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Abstract
Surgeries for Lumbar Spinal Stenosis (LSS) aim at decompressing spinal nerves and relieving symptoms of 

radiculopathy or myelopathy. Frequently after surgery, stenosis may progress in adjacent spinal segments, but the 
etiology of adjacent segment degeneration is still unclear. It is hypothesized that surgical approaches for LSS may alter 
the normal biomechanics of adjacent segments, eventually contributing to the development of stenosis. This study 
investigated implications of established decompressive surgical approaches on adjacent segments biomechanics. 

A realistic finite element model of a L1-L5 human lumbar spine was used for assessing changes in spine 
segments’ biomechanics due to laminotomy and laminectomy surgeries. First, the model was validated by comparing 
its predictions to previously reported spine kinematic data obtained after multi-level laminotomy and laminectomy. 
Subsequently, using a hybrid loading protocol, segments’ kinematics, intradiscal pressure, and stress in flexion-
extension were investigated simulating single level (L4-L5) laminotomy and laminectomy procedures. 

Alterations of spine segments biomechanics due to laminotomy were minimal. In contrast, after laminectomy, the 
L3-L4 range of motion, intradiscal pressure, and stress increased up to 50%, 20%, and 120%, respectively. These 
results suggest that laminotomy represents a better approach than laminectomy for reducing risks of spine instability 
or mechanically-accelerated disc degeneration in adjacent segments.
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Introduction
With a prevalence of approximately 20% in individuals older than 

60 years, and up to 80% in those older than 70 years, Lumbar Spinal 
Stenosis (LSS) is exerting a greater clinical impact as the population 
ages [1,2]. The clinical presentation of LSS, defined as radiculopathy or 
myelopathy, is characterized by lower extremity pain, paresthesias and 
weakness and may also contribute to low back pain [3-5]. 

The pathogenesis of LSS is attributable to bone remodeling or 
overgrowth, intervertebral disc (IVD) protrusion, spondylolisthesis, 
or any combination of these [3]. Bone overgrowth is either initiated 
or accelerated by the degenerative process affecting facet joints and 
IVD [6]. Remodeling of the bone is either a reaction to the excessive 
joint motion or a physiologic attempt for local arthrodesis, eventually 
resulting in decreased segmental mobility. This loss of mobility in 
one segment creates abnormal forces and stresses on adjacent spinal 
segments, which then degenerate at an accelerated rate [3]. 

The LSS is often surgically treated. The objective of surgery is 
decompression of the spinal nerves without causing spinal instability 
[7]. In the past 60 years, a myriad of surgical techniques have been 
developed for achieving spinal nerve decompression. Among them, 
lumbar laminectomy with or without fusion are well-established 
approaches [8]. However, longitudinal studies on surgically treated 
patients report the occurrence of adjacent segment degeneration 
(e.g., disc herniation, spondylolisthesis, newly developed stenosis, 
etc., at adjacent spinal segments) after fusion or laminectomy [9-14].  
Consequently, a large proportion of those patients require additional 
procedures to address the adjacent segment degeneration (ASD), 
especially if they experience symptoms of recurrent stenosis related to 
the ASD, which has been clinically defined as adjacent segment disease 
[11,13,15-17]. All surgical treatments for LSS involve alteration of the 
bony and soft tissue anatomy in the affected portion of the spine. The 
particular alterations to the musculoskeletal anatomy generated by each 

of these procedures may alter the normal physiological biomechanics 
of untreated segments of the spine [18,19]. Such alterations might have 
implications for the development of the adjacent segment disease.

Laminectomy or laminotomy are the preferred surgical approaches 
when there are no indications of pre-operative spinal instability [20-
22]. The implications of such surgical approaches on the biomechanical 
behavior of the spine have been investigated via clinical [20-27] in 
vitro, [19,28-33] and numerical studies [34-40]. However, information 
on the specific alterations of adjacent spinal segment biomechanics due 
to these surgical procedures is still incomplete. Hence, the objective 
of this study was to provide new insights on the implications of 
laminectomy and laminotomy on the mechanical behavior of adjacent 
spinal segments. 

