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Abstract
Advances in electron-matter studies, based on the irradiation of the electron beam in the transmission electron 

microscopy or field emission-scanning electron microscope on materials represents a preferred external physical 
and chemical tool for in situ remote command of the functional attributes of nanomaterials associated to its unique 
advantages of high spatial and temporal resolution and digital controllability. This makes the field of electron beam 
irradiation an emerging topic open for many researchers right now. Electron-material interactions envisage the 
formation, growth and coalescence of metal nanoparticles induced by electron beam irradiations and motivated by 
this discovery, in this Review, we provide an account of the recent advancements and theoretical developments to 
describe this phenomena and their applications. A theoretical framework is developed to determine the physical 
principles involved in the mechanism for the formation of metal nanoparticles on different materials by electron beam 
irradiation under the guidance of first-principles calculations at density functional level. New research directions 
are emerging in materials science to reach many applications by providing a deeper insight in the properties and 
phenomena in complex material systems. We conclude our work by briefly outlining the challenges that need to be 
addressed and the opportunities that can be tapped into. We hope that the review of the flourishing and vibrant topic 
with myriad possibilities would shine light on exploring the future directions of this research field by encouraging 
and opening the windows to meaningful multidisciplinary cooperation of researchers from different backgrounds and 
scientists from the fields such as chemistry, physics, engineering, biology, nanotechnology and materials science.
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Introduction
Theory of electron-solid interactions is necessary for many 

material analysis techniques such as electron spectroscopy, diffraction, 
and microscopy. These techniques have completely revolutionized 
many disciplines of natural sciences and are becoming some of the best 
solutions for material exploration, elucidation, and characterization. In 
the development of electron microscopy, electron-matter interaction 
has been one of the key discussion topics. 

Transmission electron microscopy (TEM) and field emission-
scanning electron microscopy (FE-SEM) are some of the important tools 
for investigating the morphology of materials, from sub-nanometer to 
micrometer length scales. In particular, the development of electron 
microscopy, which involves the electron beam-matter interaction and 
is an interactional typical quantum phenomenon, has been one of the 
key areas of modern science. The electrons in solids face two forces: 
a Coulombic interaction force between themselves, and a force from 
the atomic nuclei. Electrons and/or photons interact with the atoms, 
molecules, and solids at the quantum level. However, predicting the 
response of a material to the passage of electrons and waves is very 
challenging. Indeed, the ability to control the structure of matter at 
the molecular level, i.e., at the cluster or nanoscale, together with the 
development of new concepts and tools (for example, spectroscopy and 
microscopy pushed to an extreme resolution in time and space), can 
lead to new and unconventional scenarios for light-matter or electron-
matter interactions. In particular, the quantum description of electrons, 
as Fermion particles, is governed by the Pauli's exclusion principle, 
and their distribution in position or momentum space represents a 
fundamental property in the fields of chemistry and physics and is at 
the heart of all reaction processes and molecular functionalities.

Useful insights have been obtained from the existing knowledge 
of electron beam (e-beam) interactions with solid matter [1]. In 

TEM, a high-energy e-beam is passed through the sample to be 
imaged, which allows an image to be formed as in a conventional 
light microscope owing to the use of the quantum mechanical wave 
nature of electrons [2]. Therefore, the TEM is a fundamental technique 
to observe the microstructure, characterize nanoscale materials, and 
provide chemical information on an atomic scale. It is also well known 
that the high energy of the e-beam used in TEM can cause radiation 
damage in the materials being probed and sometimes leads to certain 
in situ transformations that are accelerated by the damage process 
[1,3]. The increase in the electron energy leads to bond instability and 
consequently the change in the structure [1,4]. Such structural defects 
not only deteriorate the physical and chemical properties, but also 
cause a failure in the subsequent application [5].

The conventional microstructure characterization of nanomaterials 
relies heavily on the TEM or FE-SEM by providing atomic-resolution 
images and has become a very cogent way to investigate the structure 
and properties of the nanostructures, endowing the researcher both 
in situ nanomanipulation and in situ imaging at the same time [6-
10]. Applying the e-beam irradiation inside the TEM or FE-SEM 
as an external stimulus, which allows high−energy electrons to 
transmit through the specimen, provides useful microstructure and 
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electronic structure information of the samples based on a variety of 
electron-solid interactions [11-13]. This radiation leads to interesting 
phenomena caused by electron-solid interactions [12-15] and can be 
as observed while imaging. At this point, it is important to remark that 
electrons present more advantages than both X-rays and neutrons for 
investigating the condensed matter, as demonstrated by Henderson in 
his seminal review [16].

The electron beam generated within the TEM or FE-SEM constitutes 
a platform for directly imaging metal nanoparticles. They not only 
offer spectroscopic techniques that prove the presence of individual 
elements, but also make it possible to do this on a local scale. The 
e-beam irradiation in TEM can be used for fabricating nanomaterials 
as well as for investigating the morphology, structure, and chemical 
transformation of nanomaterials, which are important for developing 
novel nanostructures, especially for those that cannot be fabricated 
using conventional chemical and physical methods. Therefore, these 
new applications have ensured that TEM can be considered as a 
versatile tool in material engineering at the nanoscale [17,18].

