In Silico Study of Bacillus brevis Xylanase - Structure Prediction and Comparative Analysis with Other Bacterial and Fungal Xylanase

Nidhi Mathur1, Girish K Goswami*2 and Amrendra Nath Pathak1

1Amity Institute of Biotechnology, Jaipur, Rajasthan, India
2Science College Campus, C U Shah College of Pharmacy and Research Surendranagar, Gujarat, India

Abstract

The most important building block of hemicelluloses is xylan. It is broken down into xylose oligomeric residues by Xylanase - an enzyme, produced by most organisms, to utilize xylose as primary source of carbon. The Xylanase produced are classified into families, viz 5, 8, 10, 11 and 43 - of Glycoside Hydrolases (GH). Xylanase from family GH 11 are monospecific, they consist solely of Xylanase activity, exclusively active on D-xylose containing substrates. They are inactive on aryl cellobiosides. The fungal Xylanase are produced in higher concentrations, as compared to bacterial Xylanase, but have limited use in pulp bleaching, as they affect the viscosity and strength of the product. In the present study, we have worked upon the Xylanase of Bacillus brevis, which is fulfilling all the required quality needed to be a commercial Xylanase, and thus is used by many industries. The enzyme, when studied after modelling, provided similar structural configuration with high stability. When compared with other bacterial and fungal Xylanase structures, it provided better potential to 'activity enhancement' and 'in silico handling'.

Keywords: Endo-beta-1, 4-D-Xylanase; Glycoside hydrolases; Enzyme modelling; Stability

Background

Hemicellulose is one of the most important polysaccharide found in the cell wall of the woody plants. It is made up of various building blocks, which are heteropolysaccharides found along with cellulose constituting about 20-30% of the wood dry weight [1]. It is the second most abundant polysaccharide after cellulose [2]. Xylan is built from homopolymeric backbone chain of 1, 4-linked β-D-xylopyranose units, including short chains of O-acetyl, α-L-arabinofuranosyl and α-L-glucuronol or O-methyl-α-L-glucuronol residues [3]. Complete degradation of xylan requires a concerted and synergistic function of several enzymes - including endo-beta-1, 4-β-Xylanase (EC 3.2.1.8). Xylanase break down the xylan into oligoxylose residues, which are utilized by microbes as primary source of carbon.

Different types of Xylanase have been grouped under the category of Glycoside Hydrolases (GH), which are further classified into various families. These families are classified on the basis of similarities in their amino acid sequences and hydrophobic cluster analysis. Xylanase are classified into many families like 5, 8, 10, 11 and 43 of Glycoside Hydrolases [4]. Xylanase are also classified into two groups, based on their molecular weight and pl. One group has low molecular weight <30 kDa and basic pl, while the other group has higher molecular weight >30 kDa and acidic pl [5]. Xylanase from family 10 (GH10) and family 11 (GH11) of Glycoside Hydrolases are the major and best-studied Xylanase.

GH10 Xylanase generally has higher molecular mass and lower isoelectric point than GH11 Xylanase. It has also been studied and found, that Xylanase of GH10 are mainly involved in hydrolysis of 1,4-beta-D-xylidosidic linkages in xylan [4]. Xylanase from family 11 are monospecific, they consist solely of Xylanase activity, exclusively active on D-xylose containing substrates. They are also inactive on aryl cellobioisides [4,6].

Xylanase are produced by diverse species of micro-organisms and have been studied mostly from bacteria, fungi and yeast [7]. The fungi produce high level of Xylanase with high stability and high optimum temperature, but most of them possess residual cellulase activity, which may be due to presence of some amount of hemicellulose in the cellulosic substrates though, selective production of xylanase may be possible using only xylan as the carbon source [8,9]. Bacterial Xylanase are generally free form cellulose activity [10] but their level of production is low as compared with fungal xylanase and most of the industries demand xylanase which is free from cellulose activity. Therefore bacterial Xylanase specially, Bacillus sp. has been studied in more detail [11,12].

For making bleaching process eco-friendly and reducing needs for toxic chlorinated and other bleaching compounds, paper and pulp industries are using xylanase as a bio-bleaching agent, which also reduces the kappa number [13]. For bio-bleaching the kraft pulp, industry requires a thermostable and alkali stable cellulase free Xylanase enzyme - having optimum activity at high temperature and pH 6-10 [14-16]. Due to presence of residual cellulase activity fungal xylanase has limited commercial application in paper and pulp industry.

Along with paper and pulp industries, Xylanase have also been used for clarifying fruit juices/wines, - thus enhancing the nutritional value of animal feed, production of bread and for the extraction of coffee [17].