Methods
A realistic computational model was developed to describe the 

biomechanical behavior of lumbar spine undergoing common surgical 
procedures such as unilateral laminotomy, bilateral laminotomy, and 
facet-sparing laminectomy. An additional procedure that is not typically 
performed clinically, laminectomy with complete facetectomy, was 
included for biomechanical comparison purposes. First, the model was 
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validated by comparing its predictions of spinal segments motion to 
experimental data reported in an in vitro study [28].  Subsequently, the 
model was utilized for assessing and comparing post-operative changes 
of adjacent segment biomechanics in terms of segment kinematics 
(range of motion), intradiscal fluid pressure, and stress fields in IVD. 
Details on methods and procedures are reported below. 

Lumbar spine computational model

A three-dimensional nonlinear finite element model of the lumbar 
spine was developed. It consisted of the L1 to L5 vertebrae, associated 
IVDs, intact facet joints, and all major ligaments of lumbar spine. The 
geometry of the computational domain was obtained from a CT of 
a normal, non-pathological spine. Vertebrae were modeled as rigid 
bodies. The IVDs were constituted by two distinct anatomic regions: 
the annulus fibrosus (AF) and the nucleus pulposus (NP). Both AF and 
NP were considered as biphasic media [41,42] constituted by a solid 
phase embedded in a fluid phase. More specifically, the solid phase of 
AF was modeled as a fiber reinforced hyperelastic composite: collagen 
fibers were modeled as tension-only elements [43] and arranged in a 
total of four concentric layers enclosing the NP with alternating ±30° 
orientation [44] the ground substance of AF was modeled as a Mooney-
Rivlin material [45]. The solid phase of NP was isotropic elastic, 
with mechanical properties taken from a previous study [46]. Water 
volumetric fractions and hydraulic permeability for both NP and AF 
were those reported in the literature [47-49]. Each facet joint had a 
gap of 0.5 mm 44 and two cartilaginous layers which were modeled 
as elastic isotropic materials [50]. The ligaments were represented by 
linear elastic tension-only spring elements, and their stiffness was that 
reported by Pintar and co-workers [51]. A summary of the material 
properties used in this model is reported in Table 1. 

Both IVD and cartilaginous layers at facet joints were modeled 
with 8-node hexahedral elements (~3200 elements for each IVD, and 
~1000 element for each cartilage layer). Non-commercial software 
FEBio (FEBio 1.8.0, Musculoskeletal Research Laboratory, University 
of Utah, Salt Lake City, UT) was used to solve the set of governing 
equations defining the computational model. The FEBio software suite 
is a nonlinear implicit finite element framework designed specifically 
for analysis in computational solid biomechanics, whose accuracy and 
the robustness have been documented [52,53].

Simulated surgical procedures

Surgical procedures simulated in this study include unilateral 
laminotomy, bilateral laminotomy, facet-sparing laminectomy, and 
laminectomy with complete facetectomy. In this study, the ligamentum 
flavum at each spinal segment was modeled as composed of two 
spring elements (one element for each operative side). Accordingly, 
for unilateral laminotomy, only the spring element corresponding to 
the operative side was removed, together with part of the vertebral 
lamina. In contrast, for bilateral laminotomy, the entire ligamentum 
flavum connecting the two vertebral bodies (i.e., both spring elements) 
was removed. When simulating facet-sparing laminectomy, the entire 
lamina of the vertebra was removed, together with the connecting 
flavum, interspinous, and supraspinous ligaments. For the comparison 
case of laminectomy with complete facetectomy, in addition to all the 
steps performed in the case of facet-sparing laminectomy, the facet 
joints (including cartilaginous layers and capsular ligaments) were also 
removed. The spine models resulting from these procedures are shown 
in Figure 1. 