The above processes are triggered by electron beam irradiation, 
which allows simultaneous fabrication and observation in a convenient 
and, more importantly, direct manner. Jiang [19] has summarized 
a variety of beam damage phenomena related to oxides in STEM 
(scanning TEM) and has underlined the shortcomings of currently 
popular mechanisms. El Mel and Bittencourt [20] have summarized the 
solid-to-hollow conversion processes induced by e-beam irradiation 
in TEM through many important examples reported in the literature. 
More recently, Gonzalez-Martinez et al. [21] conducted a review aimed 
at exploring the body of work available on the electron beam induced 
synthesis techniques with in situ capabilities. A particular emphasis is 
placed on the e-beam induced synthesis of nanostructures conducted 
inside the TEM, viz., the e-beam is the sole (or primary) agent triggering 
and driving the synthesis process.

TEM has been used for etching and patterning a wide range 
of materials, varying from Si and metal nanowires [22] to carbon 
nanotubes [23-25], for reduction of the transition of metal oxide 
surfaces to metallic lower oxides [26] and graphene [27-29], as well as 
for in situ growth [30-36] and structural conversion of nanomaterials 
induced by e-beam [10,37-49]. Recently, Tan et al. [50] have studied 
the degradation process of closely spaced Ag and Au nanocubes under 
high-energy e-beam irradiation using TEM.

Recent advances in the TEM technology enable studies of atomic-
scale processes on sub-millisecond time scales [51,52], modification 
of structural and physical properties of materials for technological 
applications [14,53-58], nucleation and growth processes of 
nanocrystals [59,60], catalytically driven reactions [61], changes in 
the structural and optical properties of nanoparticles [53,55,57], and 
structural phase transformations [62,63].

In the last few years, it has been demonstrated that the e-beam 
generated within TEM [2] is a very powerful tool for the fabrication and 
manipulation of nanostructures with the advantages of precise control 
at nanoscale or single-nanoparticle level [17,64,65]. More recently, 
Jesse et al. [66] reviewed recent results that used focused electron 
beam to create free standing nanoscale 3D structures, radiolysis, and 
fabrication potential with liquid precursors, epitaxial crystallization 
of amorphous oxides with atomic layer precision, and visualization 
and control of individual dopant motion within a 3D crystal lattice. 
Mansourian et al. [67] have stated the use of the e-beam irradiation to 
fabricate nanoparticles and nanorods on Ag surfaces with nanometric 

precision. Both high control over nanorod dimensions and high 
placement accuracy have been demonstrated.

Yang et al. [68] have developed a method based on the displacement 
reaction and spontaneous electrolysis to synthesize switching riddle 
of Ag tetracyanoquinodimethane (AgTCNQ) nanowires facilely 
and efficiently in a large area. The authors show that the nanodots 
and nanoclusters of Ag begin to precipitate under the irradiation of 
e-beam. The observed pattern of the separation of the Ag nanoclusters 
from the AgTCNQ matrix is similar to that of various well-known 
solid electrolytes such as Ag2S [69], RbAg4I5 [70], and Ag2WO4 [71] in 
electrochemical metallization memories or atomic switches [72-74].

In 2007, Kim et al. [75] obtained Bi nanoparticles by irradiating 
BiCl3 films by using TEM with a pretreatment involving harsh reaction 
conditions before the electron irradiation of the sample and a high dose 
and a high accelerating voltage (400 kV), while Sepulveda-Guzman et 
al. [76] have also observed in situ formation of Bi nanoparticles through 
e-beam irradiation of a bismuth precursor (NaBiO3) in a TEM without 
pretreatments and with the use of considerably lower irradiation 
conditions. These authors have proposed that at the first stage NaBiO3 
precursor gets decomposed by a radiolysis process producing Bi5+ 
ions and neutral Bi0 that segregate and nucleate into small crystalline 
seeds (O and Na may get volatilized in the process). The seeds then 
coalesce into larger nanoparticles via Ostwald ripening processes 
driven by the beam-enhanced diffusion. In recent times, Chang et al. 
[77] have reported the observation of the formation and growth of Bi 
nanoparticles onto 2D structured BiOCl photocatalysts by the direct 
use of TEM in real time (Figure 1). The growth of the Bi nanoparticles 
on BiOCl nanosheets can be emulated and speeded up by the use of the 
e-beam in TEM. The crystallinity growth and the elemental evolution 
during the formation of Bi nanoparticles have also been probed in this 
work.

Gonzalez-Martinez et al. [65] have recently developed an in situ 
catalyst-free room temperature growth route for crystalline aluminum 
borate nanowires and nanowires using the e-beam in a TEM. Recently, 
an increasing number of studies have reported the formation of Pb 
nanoparticles upon thee-beam irradiation from TEM on lead halide 
perovskite: CH3NH3PbX3 [78,79], (C4H9NH3)2PbBr4 [80], and CsPbX3 
[81-86]. There is also evidence that the Pb2+ species from various 
material systems can be reduced to Pb0 by irradiation with electrons 
or with X-rays [87,88], while other studies on the irradiation effects 
in APbX3 nanoparticles have suggested that PbBr2 is also formed [78].

Even in the liquid cells for TEM, many nanoscale crystallization and 
nanoparticle growth processes have only been observed in the presence 
of the beam [25,59,89-93]. In addition to the solid-phase transitions, 

Figure 1: Representative scheme of the in situ fabrication of Bi nanoparticles 
on BiOCl nanosheets in TEM based on the work of Chang et al. [77].
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the effect has also been reported in the liquid phase, using TEM, STEM, 
and SEM (scanning electron microscope) techniques [94-97].