In the present study, we have done in silico genomic and proteomic study of B. brevis Xylanase. The B. brevis Xylanase has 213 amino acid residues. This enzyme possesses two domains, 1) the signal peptide which signals the transfer of the enzyme outside the cell and 2) the main

*Corresponding author: Girish K. Goswami, Science College Campus, C U Shah College of Pharmacy and Research, Nr. Kotharia Village, Ahmedabad Highway, Wadhwan City Surendranagar, Gujarat, India, Tel: +91-75750-51672; E-mail: girishgoswami@gmail.com

Received February 16, 2015; Accepted March 09, 2015; Published April 15, 2015

Citation: Mathur N, Goswami GK, Pathak AN (2015) In Silico Study of Bacillus brevis Xylanase-Structure Prediction and Comparative Analysis with Other Bacterial and Fungal Xylanase. Biomedical Data Mining 4: 112. doi:10.4172/2090-4924.1000112

Copyright: © 2015 Goswami GK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
glycoside hydrolases domain acting on the xylose moieties [18]. The enzyme is modelled and studied in silico to analyse its structure and the stability with comparison with other known structures of xylanase, so that in future we can incorporate the possible changes in the xylanase of B. brevis to make it more suitable for its industrial applications.

Materials and Methods

The xylanase gene from Bacillus brevis was isolated and successfully cloned in E. coli BL 21 for heterologous expression of Xylanase. Sequencing of the cloned gene was done at DUSC, Department of Biochemistry. The sequence was thus converted into six open reading frames, and each frame was translated into specific amino acid sequence, using Star ORF and ORF Finder from NCBI. All the translated specific amino acid sequences were analysed. The translated protein sequences were checked for sequences in the databases, BLAST, performed on the protein sequences, provided the functionality and similarity of the protein with already identified Xylanase enzyme sequences, which was extracted from various organisms, including mostly Bacillus sp. [19]. After checking the functionality, the structurally similar sequences were looked for using PDB BLAST. The closely related and identical sequences, whose structure was available in PDB, were selected for building the putative structure of the Xylanase from B. brevis. The structures and sequences were also checked for the conserved domains present to verify the functionality of the protein. This was performed using the CD Search at NCBI [20]. The sequence, when verified, was recognized to have two domains, and the signal peptide sequence was recognized. The signal peptide sequence was identified using the SignalP 4.1 Server [21]. The sequences of the nearly identical Xylanase, whose structure was available in PDB, as received from the PDB BLAST result, were used to predict the structure of our target B. brevis Xylanase. For the structure prediction MODELLER 9.11 was used [22]. Along with MODELLER, Schrodinger–PRIME and Swiss Model Workspace were used side by side, for verification of predicted structures. The homology modelling concept was used, and structures used for the putative structure prediction were 1XXN_A from B. subtilis, 2QZ3_A from B. subtilis, 3LB9_A from B. circulans and 1HV1_A also from B. circulans. The structure was verified using the SAVES server, the Structural Analysis and Verification Server, providing the Ramachandran plot, verify_3D and Errat results [23–25]. The predicted structure was compared with that of fungal Xylanase, the A. niger Xylanase 2QZ2_A 183 residue structure and the P55329 as the Uniprot ID. The comparison was also conducted at the active site level, using the active site prediction tool i.e. ACTIVE SITE PREDICTION SERVER [26]. The comparison of structure was also performed for the Xylanase produced by fungal and bacterial Xylanase, along with that of our query Xylanase of B. brevis, using the PDBBeFold the structural alignment tool [27].

Result and Discussion

Sequence analysis

The Xylanase from B. brevis was found to be 213 amino acids long, as translated from the ORF Finder from NCBI. The +1 frame gave the best result of 213 amino acids length - derived from the 642 base pair size of the coding region, taken from the contig 4,7,3,2 and 9 as numbered, of size 921 base pair. The nucleotide sequence, when translated, produced 213 amino acids protein sequence, having only one conserved domain of GH11, available in Pfam with the ID 00457. All the members of the family GH 11 possess this domain, which is specifically involved in beta-1, 4-Dglycosidic bond breakage. The other important region that was found in this sequence, was the signal peptide coded by the sequence having initial 28 amino acids, and involved in transporting the enzyme outside the cell as predicted by SignalP 4.1, as depicted in Figure 1.

Though all the Contig were identical, the nucleotide sequences were having differences in the 5′UTR and 3′UTR region which can be clearly seen in the multiple sequence alignment of all in Figure 2. The Contig 9 gave different results, due to differences with absence of 3 C-terminal amino acid, as the residues Threonine, Tryptophan and Valine were missing. In Contig 3 the Glycine residue at 131st position was missing, visible in Figures 3 and 4.

Structure prediction

The PDB BLAST performed gave the structurally similar sequences for predicting the structure of B. brevis Xylanase. Structure, using MODELLER 9.11, was predicted for all translated contig, the contig 4, 2 and 7 gave identical structure as the translated protein sequence was also identical (Table 1).