Model validation

A preliminary validation was performed by comparing model 

predictions to experimental data reporting the effects of laminotomy 
and laminectomy on lumbar spine kinematics. Several experimental 
characterizations of spine biomechanics after decompressive surgeries 
for lumbar stenosis have been reported [19,29-32]. Each of these 
studies uses a different testing protocol, and addresses a specific subset 
of surgical approaches (e.g., facetectomy and laminectomy, graded 
facetectomy, bilateral laminotomy and laminectomy, etc.). Hence, 
quantitative information on spine biomechanics suitable for validating 
the model adopted in this study is fragmented. To the authors’ best 
knowledge, the in vitro analysis developed in Lee et al. [28] is the 
only one to report information on spine biomechanics after bilateral 
laminotomy and laminectomy in human spine, which is the standard for 
biomechanical evaluation. Accordingly, the experimental conditions 
used by Lee and co-workers were replicated in the simulations. More 
specifically, in the investigated cases, the inferior endplate of L5 was 
fixed (equivalent to potting the lumbar spine at L5), and a pure flexion/
extension moment was applied at the superior endplate of L1 (8 Nm in 
flexion and 6 Nm in extension, respectively) with a frequency of 1 Hz. In 
addition, a follower load of 400 N was applied to the spine as previously 
described [54]. Both laminotomy and laminectomy procedures were 
performed on L2-L5 segments (Figures 1b and 1c). The ranges of 
motion (rotations in the sagittal plane) of L2-L3, L3-L4, and L4-L5 
segments were evaluated and compared to the in vitro results of Lee et 
al. [28]. In order to improve the agreement with the experiments, the 
initially chosen elastic moduli of some discs were slightly modified in 

Material Property Value Reference

AF

Volumetric fluid fraction 0.75 [47]
Hydraulic permeability 0.00021 mm4N-1s-1 [48]

Collagen fibers (tension-only) Stress–strain curve [43]
Ground substance Mooney-Rivlin 

coefficients c1=0.18; c2=0.045 [45]

NP

Volumetric fluid fraction 0.86 [47]
Hydraulic permeability 0.00067 mm4N-1s-1 [49]

Ground substance isotropic 
elastic modulus E=0.2 MPa [46]

Ground substance Poisson ratio ν=0.499 [46]

Cartilage 
Isotropic elastic modulus E=35 MPa [50]

Poisson ratio ν=0.4 [50]
Ligaments Stiffness (tension-only) Linear elastic [51]

Table 1: Material properties of the different tissues used for the finite element model.

Figure 1: Posterior view of computational domains used for the simulations: 
(a) intact spine; (b) bilateral laminotomy at L2-L5; (c) facet-sparing 
laminectomy at L2-L5; (d) unilateral laminotomy at L4-L5; (e) bilateral 
laminotomy at L4-L5; (f) facet-sparing laminectomy at L4-L5; (g) laminectomy 
with facetectomy at L4-L5.
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the computational model within their physiological range. For all the 
cases investigated, it was found that the predicted range of motion of 
the model followed the same trend of in vitro data, and their differences 
were always less than one standard deviation (Figure 2).

Analysis of spine segments biomechanics

In this analysis, the surgical procedures of unilateral laminotomy, 
bilateral laminotomy, facet-sparing laminectomy, and laminectomy 
with complete facetectomy were performed at L4-L5, since this was 
assumed to be the spine level affected by pathology (Figures 1d-1g). 
The post-operative changes in range of motion (i.e., rotation in the 
sagittal plane, anteroposterior translation, and axial translation), 
intradiscal pressure, and normal and shear stress in both AF and NP 
were evaluated at all spine levels. A hybrid test method55 was adopted 
as a protocol for spine loading conditions. More specifically, the ‘intact’ 
spine was tested with the same loading conditions used for validation, 
and its total range of motion was computed. When testing the spine for 
each surgical procedure, the pure flexion/extension moment applied at 
L1 was varied in order to make the total range of motion equal to that 
attained in the ‘intact’ case.   

Results
The total range of motion of the spine (L1-L5) in the sagittal plane 

resulting from loading the intact model was 11.46° for flexion and 
14.3° for extension. The moments required to produce the same range 
of motion after performing the surgical procedures are shown in Table 
1. Moments changed during flexion, decreasing up to 42% for the case 
of laminectomy with facetectomy. Conversely, minimal changes were 
found during extension for all procedures investigated. 

