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Introduction
Developing countries are important to the understanding of disease 

processes related to the molecular basis of cell dysfunction and these 
populations can be used to test the hypothesis of the origins and cause of 
the metabolic syndrome, accelerated obesity and cardiovascular disease 
in Western populations. In previous studies disorders such as obesity 
and diabetes were lower in developing countries and were related to 
diet, lifestyle and exercise. In developing countries the rapid migration 
from the rural to urban areas can be used as a model [1,2] and may be 
an important factor that has accelerated the global diabetic epidemic 
which has spread to developing countries. The global rise in obesity 
and severity of diabetes may allow the interpretation of risk factors in 
developing countries that may possibly explain the cause of early nuclear 
and cellular dysfunction in Western communities. Interests in the 
gene environment interactions that change gene expression that affect 
cellular glucose and lipid metabolism are of considerable interest. Diets 
high in calories with alcohol consumption in developing countries may 
affect gene-environment interactions. Developing countries in urban 
areas may differ from developed countries in relation not only to the 
calorie content of the diet but also the presence of specific chemicals 
such as xenobiotics and xenometals. In developing countries (urban 
areas) access to high calorie diets may downregulate liver nuclear 
receptors that are responsible for toxicological sensing and interrupt 
the metabolism of xenobiotics which may rise in the blood plasma 
with transport to various cells and tissues such as the pancreas, heart, 
kidney, brain, liver and lungs. The relationship between the food intake 
and equilibration of xenobiotics or xenometals to various tissues has 
now become important to the development of insulin resistance and 

may explain the rise in obesity in developing countries with relevance 
to the global diabetes epidemic and neurodegeneration (Figure 1) [3-
5].
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Figure 1: Western diets induce the metabolic syndrome, NAFLD and disrupt 
xenobiotic metabolism.
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Developing countries may now consume saturated fat similar to 
Western countries that may lead to hyperphagia, obesity and diabetes 
[3,4] being the major disorders in Western communities. In urban 
areas access to high calorie foods may possibly explain the rise (20%) 
in non alcoholic fatty liver disease (NAFLD) in developing countries 
with NAFLD as high as 30% in Western countries [6-8]. The effects 
of alterations in diets and lifestyle in developing countries possibly 
promote highly reactive intermediates that are toxic to the cell (nuclear 
apoptosis) with insulin resistance, abnormal liver lipid metabolism 
and the development of the metabolic syndrome in these countries. 
Epigenetic alterations in cells possibly lead to various other diseases 
such as cardiovascular disease, gall bladder disease, Parkinson’s disease 
(PD) and Alzheimer’s disease (AD) that are associated with severity of 
diabetes and accelerated aging. The global obesity and diabetic epidemic 
in developing countries require special attention for the understanding 
of various molecular mechanisms that are involved in the induction or 
prevention of chronic disease manifestation. 

Increased Global Obesity and Diabetes with the 
Metabolic Syndrome, NAFLD and Neurodegeneration

The global metabolic syndrome that now includes the under 
developed countries indicates that the major endocrine disorder is 
insulin resistance. The metabolic syndrome and NAFLD have affected 
60% of individuals in developed and developing countries [6-8]. These 
insulin resistant individuals become hypercholesterolemic with hepatic 
insulin resistance playing a pivotal role in lipoprotein abnormalities. 
Lipoprotein metabolism is disturbed in these individuals with increased 
lipid accumulation and excess lipids that are stored in adipose tissue. In 
obese individuals the classification of obesity is with a body mass index 
that is greater than 30.0 Kg/m2. The liver and its disease progression 
(NAFLD) with poor lipid metabolism may responsible for the increased 
adiposity in obese individuals [9,10] and associated with the induction 
of the severity of the metabolic syndrome and diabetes in developing 
countries.

Developing countries are referred to as the countries of Africa, 
Asia, Latin America and Oceania. In developing countries by 2025 
individuals with obesity and diabetes are projected to increase to 
115 million and the diabetic epidemic will affect countries such as in 
Asia and Oceania (Samoa) [11,12]. Extensive literature search by the 
World Health Organization conducted with terms such as obesity, 
insulin resistance, the metabolic syndrome, diabetes, dyslipidemia, 
nutrition and physical activity in developing countries between 1966 
to June 2008 indicate that the improved economic situation in these 
developing countries is associated with increasing prevalence of obesity 
and the metabolic syndrome in adults and children. The number of 
people with diabetes is projected to double in developing regions such 
as Africa, Asia, and India [12,13]. In Asia the diabetic epidemic has 
escalated and accounts for 60% of the world diabetic population [14]. 
The diabetic epidemic has been associated with NAFLD in developing 
countries of Latin America, Asia, India and Africa with prevalence (20-
40 %) similar to developed countries [15-17]. Evidence from various 
studies indicate that environmental factors are the major determinants 
of the increasing rates of diabetes with the development of diabetes at a 
younger age in Asian populations. Rapid urbanization from 20 to 60% 
has occurred in Africa, India, China and Asia and possibly involved 
with the large global diabetic population in these developing countries 
[17-21]. Poor nutrition transition with increased consumption of 
energy dense foods and edible oils, sedentary lifestyles, alcohol, 
polluted environments, poor physical activity and overcrowding 

possibly contribute to increased social stress that may be responsible 
for the dramatic increase in these chronic diseases [21-23]. 	