In this context, synthesis techniques based on the electron beam 
irradiation have been employed to obtain silver nanoparticles on a large 
scale at short reaction times without the presence of chemical residues 
[93,96,98-102]. For example, Ag nanocrystals have been grown from 
the dilute solutions of silver nitrate by STEM irradiation [92]. Fine 
experimental control over the initiation and the growth process is 
required for practical applications of the technique for fabrication 
of designer nanostructures for nanoelectronic and nanophotonic 
applications.

The complete fundamental aspects behind the interaction between 
electrons with matter remains unsolved, but due to the potential 
behind it to create new material structures or metastable phases, which 
have previously not been achieved or are otherwise difficult to produce, 
envisages the topic as a powerful research area.

New facts: Formation, growth and coalescence of metal 
nanoparticles

Because the formation of metal nanoparticles in the high-vacuum 
system of the electron microscope has not attracted much attention, it 
is necessary to explore this more intensively. To avoid an overly lengthy 
review, here we focus only on the formation of metal nanoparticles 
that are important for both fundamental research and industrial 
applications. This criterion excludes well-established techniques 
performed alongside the TEM in which additional hardware add-
ons (gas supplies, filters out techniques, flow-cells, and holders with 
heating stages) are used to assist the action of the e-beam, such as, 
the e-beam induced deposition (EBID) [103-106], thermally assisted 
beam induced crystallization [107,108], and the e-beam lithography 
[109,110]. Topical reviews about the e-beam nanofabrication through 
methods such as EBID and nanolithography already exist [111].

A literature survey shows that several electron beam induced 
growth process of metallic Li [112] and Na [113] nanoparticles with 
potential technological applications exist. Wang et al. [114] and Ming-
Yu et al. [64] were the first to observe the novel growth mechanism of 
Cu isolated nanoparticle. Wang et al. [114] observed the formation of 
single crystalline Cu nanorods by the e-beam irradiation and proposed 
a growth mechanism of Cu nanorods on carbon films by manipulating 
electron irradiation on Cu powders (Figure 2). Ming-Yu et al. [64] 
reported the evolution of Cu nanoparticles from the synthesized CuCl 
by in situ TEM irradiation. Copper-containing materials such as zeolites 
can also form high aspect ratio nanorods [115], while Padhi et al. [116] 
reported that the e-beam irradiation could induce transformation of 
Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO.

Kim et al. [117] obtained highly mono-disperse Au nanoparticles 
when gold(I)-alkane thiolate complexes with supramolecular 
structures were irradiated by an e-beam in a TEM (Figure 3). Similarly, 

Golberg et al. [118] reported that In nanocrystals of different shapes 
and morphologies were directly grown on the surface of InP nanorods 
during the e-beam irradiation inside a TEM (Figure 4). These authors 
were surprisingly able to observe and analyze rarely seen in situ crystal 
growth of differently-shaped pure In nanosized single crystals on the 
surface of mother InP without traces of any other elements.

In 2012, Gnanavel and Möbus [119] reported the synthesis of Co 
nanoparticles of a range of sizes from raw cobalt fluoride powder using 
e-beam and their characterization in-situ in a TEM. Several e-beam 
induced growth processes of nanoparticles with potential technological 
applications, such as metallic Li [112], Na [113], Cu [64], In [118], Co 
[119], and W [120] have been reported. Del Angel et al. [121] reported 
the in situ generation of Ni nanoparticles and thin films by focusing a 
TEM e-beam over NiO/ZrO2-CeO2 and NiO. Recently, Barry et al. [36] 
have developed a novel technology for formation of metal nanocrystals 
by synthesizing Os nanoparticles of defined size under e-beam 
irradiation of an organometallic osmium complex encapsulated in self-
spreading polymer micelles. Surprisingly, all these authors reported the 
formation of metallic nanoparticles as a consequence of the irradiation 
process but did not comment on the chemical and physical nature of 
the observed effect. Huang et al. [22] have also discussed the effect of 
irradiation on Ti3AlC2 samples by using the e-beam and have shown 
that during irradiation, Al atoms are mainly sputtered, while no 
amorphization occurs along the process.

Previous attempts have successfully demonstrated the growth of 
Ag nanowires at random locations within the area irradiated by e-beam 
[97,122-127]. Different research groups have reported the formation 
of Ag nanoparticles in Ag-containing materials under the influence of 
e-beam irradiation [97,123,127,128].

Our research group has lately reported an important development 
that now allows the production of Ag nanoparticles and nanowires on 
different based Ag materials through irradiation by a widely spread 

Figure 2: Representative scheme of the in situ fabrication of Cu nanorods on 
carbon films in TEM based on the work of Wang et al. [114].

Figure 3: Representative scheme of the real-time in situ protruding of Au 
nanoparticles in the gold(I)-alkanethiolate complexes in TEM based on the 
work of Kim et al. [117].

Figure 4: Representative scheme of the real-time in situ long protruding of In 
nanowire in the InP surface in TEM based on the work of Golberg [118].
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e-beam of an FE-SEM or TEM gun, such as α-Ag2WO4 (Figures 5 
and 6) [71], β-Ag2WO4 [129], β-Ag2MoO4 (Figure 7) [35,130,131], 
β-AgVO3 [132], Ag3PO4 [133], and Ag2CrO4 (Figure 8) [134]. These 
semiconductors interact with the e-beam, where the reduction of Ag 
cations take place with concomitant formation and growth processes of 
metallic Ag on the surfaces, forming Ag nanoparticles associated with 
the semiconductors. 

