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Abstract

The green photosynthetic microalgae are considered as a major source of lipids from lacustrine and marine
environments. Among them, Botryococcus braunii plays a key role due to its high efficiency production of huge
amount of unsaturated hydrocarbons up to 75% of its dry weight. Evidently, more number of new compounds has
been reported in sediments as deposits in both the marine and lacustrine environments. These depositions are
reported as sediments from the algal lipids during the course of evolution. Botryococcene is one among the long
chain hydrocarbon reported in higher amount extracellular as depositions from this microalga Botryococcus braunii
race B. However, mass cultivation of this microalga for botryococcene as sustainable and renewable biofuel is a
challenging target due to its doubling time and slow growth. Therefore, genetic engineering may play a key role to
solve this issue. In addition to squalene synthase, squalene synthase-like genes have been reported from the race
B of B. braunii which are SSL-1 (Presqualene diphosphate synthase), SSL-2 (Botryococcus squalene synthase) and
SSL-3 (Botryococcene synthase) genes. This is an astounding report that these genes are controlling the production
of long chain hydrocarbon botryococcene. Since, our present study clearly reveals that the squalene synthase and
botryococcene synthase of B. braunii BB1 strain have very low protein homology of below 50% with human squalene
synthase. Thus, it is clear that no high resolution studies have been conducted yet on these important enzymes.
Even though, many overexpression studies have been carried out on these enzymes, x-ray diffraction studies may
yield more information on the enzymes about its enzyme substrate specificity and it may help to improve the stability

and efficiency of the enzymes for industrial aspects.
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Introduction

The green photosynthetic microalga Botryococcus braunii is extol for
its three different kinds of hydrocarbon syntheses such as cis and trans
C25-C31 n-alkane and C29 triene, a series of C34H58 botryococcene
and C40H78 trans, translycopadiene. Similarly, three different races
were distinguished by the production of their own unique hydrocarbons
respectively as A (Alkadine), B (Botryococcene) and L (Lycopadiene)
[1]. These hydrocarbons are found as depositions in sediments and
reported in many regions of the world such as El Junco, Galapagos
[1], and crude oil shales of Sumatra [2], Coastal bitumen in Australis
[3]. Comparatively, a different strain Botryococcus mahabali have
been reported for such kind of hydrocarbon depositions in East Coast
of India [4]. Therefore, in recent decades more number of research
activities has been carried out to bring up large scale hydrocarbon
production from this unique algal species to solve fuel crisis. Since, it
has not been achieved due to very slow growth of the alga and various
other factors.

Niehaus et al. in the year 2011 [5] reported three different squalene
synthases like enzymes such as Presqualene diphosphate synthase (SSL-
1), Botryococcus squalene synthase (SSL-2) and Botryococcene synthase
(SSL-3) in addition to squalene synthase enzyme which altogether
controls the biological production of squalene and botryococcene in
Botryococcus braunii (Figure 1). Among those enzymes, presqualene
diphosphate synthase (SSL-1) and botryococcus squalene synthase
(SSL-2) are controlling the biosynthesis of squalene and the rest one
botryococcene synthase (SSL-3) is responsible for the production of
botryococcene.

The squalene synthase (EC: 2.5.1.21) performs a dual role by
condensing two molecules of farnesyl diphosphate (FPPs) to form Pre-

Squalene Diphosphate (PSPP) and then further convert it to synthesize
squalene by utilizing NADPH and Mg?* [6]. Similarly, presqualene
diphosphate synthase (SSL-1) (2.5.1.103) also condenses two molecules
of FPPs to synthesize PSPP and botryococcus squalene synthase
(SSL-2) (1.3.1.96) to synthesize squalene and one more key enzyme is
botryococcene synthase (SSL-3) (1.3.1.97) expressed to synthesize C30
botryococcene. The botryococcene is the precursor for the hydrocarbon
which can be hydrolyzed and used as fuel for combustion engines [7].

There are some variations in the mechanism of both the enzymes
responsible for the biosynthesis of squalene and botryococcene.
Squalene can be synthesized by the enzyme squalene synthase which
involves two step reactions; first it condenses two molecules of farnesyl
diphosphate to form presqualene diphosphate [8,9] and in the second
step it cleaves the cyclopropane ring of presqualene diphosphate to form
10-1 linkage by the reduction of NADPH. Similarly, C30 botryococcene
also synthesized by two step reaction, in which the second step; the
cleavage of cyclopropane ring of presqualene diphosphate alone differs
to form 10-3 linkage.