Polluted environments contain chemical compounds foreign to 
animals and humans are referred to as xenobiotics that include drugs, 
drug metabolites, and environmental compounds such as pollutants 
that are not produced by the body. In the environment xenobiotics 
include synthetic pesticides, herbicides, chemicals and industrial 
pollutants that pollute the air and water [24-26]. Global disability 
adjusted life years (DALYS) attributable to air pollution from industry 
in these developing countries is estimated to be 17 million [24]. Several 
studies show that air and water environmental pollution in developing 
countries especially in densely populated urban areas may contribute 
to at least 20% of chronic diseases and possibly to deaths of millions of 
people annually in these countries. Alcohol ingestion has been shown 
to be increased in developing communities that corrupt xenobiotic 
metabolism [20]. Increased cigarette smoking (tobacco) allow the entry 
of xenometals such as heavy metals (lead, cadmium, manganese, iron, 
copper, strontium, rubidium, nickel, zinc, zirconium and chromium) 
and chemical elements such as (sulfur, chlorine, potassium, calcium 
and bromine) into the body with toxic effects to the liver and brain 
[20].		

Chronic neurodegenerative diseases associated with Type 2 
diabetes have been shown to increase with age in developed countries 
and recent studies indicate that obesity and diabetes are associated with 
these neurodegenerative diseases especially those related to AD and PD 
[27-29]. Studies have concluded that AD is now referred to as Type 3 
diabetes and is primarily involved with neurodegeneration and insulin 
resistance. Neurodegenerative diseases that involve diabetes include 
ataxia-telangiectasia, Friedreich ataxia, Huntington disease, Prader-
Willi syndrome, Werner syndrome, Wolfram syndrome, myotonic 
dystrophy and Down syndrome/trisomy 21 [29]. In developing 
countries neurodegenerative disorders such as AD, dementias, 
epilepsy, PD and acute ischemic stroke stand as emerging public health 
standards and are closely associated with the increased prevalence in 
obesity and the metabolic syndrome in these developing communities 
[28, 30,31].

Gene Environment Interactions induce Epigenetic 
Alterations in Obesity and Diabetes

The gene-environment interaction in developing countries 
indicates that urbanization facilitates increased access to food which 
leads to induction of epigenetic alterations that are associated with 
lipid and glucose dyshomeostasis as well as greater adiposity in obese 
individuals. High calorie diets regulate transcriptional responses with 
DNA modifications that include DNA methylation, histone tails, 
chromatin and micro RNA alterations that regulate DNA expression 
and promote chronic disease susceptibility. Urban environments 
may contain xenobiotics (soil, water, air) that may also contribute to 
epigenetic modifications and contribute to the global rise in obesity in 
these developing countries [32-41].			 

The alterations in glucose and lipid metabolism in obese individuals 
involve nuclear receptor dysfunction that promotes liver disease [42-
46]. Altered glucose and lipid metabolism in obesity are associated with 
liver nuclear receptor dysfunction with an increase in lipid storage in 
adipose tissue. Alterations in the transcriptional regulation of nuclear 
receptors are responsible for changes in energy and glucose metabolism 
and involve the peroxisome proliferator-activated receptor gamma 
(PPAR gamma) and PPARalpha, beta/delta that are responsible for 
fatty acid, triglyceride, and lipoprotein metabolism [47]. The liver X 
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receptors (LXR)/ liver receptor homolog-1 (LRH-1) is responsible 
for reverse cholesterol transport, cholesterol absorption and bile acid 
metabolism regulated by the farnesol X receptor (FXR), LXRs, and 
LRH-1 receptors. Pregnane X receptor (PXR) and the constitutive 
androstane receptor (CAR) have endobiotic functions that impact on 
glucose and lipid metabolism with affects on the metabolic syndrome 
associated with the pathogenesis of metabolic diseases [48-51]. The 
nuclear receptor aryl hydrocarbon receptor has also been closely 
associated with NAFLD [52]. Liver nuclear receptors such as PXR, 
CAR and xenobiotic sensing nuclear receptor (SXR) are responsible 
for the detection of foreign toxic substances (xenobiotics) and respond 
by the expression of cytochrome p 450 (CYP 450) enzymes involved 
in the defense against xenobiotics (drugs) for rapid clearance by the 
liver [53,54]. Liver nuclear receptors are involved in the metabolism 
of nutrients (glucose, fatty acid and cholesterol), bile acid and drug 
metabolism [54-58] and closely involved in the pathogenesis of chronic 
diseases such as NAFLD, obesity, diabetes, atherosclerosis, gall bladder 
disease [59-61] and neurodegeneration.

