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Abstract

We develop two news approximations to the cumulative distribution function. We begin by improving the
accuracy of Cadwell's approximation. We reduce the accuracy from 0.006466 to 1.6635e-004. For the second
approximation we reduce the accuracy of Bryc’s approximation from 7.062e-004 to 2.072e-005. As a performance,
we use a Maximum Absolute Error (M.A.E.). We recommend these two new approximations for their high accuracy.
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Introduction

Several domains of engineering, statistics or applied mathematics
need the Cumulative Distribution Function (C.D.E). In statistics, the
Probability Density Function (P.D.E.) defined by:
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The Cumulative Distribution Function (C.D.E) given by:
#(2)=1%, p(t)dt Q)

This C.D.E does not have a closed form. Most books in probability
and statistics insert tables of C.D.F. For each value of the variable
Z non-in this tables, we need a computer for estimate ® (Z) by
elementary methods [1]. For this raison, in the literature we find many
approximations to the C.D.E with closed forms. In section two, we
present Cadwell’'s approximation with his original form and we improve
the accuracy of this approximation with four decimal places. In section
three, we introduce an approximation with four decimals places and
we improve his accuracy until five decimals places. In section four, we
conclude our paper.

Improving Cadwell’s Formula

In 1951, Cadwell presents his new formula for approximate the
cumulative normal distribution [2]. This formula given by:
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¢cadwell (Z) ~ 5 I+Vl-e (3)
The M.AE. is:
Ecadwell = maX—GSZS6 ‘ (Dmdwell (Z) - (D(Z) | = 000646 (4)

Our new formula defined by:
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Priai(2) = E {1 + \/1 —-e ( 5)

Epe = Max oy, | ®,,.(2)— D(z) | =1.663503182035564¢ — 004
dwell = 38'87 X EMalki
The M.A.E. for Cadwell is about 40 times that Malki.
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We have then E,

a

(6) (Figure 1).

Improving Bryc’s Formula

In, 2002, Bryc presents in his paper the following formula [3].
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Figure 1: Shows the curves of absolute error for Cadwell and our new formula
Malki.

The maximum absolute error is:
E,=max, |4, (z) - P(z)|=7.062660715300151e ~ 004 (8)

We can write formula (8) as
z 3.333

+ 72
N2 A27 e’%

P e (2) =1~ 3333 132 _
N2 27
This formula has the form .
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We improve the accuracy of this formula by our new formula

0.3656123z +1.4578862 ef%z (10)
2x1.4578862+3.054682z + 2
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Hence, we have a ratio
« 10 AbLsulute errar for Bryc's and Malki's approx imations
8 ~ .
BrycZ00/ E,=34.1x E, (12) (Figure 2)
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Conclusion
6
. I \ This paper presents two approximations to the cumulative
, \ normal distribution and their improving approximations. The
* first approximation is two decimals places; we improve it from
3 two decimals places to four decimals places. In the second
. approximation, we improve the Bryc’s formula by our second new
/ \ formula that reduce the accuracy is about 34 times. We recommend
! L ; these two new approximations.
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