Post-operative alterations of spinal segments biomechanics 
during extension were minimal (<5%) and are not reported. The 
post-operative motion redistribution during flexion for the individual 
spine segments is reported in Figure 3, and compared to the ‘intact’ 
case. For all procedures, sagittal rotations increased at L4-L5 and L3-

L4, and decreased at L2-L3 and L1-L2. Major changes were found 
after laminectomies, with increments up to 18% and 23% (at L3-L4 
and L4-L5, respectively), and reductions up to 15% and 39% (at L2-
L3 and L1-L2, respectively). In contrast, post-operative changes after 
either unilateral or bilateral laminotomy were minimal (<5%), (Figure 
3a). Similar trends were observed in the anteroposterior translations: 
after all the procedures, translations increased at L4-L5 and L3-L4, and 
decreased at the above segments. The only exception was found at L2-
L3, where unilateral and bilateral laminotomy caused anteroposterior 
translation to increase up to 2.52 mm (18%) and 2.46 mm (15%), 
respectively (Figure 3b). For all the procedures investigated, increments 
in the axial compression did not exceed 0.2 mm (Figure 3c).

Post-operative alterations of spinal segments kinematics were 
reflected in changes of intradiscal pressure and stresses in the IVDs. 
After laminectomy procedures, intradiscal pressure increased in both 
NP and AF at L3-L4 (up to 20%) and L4-L5 (up to 10%). Conversely, 
at L2-L3 and L1-L2, pressure reduced up to 35% and 31%, respectively 
(Figure 4).  After either unilateral or bilateral laminotomy, pressure 
changes were minor at all spine levels, with the exception of L3-L4, 
whose fluid pressure in AF dropped up to 30% (Figure 4b). Changes in 
the normal stresses were similar to those found in intradiscal pressure: 
after laminectomy procedures, stress in both NP and AF increased 
one-fold in L4-L5 and L3-L4, and decreased up to 30% to 35% in L2-
L3 and L1-L2, respectively, (Figure 5a and 5b). Again, after unilateral 
and bilateral laminotomy, no major changes from the ‘intact’ case were 
observed for all the spine levels. Major changes in shear stress were only 
observed in the NP of L3-L4 after laminectomy procedures, increasing 
up to 120% the value attained in the ‘intact’ case (Figure 5c and 5d).

Discussion
In this study, we adopted a realistic three-dimensional finite 

element model of human lumbar spine to investigate the implications 
of surgical procedures for lumbar stenosis on the biomechanics of the 
adjacent segments. Specifically, the model was implemented to simulate 

Figure 2: Validation of the computational model of the spine: the rotations in the sagittal plane of vertebral segments predicted by the model are compared to those reported 
the in vitro results by Lee et al. [28]: (a) intact spine; (b) bilateral laminotomy at L2-L5; (c) laminectomy at L2-L5.



Citation: Travascio F, Asfour S, Gjolaj J, Latta LL, Elmasry S, Eismont F (2015) Implications of Decompressive Surgical Procedures for Lumbar 
Spine Stenosis on the Biomechanics of the Adjacent Segment: A Finite Element Analysis. J Spine 4: 220. doi:10.4172/21657939.1000220

Page 4 of 7

Volume 4 • Issue 2 • 1000220
J Spine, an open access journal
ISSN: 2165-7939 

biomechanical tests on a L1-L5 spinal column undergoing unilateral 
laminotomy, bilateral laminotomy, facet-sparing laminectomy, and 
laminectomy with facetectomy at L4-L5 to yield changes in kinematics, 
intradiscal pressure, and disc stress at all spine levels. Such metrics 
are especially relevant when investigating the etiology of ASD since 
altered range of motion of spine segments is believed to increase the 

risk of spinal instability, eventually leading to spondylolisthesis and 
LSS [3]. Besides, abnormal levels of fluid pressure or stress may suggest 
ongoing IVD degeneration, which also contributes to the development 
of stenosis [3,6,55-57]. 