The reasons for the formation of these new structures have been 
discussed in some recent publications [35,129,133-137]. In particular, 
Lin et al. [138] have focused on the electronic reconstruction of 
α-Ag2WO4 nanorods for visible-light photocatalysis, while Xu et al. 
[139] and Thomas et al. [140] evaluated the photocatalytic activity of 
α-Ag2WO4 particles and nanoparticles, respectively. More recently, 
Sreedevi et al. [141] have analyzed the influence of 8 MeV e-beam 
irradiation on the structural and optical properties of α-Ag2WO4 

nanoparticles with concomitant growth of Ag nanoparticles on their 
surfaces. Furthermore, silver closo-boranes (Ag2B10H10 and Ag2B12H12) 
have been found to show extremely fast silver nanofilament growth when 
excited by electrons during TEM investigations. The Ag nanofilaments 
can also be reabsorbed back into Ag2B12H12 [142]. The real in situ 
observation of these processes confirms sample modification in which 
the e-beam from TEM plays an important role and triggers surface 
reactions that can change the intra- and interatomic interactions, 
opening up avenues in a wide range of fields in materials science. This 
phenomenon has not been reported before and can only be observed 
in situ at the atomic scale. These interesting properties demonstrate the 
multifunctionality of silver based compounds. A deep understanding 
of the interactions between the electrons and the irradiated material 
is necessary to interpret the processes occurring and to extract the 
mechanistic information.

However, because of these complex processes, it is difficult to 
characterize the reaction mechanisms responsible for nanocrystal 
formation, growth, and coalescence. While it has been established that 
an e-beam can interact with the specimen through multiple pathways, 
including [143] e-beam sputtering, radiolysis, electrostatic disruption, 
hot electron relaxation, and knock-on damage, several authors have 
postulated that the material must go through the melt during the 
e-beam-induced fragmentation [144-148].

Two kinds of interaction of the high-energy electrons with the 
material may be considered. The first is the elastic collision of the 
electrons with the atomic nucleus that leads to the displacement of the 
atom by direct momentum transfer knock-on displacement. The other 
is the inelastic collision that generates electron-hole pairs and direct 
electron absorption that leads to atomic-electron excitation. There 
are four possible mechanisms of atomic-electron excitation, namely, 
ionization of the core electrons, ionization of the valence electrons 
leading to bond breakage, elevation of the valence electrons to the 
exciton state, and collective excitation of the valence electrons into 
plasmons.

As the collective result of atomic-electron excitation, the 
temperature in the irradiated area increases (beam heating). Moreover, 
the ionization of the atomic electrons generates a large number of 
secondary electrons escaping from the specimen with a local positive 
charge [149]. These observations offer great potential for basic research, 
but the exact cause of the above phenomena is not clear, thereby leaving 
a room for further improvement of the understanding.

Next, we discuss the phenomena during the e-beam irradiation 
in the context of a theoretical framework based on the first-principles 

Figure 5: FE-SEM images showing the metallic silver growth in α-Ag2WO4.

Figure 7: FE-SEM images showing the random growth of metallic silver on the 
surface of β-Ag2MoO4.

Figure 6: Representative scheme of the real-time in situ formation of Ag 
nanoparticles in the α-Ag2WO4 surface in TEM based on the work of Longo 
et al. [71].

Figure 8: FE-SEM images of Ag2CrO4 with surface silver growth after two 
minutes of electron irradiation.
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calculations and experimental data. We will also provide some clues 
for examining and supporting the chemical activities taking place at 
the atomic level based on the obtained computational results. The 
theoretical predictions from this work are expected to be valuable 
not only for understanding of the physical nature of the induced 
e-beam irradiation process but also for providing the pathways to find 
novel nanomaterials with potential for unique magnetic and optical 
properties and chemical functionalization as demonstrated herein.

The in situ electron irradiation of inorganic solid compounds in 
FE-SEM and TEM depends on the former network and/or the network 
modifier, which are the material, irradiation time, electron dosage, and 
method of synthesis. The chemical reactions, which are initiated by the 
irradiation of electrons, are non-classical interactions resulting in a 
solid of high defect density and a new reaction product. This interaction, 
combined with the imaging of electron microscopy, can be used as a 
basis for next-generation nanofabrication tools, opening pathways 
for direct control of matter at the atomic level. A particular emphasis 
is placed on the e-beam-induced formation of metal nanoparticles 
conducted inside a TEM and/or FE-SEM, viz. the e-beam is the sole (or 
largely main) agent triggering and driving the synthesis process.

The modeling of the material properties and the processes from 
the first-principles calculations is becoming sufficiently accurate 
to facilitate the understanding of these phenomena observed in 
materials and to reach a deeper insight into the general description 
processes by resolving the fundamental mechanisms occurring at the 
atomic scale during the irradiation of solid materials. Computational 
materials science is valuable and is becoming increasingly necessary 
for developing novel functional materials that meet the requirements 
of the next-generation technology. The interplay between the 
experimental and the computational approaches at multiple length 
scales finds many applications in the development and characterization 
of new phenomena. This review provides a broad and comprehensive 
overview of recent trends in which predictive modeling capabilities 
are developed in conjunction with the experiments and advanced 
characterization techniques to gain a greater insight into structure-
property relationships and to study the physical phenomena and 
mechanisms.

This work combines the experimental and computational 
techniques to achieve the best of both methods to provide a tool for 
understanding of the formation, growth, and coalescence processes of 
metal nanoparticles provoked by the e-beam irradiation. A tool has 
been developed in the authors’ labs for creating structural models to 
enable more complete understanding of this phenomenon. Through a 
number of important examples, we attempt to discuss and summarize 
some of the important aspects associated with the e-beam interactions, 
focusing on our experience on some of these materials.