Some studies on the synthesis of squalene reported that the
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Figure 1: The metabolic pathway depicting the role of different enzymes, control the biosynthesis of squalene and Botryococcene; in which, BSS and SSL-1 are
classified under transferase and SSL-2 and SSL-3 belongs to oxidoreductase based on the enzyme classification [5].
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recombinant squalene synthase enzyme from yeast was incubated in
the absence of NADPH have synthesized 10-3 linked (10S, 13S)-10-
hydroxybotryococcene in addition to the two 10-1 linked squalene
derivatives (Z)-dehydrosqualene and (R)-12-hydroxysqualene [10].
This resulted that the squalene synthase enzyme under various
conditions can synthesize botryococcene. At the same time, there is a
separate enzyme found in the micro algae Botryococcus braunii for the
C30 botryococcene biosynthesis.

The SSL-1 catalyzes the first step of the reaction carried out by
squalene synthase by converting farnesyl diphosphate into presqualene
diphosphate; the SSL-2 converts the presqualene diphosphate into
squalene and the SSL-3 convert the presqualene diphosphate into C30
botryococcene. At this stage, the SSL-2 and SSL-3 are the key enzymes
in order to determine the synthesis of squalene or C30 botryococcene
biosynthesis respectively (Figure 1). The C30 botryococcene can be
further methylated from C31 to C37 botryococcenes [5] to extract free
hydrocarbons as biofuels. The major objectives involves the Squalene
synthase gene sequencing, amino acid sequence analysis, phylogenetic
studies and superimposed molecular structural studies on the four
genes squalene synthase, SSL-1, SSL-2 and SSL-3 from three different
strains of the micro alga Botryococcus braunii.

Materials and Methods
Isolation of RNA

Before isolation of RNA from the microalga, the pure culture of
microalga Botryococcus braunii BB1 strain was maintained In vitro.
From the pure culture, about 0.5 ml of well-grown pure culture was
ground well into fine powder with liquid nitrogen in a mortar and

pestle. In addition to this, 2 ml of reagent X was added (while grinding)
to form a homogenous mixture and allowed to thaw completely by
grinding intermittently. Then the whole solution was transferred to 2
ml micro-centrifuge tubes and kept without disturbing for 5 min. at
optimum room temperature of 26 + 2°C. To the solution, 0.2 ml of
chloroform was added to each of the tubes and allowed to vortexes
gently for few seconds and again kept without disturbing for 10 min. at
room temperature. The whole mixture was subjected to centrifugation
at 5000 rpm for 10 min. under 4°C and the resultant upper aqueous
phase was transferred into a fresh micro-centrifuge tube. About 0.6
volumes of isopropanol was added to it and vortexes for few seconds
and kept undisturbed for 10 min. After high speed centrifugation at
13,000 rpm for 10 min. under 4°C, the supernatant was discarded,
and the obtained pellet deserve to be rich in RNA content was further
washed with 70% ethanol, air dried and diluted in 50 pl of DEPC-
treated water. The quality of the extracted RNA content was assessed by
using 1.5% Agarose gel electrophoresis.

Preparation of reagent X: Phenol saturated in Tris (hydroxymethyl)
aminomethane buffer with a pH of 6.7. Along with this, 0.1% (w/v) of
SDS (sodium dodecyl sulphate), 0.32 M (w/v) of sodium acetate and
0.01 M final concentration from a stock of 0.5 M ethlyenediaminetetra
acetic acid (EDTA), pH 8.0 was added.

Synthesis of complimentary DNA (cDNA)

The complimentary DNA was synthesized from the obtained RNA
by the following method. First strand of complimentary DNA was
synthesized by using 3 pl of obtained RNA sample as template along
with 1 pl of SMART IV oligonucleotide and CDS/3” PCR primer.
Followed by vigorous mixing and incubated at 72°C for 2 min. and
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cooled down in ice bath for 2 min. After a short spin, 2 ul of 5x strand
buffer, 1 ul of 20 mM DTT, 1 ul of 10 mM dNTP mix and 1 pl of power
script RT were gently added, mixed and incubated at 42°C for 1 h and
kept stored at -80°C.

PCR amplification

Amplification of both the squalene synthase (SQS) of Botryococcus
braunii and (SSL-3) Botryococcene synthase genes were performed
individually by polymerase chain reaction with a total volume of 30 pl
constitutes 15 pl of master mix, 1 pl of 1 uM each of forward and reverse
primers and 1 pl of synthesized cDNA template and the rest was made
up to 30 pl with Milli-Q water. The PCR conditions for amplifying
both the genes were similar for amplification of both the genes. The
denaturation reaction was carried out at 94°C for 5 min., followed by
annealing at 72°C for 1 min. and extension up to 45 seconds. Final
extension temperature was also 72°C for 5 min. Therefore, overall 35
PCR cycles were performed for both the genes separately followed
by quality check in 1% agarose gel using 1X TAE buffer with the gel
pre-stained by 10 mg/ml of ethidium bromide. The short forward and
reverse oligoprimers implemented for PCR amplification of squalene
synthase and botryococcene synthase were given in Table 1.