The predicted structure was refined in Schrodinger and visualized

![Figure 1](image-url)
in PyMol. The predicted structure showed 12 beta sheets/strands, and only 1 alpha helix. The predicted active site was at 106th amino acid - the Glutamic acid acting as the nucleophile, and 200th amino acid (also a Glutamic acid) as proton donor. The Aspartic acid is placed exactly at the tip of the thumb, to interact with the substrate to catch hold of it and carry on the required activity.

Structure validation

The SAVES server gave qualified results considering the predicted structure. The Ramachandran plot gave values ranging 85.6% to 86.1% of the amino acids, which were found in the allowable region. The scores verified that the structure predicted was stable, of high quality and appropriate for further in-silico analysis (Table 2).

Comparative analysis

The structures, when superimposed, gave the above results of exactly identical structure. Structure alignment was performed using Pymol. The detailed analysis of the structures provided the facts, which clearly depicted active Xylanase. It had the required characteristics of
having the active proton donors, and binding catalytic sites at the most probable locations as visible in the Figures 5 and 6. The positioning of Tyrosine and Aspartic acid, in the palm and the thumb area, clearly showed the enzyme ready for the binding with the substrate and catalytic activity. The alignment of structure shown in Figure 7 labelled Threonine, tryptophan and Valine at C-terminal end, while Glycine in between as non-superimposed amino acid in Contig 9. The structural comparison, with other Xylanase enzyme structure belonging to bacteria and fungi already reported, clarified the result. The structure of \textit{B. circulans} and \textit{B. subtilis} Xylanase also had mainly beta sheet structure and had only 1 alpha helix, which was similar to the structure predicted for our Xylanase of \textit{B. brevis}. The structural comparison of \textit{B. circulans} and that of our Xylanase, gave 100% similarity in the secondary structure elements similar in both, with 96% of the sequence identity, as predicted by PDBE-FOLD. In case of fungal Xylanase, the \textit{A. niger} 2Q22_A and our Xylanase, it was having 93% similar secondary structure elements, while the sequence identity was only 43% in the structure-structure alignment in PDBE-FOLD, as shown in the Figure 8. The Figure 9 clearly specifies the structural differences between bacterial and fungal Xylanase. The structure of bacterial Xylanase of \textit{B. brevis} and \textit{B. circulans} is completely identical with minute differences at the loop areas. The fungal Xylanase of \textit{A. niger} was seen to have the alpha helices, as compared to bacterial Xylanase with one small helix. Not just the helical region, but also various loop regions were different, though both belonged to class GH 11. The one thing, which was found to be similar in all the Xylanase, was that the nucleophile and proton donor is always the Glutamic acid, though the position can change.
These active sites were present in the beta sheets, generally in the beginning or at the end of the beta sheet.

The need of the hour for pulp and paper industry is a stable and pure Xylanase, cellulase-free enzyme, easy to handle, with higher activity at higher temperature ranging from 50-80°C and pH 6-10. The studied bacterial Xylanase is not only pure but also stable at alkaline pH and higher temperature, without any cellulase activity, which is the most specific requirement of pulp and paper industry.

Conclusion

The Xylanase have numerous important industrial application, thus its production and purity is of utmost importance. The fungal Xylanase, though produced in higher quantity, have not been purified with sole Xylanase activity. Thus the bacterial Xylanase is free from cellulase activity and are the need of the day. Due to specific Xylanase activity, bacterial xylanases have great industrial applications. Among them B. brevis is one of the most promising candidate which produces endo-1, 4-beta Xylanase. The small sequence and sequence identity, with predicted structure, provides a platform for in silico enhancement of the activity of the enzyme. The predicted structure falls in the same frame, as of the known Xylanase of B. circulans, B. subtilis, whose structures have been crystallized. The active site was located as the energy rich proton donor, the Glutamic acid being at both the positions 106 and 200 in the structure. The catalytic site involved the Tyrosine and Aspartic acid, located exactly in the thumb flexible region, involved in the activity – hence known as xylan binding residues.

The predicted structure of B. brevis Xylanase belonged clearly to GH11 family, with a well packed structure mainly constituted of β-pleated sheets. The palm and thumb loops were clearly depicted, which was a cleft where the substrate came and bound to lead to the required product. The compact and pleated structure may be one of the reasons for the thermostability of the enzyme, which can be further enhanced by increasing the electrostatic interactions and disulphide S-S, bridges, which is one of the most important features of the enzyme to be applicable in paper and pulp industry. The fungal Xylanase being bigger in size and acidic pH as the stability medium-B. brevis Xylanase with apt size and alkaline pH stability is the most promising enzyme to work upon for industry purpose.

References