The rest of the paper is organized as follows. First, the motivation 
and understanding of the present work is presented. Then, we discuss 
the fundamental principles and explore the advanced applications. 
Finally, the main lessons learnt from this work are highlighted in the 
last section.

Motivation and Understanding
The advent of quantum mechanics in 1926 played a fundamental 

role in understanding of the behavior of electronic distribution in 
solids, allowing the rationalization of the existence of insulating, 
semiconductor, and metallic compounds. Specifically, as stated by 
Chelikowsky and Cohen [150] research and studies on the electronic 

structure of semiconductors have played a key role in basic, applied, 
and computational science, as well as have influenced a large part of 
the theoretical foundation of modern condensed matter physics and 
materials science. It can be said that the main challenge in theoretical 
and experimental studies is to find a common link between the results 
obtained by means of these two approaches. The accessibility of the 
systems to be investigated may be different at the atomic level. A wide 
range of structures and arrangements can theoretically be explored. In 
many cases, some of these are impossible to obtain experimentally, but 
the theoretical analysis provides a full picture of the effects present in 
the real systems.

However, the knowledge of primary processes following the 
interaction of electron irradiation with solids in vacuum is rather 
limited and an accurate modeling is still necessary to determine the 
desired functions from the acquired data. The improved accuracy of 
measurements and the possibility to combine the information from 
different experimental techniques require even more flexibility of the 
models.

The reasons for the present research are manifold and encompass 
the intellectual excitements of deriving macroscopic performance from 
the atomic level foundations and the predictive power that quantum 
mechanical simulations have brought to the field. Our laboratories 
work by coupling multiple experimental methods and first-principles 
calculations in a self-consistent computational framework that 
is essential for the understanding the structure and properties of 
materials, as recently invoked in an editorial [151] and related papers 
[152]. An Interview of Nature Materials [153], explains the challenges 
in materials modeling about the development and innovation, based 
on a steady mastery of the fundamentals of condensed-matter physics, 
physical chemistry, and materials science, supported by the knowledge 
in the fields of computational chemistry and computational materials 
science. The driving mechanisms and physical causes responsible for 
the formation of metal nanoparticles on samples irradiated by an 
e-beam probe are still open to speculation. Therefore, the primary 
motivation of this work is understanding the nature of in situ 
formation, growth, and coalescence of metal nanoparticles on different 
materials to provide fundamental insights into this process. A second 
motivation is to develop and apply computational quantum chemistry 
methods to explain this behavior. Another less explored reason for 
considering quantum phenomena within the chemical systems is the 
possibility that it could provide new insight into the quantum world of 
materials. Finally, such cooperative interactions, based on the synergies 
between computational modeling and experimental characterization 
of materials across various length scales, find many applications in 
the development, characterization, and design of complex material 
systems. In particular, it is possible to exploit this phenomenon to 
synthesize materials with performance properties significantly better 
than those using classical electronics or optics and to provide guidelines 
for a rational design of these materials.

Our ability to characterize, design, and control the properties of 
a given material depends on the behavior of electrons and electron 
distribution in the matter [154,155]. Electron distribution encompasses 
many sciences (chemistry, physics, biology, crystallography, and 
material science), and electron density, ρ(r) is determined through 
experiments on crystalline solids through scattering techniques: X-ray, 
γ-ray, or electron diffraction. From a theoretical perspective, electron 
density has an advantage, in that ρ(r) is a quantum mechanically 
observable. 

Accurate modeling of charge distribution has become possible 
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only when a significant theoretical background has been developed. 
Here, we have employed the quantum theory of atoms in molecules 
(QTAIM), developed by Bader and collaborators [156,157], to analyze 
the experimental and theoretical electron density distributions (ρ(r)) 
in a molecule or solid as well as to study the properties of ρ(r). These 
analyses reveal the bonding interactions in a crystal system and the 
nature of these interactions. The electronic charge of each atom is 
evaluated using Bader charge analysis within the QTAIM framework, 
which is a way of dividing a solid into atoms on the basis of electronic 
charge density. Finding zero flux surfaces between two atoms allows 
the charge of each atom to be calculated.

As the formation of metallic nanoparticles after the electron 
irradiation is a quantum phenomenon, we have performed quantum 
mechanical calculations to understand the structural and electronic 
modifications of material that are observed experimentally. In the 
calculations, electrons are introduced one by one in the unit cell 
of material, followed by the redistribution of extra electrons by 
simultaneous geometrical optimization on both the lattice parameters 
and the atomic positions. 

The irradiation of electrons into inorganic compounds can be 
analyzed in various ways; however, the structure of the material, i.e., 
the local coordination (clusters) of the atoms as the building block of 
the material, is highly relevant. The interaction between these clusters 
with the electron depends on the electronic cluster affinity. Thus, there 
may be interaction with the network former and/or network modifier. 
Moreover, two important parameters are time irradiation and electron 
dosage.