Sequencing of squalene synthase and SSL-3 genes

Qiaquick PCR purification kit (QIAGEN, USA) was used for the
purification of amplified PCR products. Both the forward and reverse
strands synthesized by forward and reverse primers were sequenced
with the use of Big Dye version 3.1. kit (Applied Bio-systems) on an
ABI-PRISM 3730 DNA sequencer (Applied Bio-syLLstems). The
sequences were assembled using bioinformatics tool Bio-Edit (Version
7.0.9.0), ambiguous sequences were corrected with Chromas (Version
2.01). Both the genes were submitted to NCBI GenBank and accession
numbers were retrieved.

In silico modeling and characterization

For In silico modeling, the obtained gene sequences of both the
SQS and SSL-3 genes were translated into amino acid sequences by
ExPASy online translate server, Swiss Institute of Bioinformatics. The
ORF (Open reading frame) showing long chain amino acid sequence
was selected for each of the SQS and botryococcene enzymes for the
protein prediction. The amino acid sequences of both the SQS and
botryococcene synthase enzymes were subjected to NCBI protein
BLAST and about 50% conserved sequences were retrieved from
NCBI by FASTA file and both the pairwise and multiple sequence
alignment were carried out by ClustalW and the Phylogenetic tree was
reconstructed based on UPGMA method using MEGA 6 software.
JPred 4 online protein prediction server was implemented to predict
the protein from the selected ORFs [11]. Similarly, the molecular
structure homology modeling of both the SQS and botryococcene
synthase enzymes were done in silico by (PS)2-v2: Protein Structure
Prediction server [12]. The presence or absence of signal peptides in
the target sequences of both the SQS and botryococcene synthase
enzymes were predicted by using NetNGly 1.0 online server [13]. The
signature sequences are the conserved Motifs present in the target
amino acid sequences. Such motifs were analyzed for both the SQS and
botryococcene synthase enzymes by ScanProsite online server from
Swiss Institute of Bioinformatics [14].

The homology modeling for the SQS and botryococcene synthase
enzymes were done in SWISS MODEL server from Swiss Institute of
Bioinformatics [15-18]. The template search was performed by blast and
HHBIits in SWISS-MODEL template library with ProMod3 Version

1.0.2. The target sequences were searched against primary amino acid
sequences present in SMLT by BLAST [19]. Then the templates were
chosen based on the highest quality of the model from target-template
alignment. The QMEAN score was assessed from the global and per-
residue model quality for both the enzyme models [20]. Based on
the pairwise interface analysis, the homo-oligomeric structure of the
target protein was predicted. The PDB model for both the SQS and
botryococcene synthase were retrieved from SWISS-MODEL server
and viewed by using UCSF Chimera candidate version 1.11.

The superimpose models were developed for both the SQS and
botryococcene synthase enzymes based on the best PDB match from
SWISS-MODEL server using UCSF Chimera tool. The ligands for
both the enzymes were retrieved from RCBS-PDB online server and
matched for the model for SQS and botryococcene synthase in UCSF
Chimera. Ramachandran plots were generated for both the SQS
and botryococcene synthase enzymes and retrieved by Mol Probity
Ramachandran Analysis, Mol probity online server from Duke
University [21].

The secondary structure of SQS and botryococcene synthase
enzymes were predicted by using PSIPRED v3.3 (Position-specific
iterated prediction) secondary structure prediction server [22-24]. The
protein domain and putative domain boundaries were predicted for
both the enzymes based on DomPred server and PSI-BLAST alignment
[25]. The protein-domain homology modeling process was carried for
both the enzymes by DomSerf v2.0 based on PSI-BLAST hits [26].

The rapid fold recognition and fold domain recognition of both
the SQS and botryococcene synthase enzymes were predicted by
pGenTHREADER and DomTHREADER tools respectively [24,27,28].
Based on the fold domain recognition results, the CATH (Class,
Architecture, Topology and Homologous superfamily) classification
and functional family for both the enzymes were further analyzed and
interpreted by CATH/Gene3D v4.2 online server [29,30]. Based on
the EC diversity, the functionally similar kind of protein was predicted
in UniProtKB. The accession numbers and protein sequences were
retrieved for pairwise alignment with SQS and botryococcene synthase
enzymes using ClustalW in MEGA 6 software [31] and the conserved
sequences were highlighted based on the alignment using BioEdit [32].

Results

The respective NCBI GenBank accession numbers for sqs gene and
Botryococcene synthase (ssl-3) gene are MG755329 and MG755330.
The phylogenetic tree showing that the sqs gene of B. braunii BB1
strain grouped under a single clade of squalene synthase (SQS) of
Botryococcus braunii (Figure 2). Similarly, the phylogenetic tree for
ssl-3 (Botryococcene synthase) gene of B. braunii BBl strain had
shown that it grouped under a separate clade of ssl-3 (Botryococcene
synthase) (Figure 3). According to the JPred protein prediction,
the protein BLAST results suggests that the SQS and Botryococcene
synthase (SSL-3) of Botryococcus braunii BB1 strain has more hits with
the putative Farnesyl transferase, chain D (PDB: 3WCB) and Squalene
synthase, chain A (3WEH) respectively. Similarly, (PS)2-v2 protein
prediction results that no hits were found for the enzyme SQS enzyme
(Squalene synthase) and hence, the Botryococcene synthase (SSL-3) of
Botryococcus braunii BB1 strain was found highly similar with the chain
B of Human squalene synthase (Farnesyl transferase) (PDB: 1EZF) with
34.76% of protein sequence identity.