The post-operative changes of spinal segments biomechanics 
were tested during flexion/extension. In agreement with both in 

Figure 3: Post-operative changes in range of motion of spine segments: (a) rotation in the sagittal plane; (b) anteroposterior translation; (c) axial translation (negative sign 
indicates compression).

Figure 4: Post-operative changes in intradiscal peak pressure in spine segments: (a) intradiscal pressure in NP; (b) intradiscal pressure in AF. Data are reported in terms 
of percent change with respect to the ‘intact’ case.
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vitro [28,30,32] and numerical studies, [34,39,40] no changes were 
observed during extension. The kinematic analysis carried out in this 
study shows that the largest increase in post-operative spine motion 
is attained at the operated level (L4-L5) and the immediate adjacent 
one (L3-L4) after laminectomies are performed (Figure 3). This is in 
agreement with previously reported in vitro [28-30] and numerical 
biomechanical analyses [34,35,40]. Moreover, these results are also 
consistent with clinical studies observing that laminotomy generates 
a lower level of instability when compared to laminectomy [20,25].   
Post-laminotomy alterations of the kinematics at the levels L3-L4 and 
above are caused by the reduction of stiffness at L4-L5. In contrast, 
laminectomy of L4 also entails the removal of flavum, interspinous, 
and supraspinous ligaments, which connect this vertebra to both L3 
and L5. These anatomic changes directly affect the stiffness of the 
adjacent segment L3-L4. It has been reported that over 60% of the 
flexion movement of the spine is taken up by the posterior ligaments. 
Among them, interspinous and supraspinous ligaments withstand the 
highest tensile force [58]. This would explain the fact that: (1) after 
laminotomy, alterations of L4-L5 kinematics were minor; (2) after 
laminectomy, the model predicted increase in motion during flexion 
and almost negligible changes during extension.

Changes in intradiscal pressure and stress can lead to altered 
metabolism within the disc, with potential long-term disc degeneration 
[56,57,59,60]. Minor changes are found after either unilateral or bilateral 
laminotomy (<10%). In contrast, after laminectomy, variations of fluid 
pressure (up to 20%) and stress (up to 120%) occur in NP and anterior 
AF (Figures 4 and 5). However, these changes occurred at the operated 
level (L4-L5) and its immediate adjacent level L3-L4, while the other 
spine levels experienced reduction of both intradiscal pressure, and 
normal and shear stresses. These results are in agreement with an in 
vitro study on calf spine reporting that, after laminotomy, intradiscal 
pressure changes at the operated level did not statistically differ from 
those found in intact spine. In contrast, after laminectomy, significant 
pressure increase was found in the anterior portion of IVD [29]. Similar 

findings were also reported in a recent computational study showing 
intradiscal pressure increase up to 50% after laminectomy, and minor 
changes after laminotomy [34].

It has been historically reported that laminectomy with complete 
facetectomy induces excessive spinal instability, so that the more 
conservative facet-sparing laminectomy is typically performed to 
treat LSS [27,32,36-38]. This study confirms that, compared to facet-
sparing laminectomy, the complete facetectomy model yielded a larger 
increase in spine kinematics and, consequently, larger intradiscal 
pressure and stress at the operated level L4-L5. However, at the 
immediate adjacent level L3-L4, facet-sparing laminectomy caused the 
largest biomechanical alterations (Figures 4 and 5). Hence, according 
to model’s predictions, the two laminectomy procedures are similarly 
detrimental for spine health, with laminectomy with facetectomy 
mostly altering the biomechanics of the operated level L4-L5, while 
facet-sparing laminectomy mainly affecting the adjacent segment L3-L4. 