Case Study
In the following figures, we can select different examples where 

the e-beam irradiation is capable of provoking the formation of metal 
particles, such as Ag, In, Cu, and Au. The electron irradiation of the 
beam on inorganic compounds versus time has several stages: cluster 
outlet formation in the crystal surface, segregation and formation of 
nanoparticles via a cluster assembly process, and subsequent growth 
stage. In this last step, the formed clusters can yield nanoparticles 
with defined structure with appropriate restructuration to obtain 
the crystal. This is a new method for manufacturing semiconductor 
multifunctionality. This hybrid semiconductor can give rise to 
semiconductors with different properties and can also be molded 
depending on the time and exposure density of the radiation by 
electrons. These two parameters can change the concentration of 
vacancies in the bulk and on the metal surface. The important aspect 
is that all changes are generated in the same material and can be 
monitored in situ by FE-SEM or TEM.

Now, we show how the first-principles calculations, within a 
QTAIM framework, have been carried out to provide deeper insight 
and understanding of the observed nucleation and early evolution of 
Ag nanoparticles in silver phosphate (Ag3PO4) crystals, driven by an 
accelerated e-beam from an electronic microscope under high vacuum. 
Ag3PO4 crystallizes in a body-centered cubic structure with space 
group P-43n [158]. Currently, this material has received considerable 
attention from the scientific community because of its photooxidative 
applications [159-164].

A theoretical and experimental study on the structural, 
morphological, and optical properties of Ag3PO4 powders synthesized 
by the co-precipitation (CP) route and processed in a microwave-
assisted hydrothermal (MAH) system at 150ºC for different times was 

recently reported [133]. These powders were structurally characterized 
by means of X-ray diffraction (XRD), Rietveld refinements, and micro-
Raman (MR) spectroscopy. The first-principles density functional 
theory (DFT) calculations were carried out to understand the physical 
phenomena involved in the growth stages of metallic Ag nanostructures 
on the surface of Ag3PO4 microparticles. Finally, the ultraviolet-visible 
(UV-Vis) absorption spectroscopy and photoluminescence (PL) 
measurements at the room temperature were performed to verify the 
correlation between the optical properties and the structural order-
disorder in these phosphates.

First-principles total-energy calculations were carried out within 
the periodic DFT framework using the VASP program [165,166]. The 
Kohn-Sham equations were solved using the screened hybrid functional 
proposed by Heyd, Scuseria, and Ernzerhof (HSE) [167,168] in which 
a percentage of exact non-local Fock exchange is added to the Perdew, 
Purke, and Ernzerhof functional (30%), with a screening of 0.11 bohr-

1 applied to partition the Coulomb potential into the long range and 
short range terms, as reported in some recent papers [169,170]. The 
number of electrons in the bulk structure has been gradually increased 
and the corresponding crystal structure (volume of the unit-cell and 
the atomic positions) is optimized in order to find the minima on the 
potential energy hypersurface. The Bader’s QTAIM [156,171,172] is a 
well-recognized tool used to analyze the electron density, to describe 
interatomic interactions, and to rationalize chemical bonding. The 
different strong and weak interactions between two atoms can be 
determined unequivocally from the QTAIM calculations. Moreover, 
concepts such as (3,-1) bond critical points (BCPs), their respective 
bond paths (BPs), and L(r)=−∇2ρ(r) maps can be analyzed to reveal the 
nature of these interactions.

In the Ag3PO4 modeled structure, both Ag and P atoms are 
connected to four O atoms, resulting in distorted tetrahedral [AgO4] 
and [PO4] clusters, as presented in Figure 9.

Figure 10 shows the FEG-SEM images of Ag3PO4 powders before 
and after 5-min exposure to the e-beam (accelerated at 15 kV) of the 
SEM. When these microparticles were subjected to the influence of the 
e-beam for 5 min, it was verified that anisotropic growth of pre-existing 
metallic Ag nanostructures took place, behaving as active growth 
nuclei. This behavior is practically new for Ag3PO4 powders, but it has 
been reported in other materials containing Ag in their compositions 
[71,132,134,136,173], giving rise to interesting applications as sensors, 
photoluminescent materials and visible-light photocatalysts. Therefore, 
e-beam is able to stimulate the nucleation and growth of metallic Ag 
filaments on α-Ag3PO4 crystals. According to these authors, the excess 
of electrons led to the appearance of surface defects in this phosphate, 

Figure 9: (a) Schematic representation of the cubic Ag3PO4 structure and (b) 
illustration of both tetrahedral [AgO4] and [PO4] clusters.
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causing a continuous axial flow of Ag filaments. In another paper [173], 
it has been reported that the growth of these filaments potentiates the 
bacteriostatic and bactericidal activities of α-Ag2WO4, especially in 
combating Staphylococcus aureus. The appearance of Ag nanoparticles 
was explained through the reduction induced by photogenerated 
electrons during photocatalysis. Therefore, such features imply 
that materials containing Ag exhibit a high growth potential for the 
development of irregular Ag structures on the particles. 

In addition, in order to confirm this growth phenomenon of 
metallic Ag nanostructures in Ag3PO4 powders, a TEM microscope was 
employed coupled with an energy dispersive x-ray spectroscopy (EDS) 
system, enabling local chemical analysis of elements in each individual 
microparticle. For 5 min, the samples were subjected to the e-beam of 
the TEM microscope, in which two distinct regions were selected in 
the focused microparticles, as shown in Figure 11. Region 1 was chosen 
on the Ag growth nucleus, while region 2 was selected near the center 
of a single microparticle. As expected, the EDS results confirmed the 
electrons promoted the random growth of metallic Ag nanostructures 
because of the large percentage of Ag atoms, especially detected in the 
region 1 of the microparticles. In principle, these Ag atoms migrate 
from matrix to surface, causing a structural and morphological 
alteration (defects). The C and Cu atoms observed in all EDS analyses 
arise from the 300 mesh Cu grids used in the TEM. 