Signal peptides are signals for transport across membrane which
were absent in both the SQS and SSL-3 (Botryococcene synthase)
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Figure 2: The Phylogenetic tree was constructed from the retrieved protein sequences having high hits with SQS of B. braunii BB1 strain based on NCBI BLAST. This
Phylogenetic tree was constructed based on the UPGMA statistical method with Bootstrap 500 replications and the gaps were completely deleted. Before Phylogenetic
tree construction, multiple sequence alignment was carried out by Clustal W in MEGAG6 software tool.
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Figure 3: The Phylogenetic tree was constructed from the retrieved protein sequences having high hits with ssl-3 (Botryococcene synthase) of B. braunii BB1 strain
based on NCBI BLAST. This Phylogenetic tree was constructed based on the UPGMA statistical method with Bootstrap 500 replications and the gaps were completely
deleted. Before Phylogenetic tree construction, multiple sequence alignment was carried out by Clustal W in MEGAG software tool.

enzymes of B. braunii BB1 strain as a result from NetNGly. However,
N-glycosylation site was found in the SQS enzyme at 310" amino
acid residue position. The signature sequence is the most conserved
amino acid sequence based on their respective protein function. In our
present study, two signature sequences were found in SQS enzyme of
B. braunii BBI strain at different positions in the amino acid chain. The
first signature sequence was YChyVAGVVGIgLsql found from 172 to
187 amino acid residue position and the second signature sequence
was MGIflQkt.NTiRDYfeDinelpapRmFwp between 208 and 236 amino

acid residue position. Since, both the signature sequences possess that
the signature sequences of SQS enzyme is related to the Squalene and
Phytoene synthase enzyme. No such signature sequences were predicted
or identified for SSL-3 (Botryococcene synthase) enzyme.

SWISS-MODEL results for SQS enzyme

Based on the SWISSMODEL protein prediction and modeling,
the SQS enzyme of B. braunii BB1 strain found to have more sequence
identity with the chain A of Farnesyl transferase (PDB: 3WCB.1.A)
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with about 46.78%. Since, sequence coverage were 0.74 ranges from 36
- 383 amino acid residues. The Farnesyl transferase is a homo-tetramer
and matches with the SQS enzyme of B. braunii BB1 strain and the
ligand was identified based on the most conserved binding site which
is 8PH (HYDROGEN(][(1R)-2-(3-DECYL-1H-IMIDAZOL-3-IUM-1-
YL)-1-HYDROXY-1-PHOSPHONOETHYL] PHOSPHONATE). The
conserved binding site constitutes of V49, S50, R51, S52, F53, Y72,
R76, V180, G181, L184, M208, G209, L212, N216 these are the amino
acid residues which in contact with the ligand 8PH. The QMEAN, CB,
All atom, Solvation and Torsion values are -3.92, -3.40, -0.71, 1.11 and
-3.53 respectively and thus, this predicted model for SQS enzyme of
B. braunii BBI strain is the accepted model. The three dimensional

structure of SQS enzyme of B. braunii BB1 strain was retrieved from
SWISSMODEL, showing about 20 helical structures with no sheets in
it (Figure 4a). Similarly, the superimposed model showing no major
differences in the molecular structures between SQS enzyme and
Farnesyl transferase enzyme (PDB: 3WCB) (Figure 4b).

The detailed molecular structure of the ligand 8PH was given
in Figure 5a with the molecular formula of C15H30N207P2 and
molecular weight of 412.36. Figure 5b shows the interactions of amino
acids involved in the active site of the enzyme with the ligand 8PH. It is
clear that in Farnesyl transferase (PDB: 3WCB), the amino acid residues
Y64, F45, S42 and S44 interacts with the phosphate groups of the ligand

Figure 4: (a) The predicted 3D structure of SQS enzyme of B. braunii BB1 strain depicted with helices in red colour and coils in green colour, (b) The superimposed 3D
structure of both the SQS enzyme of B. braunii BB1 strain with the Farnesyl transferase enzyme (PDB: 3WCB) depicted with helices in red and blue colour for SQS and
Farnesyl transferase and coils in green and yellow for SQS and Farnesyl transferase respectively.
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Figure 5: (a) Molecular structure of the Ligand 8pH (HYDROGEN [(1R)-2-(3-DECYL-1H- IMIDAZOL-3-IlUM-1-YL)-1-HYDROXY-1-PHOSPHONOETHYL]
PHOSPHONATE) and (b) the interaction of the ligand with the active site of the enzyme Farnesyl transferase (PDB: 3WCB).
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by forming hydrogen bonds whereas, M199, G172, 1203, L175 and
V171 are the amino acid residues forming hydrophobic interactions
with the ligand 8PH. But in the case of SQS enzyme of B. braunii BB1
strain, Y72, F53, S50 and S52 interacts with phosphate groups to form
hydrogen bonds and M208, G181, L212, L184 and V180 involves in the
hydrophobic interactions with the ligand 8 pH (Figure 6).