The gene environment interactions induce epigenetic changes 
involve alterations in nuclear receptors with chromatin remodelling 
that are linked to obesity and diabetes. High fat and high cholesterol 
diets interfere with nuclear receptors and chromatin remodelling 
that are linked to oxidative stress, insulin resistance and NAFLD. 
Interest in calorie restriction and transcriptional regulation of nuclear 
receptors has increased and these receptors are closely involved 
with insulin resistance. Dietary regulation of the nuclear receptors 
involves the calorie sensitive anti-aging gene Sirtuin 1 (Sirt 1) that is 
principally involved in obesity, liver lipid metabolism (NAFLD) and 
brain neuronal proliferation with close links to the development of AD 
[61,62]. Sirt1 is a NAD+ dependent protein deacetylase and is involved 
in the deacetylation of the nuclear receptors (Figure 2) with its critical 
involvement in insulin resistance [63,64]. 

Sirt 1 is involved in metabolic regulation and in the repair of 
deoxyribonucleic acid (DNA) damage with epigenetic alterations 
involving histone deacetylation in chromatin [65,66]. Sirt 1 
involvement in PXR activation occurs by deacetylation of the PXR liver 
receptor [67,68] and is linked to protection of DNA by xenobiotics 
with epigenetic alterations involving histone deacetylation [69-71]. 
Sirt1 maintains the DNA to prevent gene modification of various 
genes including CYP 450 enzymes [72] and allows rapid metabolism 
of xenobiotics that enter the organism. In under developed countries 
urbanization and Western diet changes involve Sirt 1dysregulation 
caused by alterations in transcriptional regulators and modification of 
chromatin that contribute to endocrine abnormalities such as insulin 
resistance, NAFLD and energy balance disorders [73-79].

Interests in calorie restriction and neurodegeneration involve 
Sirt 1 mediated deacetylation of the transcriptional factor FoxO3a 
that represses Rho-associated protein kinase-1 gene expression and 
activation of the non amyloidogenic α-secretase processing of the 
amyloid precursor protein (APP) with the reduction of amyloid 
beta (Aβ) generation [80]. Environmental changes with dietary 
consumption of xenobiotics affect chromatin remodelling that 
regulate gene expression with affects on appetite and hyperphagia 
that promotes obesity, diabetes and neurodegeneration [81,82]. 
Interests in transcriptional factors (co-regulator complexes) modify 
Sirt 1chromatin interactions and nutrient, drug and toxin metabolism 
[81-83]. Environmental inhibitors modify Sirt1 and its regulators with 
modifications in chromatin structure and prevent activators of Sirt1 
that regulate appetite and food intake [84]. In developing countries 

movement of populations from rural to urban regions alter Sirt1 and 
nuclear receptor interactions that act as metabolic and toxicological 
sensors that allow populations to adapt to environmental changes. 
High calorie diets down regulate nuclear Sirt 1 activity disrupted 
xenobiotic or xenometal metabolism that alters gene expression with 
the acceleration in aging and the development of obesity and diabetes 
in these populations. 

Metabolic Disorders Affect the Metabolism of 
Xenobiotics and Increase the Concentration of 
Neurotoxins 

Major threats of xenobiotics such as environmental pollutants 
(Figure 3) may increase with age in individuals from developing 
countries [85-89]. These xenobiotics allow induction of various 
chronic illnesses such as obesity and diabetes by alteration in liver 
and brain function. The global obesity epidemic (30%) now includes 
the developing countries (20%) and is possibly connected to the large 
diabetic population in developing countries with unhealthy diets and 
poor liver xenobiotic metabolism involved in the severity of diabetes 
[90-94]. In obesity and diabetes the liver and brain have been found 
to be diseased with insulin resistance connected to the peripheral 
organ disease progression [84]. Obese and diabetic individuals have 
blood brain barrier (BBB) disorders [95] and loss of BBB trafficking of 
chemicals, xenobiotics or xenometals [96-98] to the brain may increase 
the risk of neuronal apoptosis with the promotion of neuroendocrine 
disease and the increased risk for PD in these individuals [96,97-99]. 
Association between xenobiotics and insulin resistance adds support to 
the affects of xenobiotics on their receptors CYP 450 in liver and brain 
cells of obese and diabetic individuals [100-104].