Regarding the experimental results reported in Figures 10 and 
11, the theoretical calculations were employed to understand the 
phenomenon of electron absorption responsible for the growth of 
Ag nanostructures. The calculated values for the lattice parameters, 
Ag−O, P−O, and Ag−Ag bond lengths, and band gap energy (Egap) as 
a function of the number of electrons added (N) are shown in Table 1. 

In Table 1, a clear increase in the lattice parameters as well as Ag−O 
and Ag−Ag bond lengths is observed. When the addition of up to five 
electrons is taken into account in the calculations, the data reveal an 
increase in Ag−O bond lengths, while the P−O bond lengths remain 
practically constant. This behavior can be probably associated with 
the elastic collisions of [PO4] clusters compared to the strong inelastic 
collisions of [AgO4] clusters. Hence, the theoretical analyses point 
out the addition of electrons is responsible for structural alterations 
and formation of defects on the [AgO4] clusters, generating the ideal 
conditions for the growth of Ag nanostructures.

The Bader charge density of Ag, P, and O centers as a function 
of N is collected in Table 2. In this calculation, Ag atoms of [AgO4] 
clusters have a higher tendency to be reduced rather than the P atoms. 
Particularly at N=5, all Ag atoms are almost reduced (from 0.64e to 
0.02e), whereas for P atoms a constant value of the electron density is 

kept (slight decrease of 0.05 units at N=5). Consequently, the electron 
excess enforced in the material is transferred from one cluster to 
another through the Ag3PO4 framework, so that the formation and 
growth processes of Ag involve adjacent [AgO4] clusters. In addition, 
the charge density (ρbcp) at the (3,-1) - (BCPs) as well as its Laplacian 
(∇2ρbcp) in Ag−O bonds of [AgO4] clusters are accessible in Table 2. 
The addition of electrons in the material provokes an interesting 
reduction in the theoretical ρbcp and ∇2ρbcp values, indicating that the 
Ag−O bonds become less strong to favor the formation of metallic Ag. 
This same behavior has been also reported in recently published papers 
[71,132,134,136]. 

Figure 12a shows the upper part of the valence band (VB) and the 
lower part of the conduction band (CB) of density of states (DOS) plot 
for Ag atoms, considering neutral Ag3PO4 (N=0) and the addition of 
five electrons (N=5). The Fermi level is placed at energy of 0 eV. A 
general analysis of the DOS shows a high contribution of the s orbitals 
in the lower part of CB for all Ag atoms. The doublet spin multiplicity 
is noticed for N=3 and 5, in which the alpha (up) and beta (down) 
electronic contributions are not symmetric. For N=2 and 4, the spin 
electronic configuration more stable is the singlet, as the neutral 
condition of Ag3PO4. Higher reduction in Egap is noted when N is 5 
(Table 1). Theoretically, the shift of the s band of Ag atoms is probably 
caused by the interaction of the sample with the e-beam. 2D charge 
density maps related to the interaction of [AgO4]-[PO4] clusters and 
[AgO4]-[AgO4] clusters for N=0 and N=5 are illustrated in Figure 9b 
and 9c, respectively. The regions with high and low charge densities 
are specified by the concentration of charge lines around the atoms. 
When compared to the charge density maps of [AgO4]-[PO4] clusters 
in Figure 9a, the results disclose a decrease in the electronic charge 
density between Ag and O atoms for N from 0 to 5. Thus, the Ag−O 
bond lengths are enlarged due to the perturbation caused in the system 
with the addition of electrons (N=5), while the P−O bond lengths 
persist practically constant. This behavior is probably associated 
with the strong covalent character of P−O bonds compared to the 
ionic character of Ag−O bonds. In addition, the charge density maps 
presented in Figure 9b indicate the interactions of [AgO4]-[AgO4] 

Figure 10: (a) FEG-SEM images (considered as time zero) of Ag3PO4 powders 
synthesized by the CP route and processed in a MAH system for 32 min. (b) 
FEG-SEM images of the same samples after five minutes of exposure to an 
accelerated electron beam.

Figure 11: (a) TEM images after five minutes of exposure to the electron beam 
for Ag3PO4 powders synthesized by the CP route and those processed in a 
MAH system for 16 min, illustrating the two regions (purple and green circles) 
used in the chemical composition analysis by EDS. (b) EDS results of Ag3PO4 

powders synthesized by the CP route and those processed in a MAH system 
for 16 min.
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clusters also become weaker when N is increased from 0 to 5, in good 
agreement with the Ag−Ag distances presented in Table 1. Therefore, 
both behaviors theoretically achieved in Figure 9a and 9b can be 
associated with the growth of metallic Ag nanostructures (Figure 12). 

Clusters of [AgO4] interact with the received electrons when 
the surface of Ag3PO4 is irradiated with an e-beam, occasioning the 
creation of Ag vacancy and the reduction of silver. Furthermore, Ag 
migrates from the bulk to the surface and under persistent electron 
irradiation it is possible observe the growth of nanocrystal of silver. 
Since silver is formed at zones where negatively charged vacancies are 
present in the crystal lattice, a short- and medium-range disordering 
within the semiconductor is induced. The regions with metallic silver 
vacancy exhibit a p-type semiconducting behavior. Since Ag3PO4 is an 
n-type semiconductor, an n/p interface is formed in this zone. This 
interface increases the polarization and consequently, electron/hole 
recombination develops more difficult.