The Ramachandran plot retrieved for the SQS enzyme of B. braunii
BB1 strain showing that about 96.5% of the amino acid residues were
plotted in the favored regions and 99.1% of amino acid residues were
plotted in the allowed regions. There were three outliers found in the
Ramachandran map which are 62 ALA, 63 GLN and 61 PRO (Figure 7).

SWISS-MODEL results for SSL-3 (Botryococcene synthase)
enzyme

The SWISSMODEL results for SSL-3 (Botryococcene synthase)
enzyme of B. braunii BBl strain reveals that it has high sequence
identity with chain A of Farnesyl transferase (PDB: 3WCA.1.A) with
37.50%. The sequence coverage was 0.99 ranges from 8-332 amino
acids residues. Even though, the SSL-3 (Botryococcene synthase)
enzyme has high hits with Farnesyl transferase based on HHblits,
the ligand was not found because the binding site was not conserved.
Based on the QMEAN (-3.05), CP (-1.91), All atom (-0.58), Solvation
(1.52) and Torsion (-3.02) values this model for SSL-3 (Botryococcene

synthase) enzyme was accepted a good model. Since, the ligand
for this model was found to be Farnesyl thiopyrophosphate (FPS)
(S-[(2E,6E)-3,7,11-TRIMETHYLDODECA-2,6,10-TRIENYL]
TRIHYDROGENTHIODIPHOSPATE) and Magnesium ion (MG)
but the binding sites were not conserved. The 3D structure of SSL-3
(Botryococcene synthase) enzyme of B. braunii BB1 strain retrieved
from SWISSMODEL showing about 15 helical structures and the
absence of sheet (Figure 8a). The superimpose model for SSL-3
(Botryococcene synthase) enzyme and Farnesyl transferase enzyme
(PDB: 3WCA) also showing similar results with the case of the former
enzyme (Figure 8b).

The predicted ligand for SSL-3 (Botryococcene synthase)
enzyme are Farnesyl thiopyrophosphate (FPS) (Molecular formula:
C15H2806P2S) (Molecular weight: 398.39) (Figure 9a) and a metal
ion Magnesium (MG). But, the ligands were not included in the model
since the binding sites are not conserved. At the active site of the enzyme
Farnesyl transferase (PDB: 3WCA), Y64 and S44 are the amino acid
residues forming hydrogen bonds with the two phosphate groups and
L175, V171 and L203 are the amino acid residues forming hydrophobic
interactions with the ligand (Figure 9b). Similarly, in the case of SSL-
3 (Botryococcene synthase) Y68 and S46 are the amino acids may
interacts with the two phosphate groups forming hydrogen bonds and
L178, V174 and L206 are results in hydrophobic interactions.

)LI 212.A y
212. .
“ .

Figure 6: Interactions of amino acid residues with the ligand 8pH at the active site of the enzyme SQS of B. braunii BB1 strain.

© 62 ALA

3 63 GLN

Figure 7: Ramachandran plot analysis of the SQS enzyme of B. braunii BB1 strain showing three outliers 63 ALA, 63 GLN and 61 PRO.
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The Figure 10 showing the interactions of amino acid residues
of the enzyme Farnesyl transferase (PDB: 3WCA) with the ligands
Farnesyl thiopyrophosphate (FPS) and a magnesium ion (MG). In
which, the interactions of amino acid residues with the ligand FPS is
well revealed for SSL-3 (Botryococcene synthase) enzyme. But in the
case of magnesium ion (MG), N71, N75 and Q74 are the amino acid
residues interact for Farnesyl transferase (PDB: 3WCA). For SSL-3
(Botryococcene synthase) enzyme, D75, D79 and Q78 are in contact
with the MG (Mg ion). Therefore, amino acid shift might took place
by replacing Asparagine into Aspartic acid at the respective positions
for Farnesyl transferase (3WCA) and SSL-3 (Botryococcene synthase)
enzyme respectively.

The predicted Ramachandran plot for SSL-3 (Botryococcene
synthase) enzyme of B. braunii BB1 strain reveals that 95.0% of all
amino acid residues were plotted in the favoured regions. And about
99.1% of the amino acid residues were mapped in the allowed regions.
Similar to the case of SQS (Squalene synthase), SSL-3 (Botryococcene
synthase) enzyme also has three outliers such as 82 PRO, 83 PRO and
301 ALA (Figure 11).

