation Work and Communicate about Reviewing in Collaborative
Writing. Technical Report TRITA-NA-P9815, NADA.

4. Newman J, Newman R (1992) Three modes of collaborative authoring in
Computers and Writing: State of the Art (P.O. Holt and N. Williams, Eds.).
Oxford: Intellect Books 20-28.

5. Noel S, Robert JM (2003) How the Web is used support collaborative writing.
Behaviour & Information Technology 22: 245-262.

6. Noel S, Robert JM (2004) Empirical Study on Collaborative Writing: What do

Figure 12: Collaborative Editing through Different Browsers.

co-authors do, use, and like? Computer Supported Cooperative Work. The
Journal of Collaborative Computing 13: 63-89.

7.	 Petride S, Tarachandani A, Agarwal N, Idicula S (2011) Managing and
Processing Office Documents in Oracle XML Database. In Proc. Of the 3rd

International Conference on Advances, Knowledge, and Data Applications 89-95.

8. Posner IR, Baecker RM (1992) How people write together, in Readings in
Groupware and Computer-Supported Cooperative Work: Assisting Human-
Human Collaboration (R.M. Baecker, Ed.) 239-250.

9. Rizzi CB, Alonso CMMC , Hassan EB , Tarouco LMR, De Seixas LMJ (2000)
EquiText: a helping tool in the elaboration of collaborative texts. Proc. of 2000
Society for Information Technology and Teacher Education International
Conference 2314-2319.

10.	Sun C, Ellis C (1998) Operational transformation in real-time group editors:
issues, algorithms, and achievements. Proc. of the 1998 ACM conference on
Computer supported cooperative work. 59-68

11. Tang Y, Yan C, Suen CY (1994) Document Processing for Automatic
Knowledge Acquisition. Proc. of IEEE Transactions on Knowledge and Data
Engineering 6: 3-21.

12.	Wen J, Lam S, Wu X (2011) A model for Office document processing and
collaboration in the cloud. Proc. of the 2011 International Conference on
Parallel and Distributed Processing Techniques and Applications.

13.	Zhang L, Zhou Q (2011) CCOA: Cloud Computing Open Architecture. Proc. of
IEEE International Conference on Web Services.

14.	http://www.google.com/google-d-s/intl/en/tour1.html

15.	http://office365.microsoft.com/en-US/online-services.aspx

16.	XML Path Language (XPath) (2007) 2.0. W3C Recommendation.

17.	http://www.w3.org/TR/xpath20/

18.	http://jquery.com/

19.	http://ckeditor.com/what-is-ckeditor

20.	http://ckeditor.com/license

21.	http://www.w3.org/TR/xslt

22.	http://en.wikipedia.org/wiki/Google_App_Engine

http://www.sciencedirect.com/science/article/pii/S0953543805000810
http://www.sciencedirect.com/science/article/pii/S0953543805000810
http://www.cloudbus.org/reports/CloudITPlatforms2008.pdf
http://www.cloudbus.org/reports/CloudITPlatforms2008.pdf
http://www.cloudbus.org/reports/CloudITPlatforms2008.pdf
http://www.ufrgs.br/limc/escritacoletiva/pdf/how_the_web_is_used.pdf
http://www.ufrgs.br/limc/escritacoletiva/pdf/how_the_web_is_used.pdf
http://web.nmsu.edu/~jalmjeld/online_publishing/empirical-study-on-collaborative-writing.pdf
http://web.nmsu.edu/~jalmjeld/online_publishing/empirical-study-on-collaborative-writing.pdf
http://web.nmsu.edu/~jalmjeld/online_publishing/empirical-study-on-collaborative-writing.pdf
http://www.oracle.com/technetwork/database-features/xmldb/managingofficedocs-in-oraclexmldb-338745.pdf
http://www.oracle.com/technetwork/database-features/xmldb/managingofficedocs-in-oraclexmldb-338745.pdf
http://www.oracle.com/technetwork/database-features/xmldb/managingofficedocs-in-oraclexmldb-338745.pdf
http://books.google.co.in/books?id=b8iPxXSCujEC&pg=PA239&lpg=PA239&dq=How+people+write+together,+in+Readings+in+Groupware+and+Computer-Supported+Cooperative+Work&source=bl&ots=WPf2Ul_B3E&sig=tZ7xMRNPB3A2ahhq8CuLnNx7NaQ&hl=en&sa=X&ei=Ptr9U4LPO8iXuASI8YGYAg&ved=0CBwQ6AEwAA#v=onepage&q=How people write together%2C in Readings in Groupware and Computer-Supported Cooperative Work&f=false
http://books.google.co.in/books?id=b8iPxXSCujEC&pg=PA239&lpg=PA239&dq=How+people+write+together,+in+Readings+in+Groupware+and+Computer-Supported+Cooperative+Work&source=bl&ots=WPf2Ul_B3E&sig=tZ7xMRNPB3A2ahhq8CuLnNx7NaQ&hl=en&sa=X&ei=Ptr9U4LPO8iXuASI8YGYAg&ved=0CBwQ6AEwAA#v=onepage&q=How people write together%2C in Readings in Groupware and Computer-Supported Cooperative Work&f=false
http://books.google.co.in/books?id=b8iPxXSCujEC&pg=PA239&lpg=PA239&dq=How+people+write+together,+in+Readings+in+Groupware+and+Computer-Supported+Cooperative+Work&source=bl&ots=WPf2Ul_B3E&sig=tZ7xMRNPB3A2ahhq8CuLnNx7NaQ&hl=en&sa=X&ei=Ptr9U4LPO8iXuASI8YGYAg&ved=0CBwQ6AEwAA#v=onepage&q=How people write together%2C in Readings in Groupware and Computer-Supported Cooperative Work&f=false
http://www.editlib.org/p/15981/
http://www.editlib.org/p/15981/
http://www.editlib.org/p/15981/
http://www.editlib.org/p/15981/
http://dl.acm.org/citation.cfm?id=289469
http://dl.acm.org/citation.cfm?id=289469
http://dl.acm.org/citation.cfm?id=289469
http://www.sc.ehu.es/ccwgrrom/transparencias/articulos-alumnos-doct-2002/andoni/00273022.pdf
http://www.sc.ehu.es/ccwgrrom/transparencias/articulos-alumnos-doct-2002/andoni/00273022.pdf
http://www.sc.ehu.es/ccwgrrom/transparencias/articulos-alumnos-doct-2002/andoni/00273022.pdf
http://worldcomp-proceedings.com/proc/p2011/EEE3209.pdf
http://worldcomp-proceedings.com/proc/p2011/EEE3209.pdf
http://worldcomp-proceedings.com/proc/p2011/EEE3209.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5175875&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5175875
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5175875&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5175875
http://www.google.com/google-d-s/intl/en/tour1.html
http://office365.microsoft.com/en-US/online-services.aspx
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://jquery.com/
http://ckeditor.com/what-is-ckeditor
http://ckeditor.com/license
http://www.w3.org/TR/xslt
http://en.wikipedia.org/wiki/Google_App_Engine

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Background
	DPC Model
	Implementation
	Testing
	Conclusion
	Table 1
	Table 2
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	References