The advancements in minimally-invasive spine surgery have been 
promoted as a potential way to decrease the rate of ASD by diminishing 
paraspinal muscle damage and avoiding disruption of the midline 
structures that provide stability. While this topic has been recently 
studied in the context of spinal fusion surgery (open versus minimally 
invasive spinal fusion techniques), there is little known about the 
comparative rate of ASD in open versus minimally invasive spinal 
decompression surgery alone [61-64]. Multiple authors have reviewed 
outcomes of open versus minimally-invasive fusion transforaminal 
lumbar interbody fusion (TLIF) and have found a lower rate of ASD 
in the minimally-invasive groups, presumably due to less soft tissue 
dissection (e.g., less paraspinal muscle stripping) [63,64]. Radcliff and 
colleagues have reviewed the rate of ASD amongst various lumbar 
interventions and noted a rate of ASD of 2-3% per year [61]. The 
same authors performed a subsequent study of their own patients who 
underwent anterior lumbar interbody fusion (ALIF) and supplemental 
posterior instrumentation performed either open or percutaneously. 

Figure 5: Post-operative changes in peak stress in spine segments: (a) normal stress in NP; (b) normal stress in AF; (c) shear stress in NP; (d) shear stress in AF. Data are 
reported in terms of percent change with respect to the ‘intact’ case.
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The results of their study did not show a difference in rate of ASD 
between the two groups [62]. So while there is a strong theoretical 
advantage to minimally invasive spine surgical techniques, the clinical 
evidence that it reduces the rate of ASD is still somewhat equivocal. 
There is clearly a need for more comparative clinical studies reviewing 
this topic. Future directions for our present study will include 
biomechanical comparison using the same modeling techniques to 
determine the difference in adjacent level motion when various spinal 
stabilization/fusion techniques are applied, (i.e., posterior pedicle 
screw and rod instrumentation, interbody placement, etc).

Some limitations of this study must be noted. The model schematizes 
vertebrae as rigid bodies, so that the only deformable structures in the 
spine are the soft tissues (i.e., intervertebral discs, cartilage at facet 
joints, and ligaments). Such simplification may have affected the results 
of both kinematic and stress analyses hereby reported. However, the 
stiffness of the soft tissues in the spine is about two and four orders 
of magnitude lower than those of cancellous and cortical bone in 
vertebrae, respectively [65]. Accordingly, one would expect that, for the 
surgical procedures and loading conditions investigated in this study, 
spine strains mostly occur in the soft tissues. Also, spine ligaments 
were modeled as linear elastic elements, whose stiffness corresponded 
to the slope of the most linear portion of the force-deformation curve 
experimentally determined by Pintar and co-workers [51]. Ligaments 
linear behavior is considered the normal (physiologic) response of the 
tissue to routine external stimuli [66,67]. Accordingly, a linear behavior 
may be used as an initial approximation of ligament characteristics 
in computational models [51]. Moreover, another factor potentially 
affecting spine stability is the extent of paraspinal muscle damage 
associated to the specific surgical procedure performed. However, 
the contribution of muscles to spine biomechanical stability was not 
accounted for in the present finite element model, and its inclusion will 
be addressed in our future studies. Also, laminotomy and laminectomy 
are characterized by a similar degree of paraspinal muscle dissection. 
Finally, the computational model used in this study was validated 
through kinematic data from an in vitro study only reporting spine 
kinematics during flexion/extension [28]. Accordingly, the results 
reported in this study are only relevant for the case of flexion/extension 
spine motion, since other physiologically relevant movements (e.g., 
axial rotation, lateral bending, etc.) were not studied, and will be 
addressed in the future upon further model validation. 

For the loading conditions investigated in this analysis, our results 
suggest that laminotomy, whether unilateral or bilateral, represents a 
superior technique in terms of potential risk reduction for developing 
either spine instability or mechanically-accelerated disc degeneration 
in the adjacent segment. However, additional tests, under different and 
more complex physiologically relevant loading conditions, should be 
performed in order to confirm our findings. Moreover, it is recognized 
that surgical decision-making must take into account many other 
factors, among which the severity of the stenosis. While laminotomy 
has been recommended for cases of moderate or unilateral stenosis, 
and it might not allow for adequate decompression of severe central 
or bilateral stenosis [25] in which case laminectomy may represent a 
better surgical solution despite the increase in instability shown in our 
study.  
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