Based on the PSIPRED secondary protein structure prediction, the
SQS (Squalene synthase) enzyme of B. braunii BB1 strain consists of
about 20 helical structures with a short sheet at 174th and 175th positions
and the rest are coils (Figure 12). The PSI-BLAST results reveals that
the SQS (Squalene synthase) enzyme of B. braunii BB1 strain consists

| TR TR t\"u A A%

of two domains and the predicted domain boundary location was 331
based on the PSI-BLAST hits of 1872. With this domain boundary
prediction, high hits was obtained with the chain B of Human squalene
synthase enzyme (PDB: 1EZF) between the query sequence 42 to 319.
In the case of SSL-3 (Botryococcene synthase) enzyme of B. braunii
BBI strain, the PSIPRED secondary protein structure predicts that it
consists of about 15 helical structures without any sheets and rest are
coils (Figure 13). The number of domains present was two and putative
domain boundary location is found at 243 based on the PSI-BLAST hits
of 2180 for SSL-3 (Botryococcene synthase) enzyme of B. braunii BB1
strain. Based on the domain prediction, high hits was achieved with
the chain B of Human squalene synthase enzyme (PDB: 1EZF) for the
query sequence between 10 and 332.

The pGenTHREADER is based on highly sensitive fold recognition
between protein profile-profile comparison with whole chain library and
the net score for SQS enzyme of B. braunii BB1 strain was 166.400with
chain A of Farnesyl transferase (3WCA) based on the alignment and the
alignment score was 795.5 (Figure 14). The DomTHREADER predicts
domain based on highly sensitive domain recognition of the query
sequence by profile-profile comparison with whole domain library. In
this way, the net score was 11.717 for SQS enzyme of B. braunii BB1
strain with chain B of Human squalene synthase (PDB: 1EZF) and
alignment score was 936.3 (Figure 15). Based on pGenTHREADER
results, the SSL-3 (Botryococcene synthase) enzyme of B. braunii BB1
strain has high hits with chain A of Human squalene synthase (PDB:

Figure 8: (a) The predicted 3D structure of SSL-3 (Botryococcus synthase) enzyme of B. braunii BB1 strain depicted with helices in red colour and coils in green colour,
(b) The superimposed 3D structure of both the SSL-3 (Botryococcus synthase) enzyme of B. braunii BB1 strain with the Farnesyl transferase enzyme (PDB: 3WCA)
depicted with helices in red and blue colour for SSL-3 and Farnesyl transferase and coils in green and yellow for SSL-3 and Farnesyl transferase respectively.
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Figure 9: (a) Molecular structure of the ligand FPS (Farnesyl thiopyrophosphate) (S- [(2E,6E)-3,7,11-TRIMETHYLDODECA-2,6,10-TRIENYL] Trihydrogen
Thiodiphospate) and (b) the interaction of the ligand with the active site of the enzyme Farnesyl transferase (PDB: 3WCA).
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Figure 10: Interactions of amino acid residues with the ligand FPS and MG at the active site of the enzyme SSL-3 (Botryococcene synthase) enzyme of B. braunii BB1
strain.
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Figure 11: Ramachandran plot analysis of the SSL-3 (Botryococcene synthase) enzyme of B. braunii BB1 strain showing three outliers 82 PRO, 83 PRO and 301 ALA.
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Figure 12: The secondary protein structure of SQS enzyme of B. braunii BB1 strain showing 20 helical structures and a very short sheet (174" and 175" positions) and
coils.
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Figure 13: The secondary protein structure of SSL-3 (Botryococcene synthase) enzyme of B. braunii BB1 strain showing 15 helical structures and coils.
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Figure 14: pGenTHREADER scores of SQS enzyme of B. braunii BB1 strain.

3V]9) and the net score was 154.468 and the alignment score was 728
respectively (Figure 16). In the case of DomTHREADER results, based
on domain matching the SSL-3 (Botryococcene synthase) enzyme of B.
braunii BB strain has high hits with the chain B of Human squalene
synthase (PDB: 1EZF) with the net score value of 11.07 and alignment
score was 313 (Figure 17).

Based on the DomTHREADER results, both the SQS and SSL-3
(Botryococcene synthase) enzymes of B. braunii BB1 strain corresponds
to a similar kind of domain with respect to Squalene synthase. While
analyzing the CATH (Class, Architecture, Topology and Homologous
superfamily) classification, both the enzymes are classified under
a Superfamily group called Farnesyl diphosphate synthase (CATH
Code: 1.10.600.10) and within that both the enzymes belongs to the
Functional family Squalene synthase 2 (Functional Family Code: 9540)

(Figure 18). Based on CATH classification, both the SQS and SSL-3
(Botryococcene synthase) enzymes of B. braunii BBI strain are belongs
to the class Mainly Alpha, Architecture Orthogonal Bundle, Topology
Farnesyl diphosphate synthase and Homologous superfamily Farnesyl
diphosphate synthase.