Careful experiments and coupled theory, modeling, and simulation 
will be required to pick apart the origins of the relationship among the 
local, intermediate, and long-range structure and material properties. 
Experimental probes can provide more structural information on short 
and long-range order in materials; however, their structures over the 
medium range are still understood poorly. Theoretical calculations 
and computer simulations can complement the experimental methods 
and they have revealed new insights into medium range order, surface 
structures, and dynamic changes in local structures.

The insights gained from our studies are not only of fundamental 
importance but also of technological interest because the microscopic 
behaviors reported here, together with those reported earlier, not only 
serve as model test systems for basic studies, but may also serve as a 
novel design avenue that can be exploited for the growth of various 
micro- and nanostructures. The integration of materials simulation into 
the design procedure can be used both to screen the most promising 
candidate materials and to expedite the materials characterization and 
application, for example by providing the spectral signatures required 
to identify the material with proposed properties and applications.

Conclusions
The interaction of waves or particles with materials is a topic that 

is increasingly attracting the interest of scientists since the past two 
decades, and it will continue to be a fascinating field in the coming 

years. This is because many challenging fundamental problems have 
not been solved, especially concerning the interaction of electrons with 
matter and also because potential advanced technologies will emerge 
because of the impressive capability of this phenomenon to create 
new material structures and hence functionalities. Understanding 
the physical mechanisms of such induced phenomena is extremely 
challenging.

With the current development of electron beam sources, the use 

N Lattice parameter a (Å) Bond lengths (Å) E
gap 

(eV)
Ag−O P−O Ag−Ag

0 6.0244 2.37 1.56 3.01 2.72
1 6.1698 2.45 1.56 3.08 2.53
2 6.3107 2.52 1.56 3.15 2.30
3 6.4496 2.59 1.56 3.22 1.95
4 6.5800 2.66 1.56 3.29 1.87
5 6.6991 2.72 1.55 3.40 1.60

Table 1: Results obtained by the addition of electrons in the Ag
3PO4 structure.

N Ag P O ρbcp ∇ 2ρbcp

0 0.640 3.664 -1.396 0.31 3.85
1 0.528 3.633 -1.429 0.27 3.35
2 0.411 3.600 -1.459 0.23 2.91
3 0.286 3.602 -1.490 0.20 2.51
4 0.156 3.610 -1.520 0.18 2.17
5 0.021 3.607 -1.543 0.16 1.90

Table 2: Bader charge density of Ag, P and O centers and charge density at the (3,-1) BCPs and its Laplacian in Ag−O bonds of [AgO4] clusters as a function of N.

Figure 12: (a) DOS plots analyzing the upper part of the VB and the lower part 
of the CB of different Ag atoms where N=0 and 5. 2D charge density maps of 
(b) [AgO4]−[PO4] clusters and (c) [AgO4]−[AgO4] clusters, respectively, for the 
conditions of N=0 and 5.



Citation: Andrés J, Longo E, Gouveia AF, Costa JPC, Gracia L, et al. (2018) In situ Formation of Metal Nanoparticles through Electron Beam Irradiation: 
Modeling Real Materials from First-Principles Calculations. J Material Sci Eng 7: 461. doi: 10.4172/2169-0022.1000461

Page 9 of 13

Volume 7 • Issue 3 • 1000461J Material Sci Eng, an open access journal
ISSN: 2169-0022 

of TEM and affiliated techniques is no more limited to imaging or 
chemical analysis, but has been rather extended to nanoengineering. 
Electron beam irradiation is a promising approach to fabricate 
nanoparticles for various applications. Further advancement of 
this approach and rational design of experiments require improved 
mechanistic understanding of the physical process, and atomistic 
modeling and simulation have been widely employed to reach this 
end. The aim of this review is to present a critical overview of the 
current state of the technologies used for studying in situ formation, 
growth, and coalescence of metal nanoparticles on different material 
by electron irradiation in TEM and affiliated techniques, providing a 
greater insight into structure-property relationships and enabling the 
study of various physical phenomena and mechanisms. 

In the present work, we focus on specific areas where theory/
computation and experiment have converged to provide unprecedented 
insights into physical mechanisms that govern in situ formation of 
metal nanoparticles through e-beam irradiation. The ability to directly 
compare theoretical results with experimental measurements is 
essential for the validation of the computational approach. In addition, 
it empowers the theoretical work to help interpret and explain the 
experimental observations and ultimately to reliably predict the 
structures and properties that can be experimentally implemented 
and observed. We tried to summarize the important progress made 
in elucidating such structures using first-principles calculations, and a 
theoretical framework is developed to determine the physical principles 
involved in the formation of metal nanoparticles on different materials. 

Using robust experimental and theoretical tools, scientists can 
now push the limit of investigations to the ultimate level of individual 
atoms and single bonds. If this knowledge can be transformed to 
develop useful materials, it will provide exciting opportunities to 
engineer innovative and novel materials for new applications. This 
has been the guiding light of our work in the last 20 years, both in 
Castellon at University Jaume I, Spain (Theoretical and Computational 
Chemistry Group) and São Carlos at the Center for the Development 
of Functional Materials (CDMF), focusing on three major areas of 
functional materials, namely energy, environment, and health. This can 
be summarized as follows: Experiments+Theory (Simulations and First-
Principles Calculations)+Interdisciplinary Collaboration=Fundamental 
Insights+Technological Applications. 
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"We are saddened by the passing on May 17, 2016, of our dear friend and 
colleague José Arana Varela. This work is a tribute to his memory."
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