Based on the Functional family of Squalene synthase 2 (Code: 9540)
under the CATH of Farnesyl diphosphate synthase (Code: 1.10.600.10),
about 17 GO (Gene Ontology) diversity were obtained. Among them
squalene synthase (SQS) (GO: 0051996) alone engulfs about 9.3%
under molecular function (35.2%) and SSL-3 (Botryococcene synthase)
classified under lipid metabolic process (GO: 0019216) (1.9%) of
Biological process (29.6%) (Figure 19). Similarly, among six EC (Enzyme
Commission) diversity squalene synthase and presqualene diphosphate
synthase (SSL-1) distinguished under transferases and the botryococcus
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DomTHREADER Scores
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Figure 15: DomTHREADER scores of SQS enzyme of B. braunii BB1 strain.
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Figure 16: pGenTHREADER scores of SSL-3 (Botryococcene synthase) enzyme of B. braunii BB1 strain.
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Figure 17: DomTHREADER scores of SSL-3 (Botryococcene synthase) enzyme of B. braunii BB1 strain.

squalene synthase (SSL-2)  and botryococcene synthase (SSL-3) are squalene synthase (SSL-2) (EC: 1.3.1.96) and botryococcene synthase
classified under oxidoreductases. In which, squalene synthase (EC: (SSL-3) (EC: 1.3.1.97) engulfs 1.8% and 0.9% respectively (Figure 20).
2.5.1.21) alone contributes about 93.9%, presqualene diphosphate Followed by species diversity, among 813 unique species Botryococcus
synthase (SSL-1) (EC: 2.5.1.103) constitutes 1.8%, botryococcus braunii alone constitutes of 1% (Figure 21).
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CATH Classification
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Figure 18: CATH classification of both the SQSand SSL-3 (Botryococcene synthase) enzymes of B. braunii BB1 strain.
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Figure 19: Gene Ontology (GO) diversity of functional family squalene synthase 2 (Functional Family Code: 9540).

EC: 1.3.1.96: Botryococcus squalene synthase (S5L-2) (1.8 %)

EC: 1.3.1.97: Botryocaccene synthase (55L-3) (0.9 %)
EC: 1: Oxidoreductases (2.6 %)

EC: 2: Transferases (97.4 %)

EC: 2.5.1.21: Squalene synthase [93.9 %)
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Figure 20: Enzyme Commission (EC) diversity of functional family squalene synthase 2 (Functional Family Code: 9540).

Therefore based on the EC diversity, FASTA file with amino acid  in ClustalW with the respective enzymes of B. braunii BB1 strain and

sequence of squalene synthase of Botryococcus braunii and SSL- the results clearly indicates that squalene synthase (SQS) of B. braunii
3 botryococcene synthase with accession numbers Q9SDW9 and of BB1 strain has 100% conserved sites with SQS of B. braunii Q9SDW9
G0Y288 were retrieved. Pairwise sequence alignment were performed (Figure 22). Similarly, botryococcene synthase enzyme also aligned and
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Figure 21: Species diversity of functional family squalene synthase 2 (Functional Family Code: 9540).
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Figure 22: Pairwise sequence alignment of squalene synthase of Botryococcus braunii retrieved from UniProt with accession number Q9SDW9 and SQS of B. braunii
BB1 strain. The pairwise sequence alignment was carried out by ClustalWW in MEGA 6 software tool with BLOSUM as Protein weight matrix. The 100% conserved sites
were depicted a dots (.) and gaps were denoted as hyphen (-).
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Figure 23: Pairwise sequence alignment of Botryococcene synthase (SSL-3) retrieved from UniProt with accession number GOY288 and Botryococcene synthase (SSL-
3) of B. braunii BB1 strain. The pairwise sequence alignment was carried out by ClustalW in MEGA 6 software tool with BLOSUM as Protein weight matrix. The 100%

conserved sites were depicted a dots (.) and gaps were denoted as hyphen (-).

reveals that 99.69% of amino acid sequence was similar. Since, there
is a single amino acid shift was took place at the 164th amino acid
residue position where aspartic acid was changed into asparagine in the
botrococcene synthase of B. braunii BB1 strain (Figure 23).

Discussion

The Botryococcene synthase is one among the type of squalene
synthase found isolated as squalene synthase-like genes in the green
microalga Botryococcus brauniirace B [5]. The SSL-1 and SSL-2 catalyzes
the biosynthesis of PSPP and bifarnesyl ether respectively, hence,
SSL-3 does not directly exploit FPP as a substrate. But, when under
combinations SSL-1 and SSL-3 together synthesize botryococcene and
SSL-1 and SSL-2 in combination synthesize squalene [5].

In our present investigation, the sqs gene and ssl-3 gene of B.
braunii BB1 strain are grouped under a single clade of squalene
synthase (sqs) gene and botryococcene synthase ssl-3 genes of the green

alga Botryococcus braunii respectively. Based on protein homology
modeling and prediction, the SQS and Botryococcene synthase (SSL-
3) of Botryococcus braunii BB1 strain has more hits with Farnesyl
transferase, chain D (PDB: 3WCB) and Squalene synthase, chain
A (3WEH) and chain B of human squalene synthase (PDB: 1EZF)
respectively. Absence of signal peptides is obviously proven in both the
enzyme structure. Signature sequences are the most conserved domain
found in the enzymes and it was found that two signature sequences for
Squalene and Phytoene synthases 1 and 2 were found in SQS enzyme of
B. braunii BB1 strain, from 172 to 187 amino acid residue positions and
the second signature sequence was between 208 and 236 amino acid
residue positions. In contrast to this result, no such signature sequences
were present in SSL-3, botryococcene synthase enzyme.

The sequence homology model prediction results revealed that SQS
has high sequence identity with chain A of Farnesyl transferase (PDB:
3WCB.1.A) and the predicted ligand was 8PH. The active site of enzyme
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Gene (Accession no) Primer sequence (5'-3')

F: TTGGCTCATCGCAATCCAAC
R: TGATAGGGAGGGGTGGTGAA
F: TCGGGAAGTCTTGCAGCACC

R: AAGCACCCTTAGCTGAAACCTT

Squalene synthase of Botryococcus
braunii

Squalene synthase- like 3 (SSL-3)
(Botryococcene synthase) (HQ585060)

Table 1: Oligo primer details used for PCR amplification.

with ligand was well discussed in results part in comparison with the
former enzyme farnesyl transferase (PDB: 3WCB). But in the case of
SSL-3, botryococcene synthase enzyme the sequence identity was low
when compared with the SQS enzyme and predicted ligand was FPS
and Mg ion. There is some dissimilarity at the active site of the SSL-3
enzyme and the enzyme farnesyl transferase (PDB: 3WCA). According
to Ramachandran plot, both the SQS and SSL-3 of Botryococcus braunii
BB1 strain has three outliers each.

In coherence with this results, both the SQS and SSL-3 of B. braunii
BBI strain shares similar domain corresponds to the functional family
of Squalene synthase (FunFam: 9540) belongs to Farnesyl diphosphate
synthase (CATH Code: 1.10.600.10) of CATH classification of protein
domain. The pairwise sequence alignment reveals that SQS of B. braunii
BB1 strain has about 100% of conserved sites with SQS of B. braunii
(Q9SDWY). Whereas SSL-3 of B. braunii BB1 strain have shown that
it has 99.69% similarity with SSL-3 (G0Y288) with a single amino acid
shift (asparagine instead of aspartic acid) at 164th amino acid residue
position.

The accumulation of oil is seen abundant in both the intracellular
and extracellular matrices [33], in which race B is rich in wide range of
long-chain and cross-linked biopolymers to form polymethylsqualene
diols [34]. The most common and abundantly generated triterpenes
are di and tetra-methylated botryococcenes in race B of B. braunii
[35]. Other structural derivatives of both squalene and botryococcene
ranges from C31 to C37 and the accumulation vary based on the
strains and race in response to culture conditions [36]. The squalene
synthase genes have been overexpressed in medicinal plants Panax
ginseng [37] and Eleutherococcus senticosus to induce the production
of phytosterols and triterpenes. However, botryococcene is targeted
for biofuel production and hence, the results from the coexpression
studies of SSL-1 and SSL-3 genes both individually and in combination
reveals the potential for engineering to benefit large scale biosynthesis
of botryococcene (Niehaus et al., 2011). Overexpression studies on
fusing both the genes SSL-1 and SSL-3 found effective in synthesizing
100 mg/L of botryococcene in yeast [5].

Therefore, these squalene synthase-like genes, SSL-1, SSL-2
and SSL-3 are key genes which can be genetically engineered for
the biosynthesis of botryococcene which will be a renewable and
sustainable replacement for fossil based fuel. Henceforth, there is
a huge gap in the implementation of genetic engineering tool due to
lack of high resolution molecular structural studies such enzymes. It is
evident in our study, that both the SQS and SSL-3 enzymes have very
low protein homology with human squalene synthase enzyme. Thus,
before implementing genetic engineering tool we need to study more
about the structure of the enzymes and its active site by high resolution
X-ray diffraction studies.

Conclusion

The overall results from our study conclude a valuable suggestion
to fulfill the huge gap before employing genetic engineering tool for
sustainable production of biofuel. The high resolution X-ray diffraction

studies on such enzymes will give a clear outline about the molecular
structure of enzyme and its active site towards its substrate specificity. It
will very useful for us to genetically improve the enzyme efficiency for
large scale production of biofuel.
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