Figure 2: Sirtuin 1 regulation of chromatin structure and gene expression with 
effects on obesity and diabetes.

 

Figure 3: Nuclear receptors control xenobiotic metabolism with effects on 
DNA modification and neuron apoptosis.
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In experimental animals high fat diets were closely associated 
with disturbances in the suprachiasmatic nucleus and appetite control 
with the abnormal involvement of Sirt1 in the central control of 
circadian rhythms [105-111]. Sirt 1’s abnormal involvement in food 
intake and appetite regulation has been associated with the risk for 
obesity [107,110,111]. The clearance, metabolism and elimination 
of xenobiotics are controlled by nuclear receptors (Sirt1/PXR) and 
the circadian regulation of CYP450 enzymes that are involved in 
xenobiotic and nutrient metabolism [49,112-114]. High calorie diets 
with lifestyle alterations after relocation to urban areas possibly delays 
the metabolism of xenobiotics with induction of cardiovascular disease 
[115-121] metabolic diseases such as obesity and diabetes [11,122] and 
relevance to drug induced Parkinsonian and neurodegeneration in 
these countries [123-125]. 

Accelerated neurodegeneration such as in PD and AD is connected 
to the diabetic global epidemic with insulin resistance and abnormal 
peripheral glucose and lipid metabolism. Excess xenobiotics (CNS 
drugs, CAD drugs, anti-cancer drugs, antimicrobial, antiviral, 
compounds) are possibly involved in the molecular mechanisms of 
neuroendocrine disease that is linked to diabetes, PD and AD. Organic 
pollutants in the environment are higher in developing countries and 
the half life of xenobiotics by poor hepatic metabolism is decreased with 
the increase in NAFLD (20%) and diabetes associated with these under 
developed countries (Figure 3). Loss of hepatic cholesterol metabolism 
as associated with NAFLD is closely connected to poor liver Aβ 
homeostasis with consequences to severe neurodegeneration such as 
PD and AD. In 60% of individuals in global populations (developed 
and developing countries) the peripheral sink Aβ hypothesis is absent 
since NAFLD has increased to nearly half of the world population and 
ill affects of poor xenobiotic and hepatic Aβ metabolism correlated 
with toxic affects to various tissues such as the heart and brain [61,62].

Interests in xenobiotic metabolism have escalated recently since 
xenobiotics are involved in the generation of reactive intermediates 
that corrupt DNA repair and promote DNA modifications [126-128]. 
Xenobiotics release reactive electrophiles that are possibly connected to 
nuclear aggregation and endoplasmic reticulum (ER) stress [129] with 
protein deposits in cells (Figure 4). The damage to DNA occurring in 
neuronal cells with xenobiotics is with the formation of DNA adducts, 

DNA strand breakage and altered DNA function [127,130]. Sirt 1 is 
closely involved in with chromatin modification and protection of 
neurons from genotoxic stress with the involvement of DNA repair 
enzymes and repair of double strand breaks in damaged chromatin 
structure [131,132]. In liver and brain cells with low Sirt 1 activity 
electrophiles from xenobiotic metabolism react with micro ribonucleic 
acid (RNA) [133-135] or by covalent binding to nucleophillic centres 
in cellular protein and DNA [136-139]. Adduct formation disrupts 
DNA or protein structure with damage to the nucleus and various 
subcellular organelles [128,130,140] such as the ER and mitochondria 
with metabolic alterations. Diets that disrupt Sirt 1’s protection of 
ER stress are also implicated in mitochondrial dysfunction with 
the essential role of Sirt 1 and nuclear receptors in the maintenance 
of the mitochondria and their biogenesis [140-143]. Xenobiotics 
promote oxidative stress with the release of radicals that cause chain 
reactions with the attack on DNA, lipids, proteins and carbohydrates. 
Xenobiotics generate electrophilic intermediates that involve abnormal 
protein folding as assessed by quality control mechanisms such as the 
unfolded protein response and the deposition of unfolded proteins 
in the ER. As nutrient levels rise Sirt 1 activity falls and xenobiotic 
oxidative processes rise with protein misfolding connected with insulin 
resistance in neurodegenerative diseases such as PD and AD.    

Unhealthy Diet, Drugs and Lifestyle Induce Chronic 
Disease and Neurodegeneration

Populations that consume alcohol and tobacco such as that in 
developing countries may inhibit hepatic nuclear receptors with 
alterations in metabolic regulation of cholesterol, fatty acids, glucose 
and toxic chemicals. Alcohol is a Sirt1 inhibitor [144-147] and its 
consumption may promote hepatic dysfunction such as alcoholic 
fatty liver with the ill affects on hepatic xenobiotic metabolism that are 
now released to various organs in the periphery and brain. Activators 
of hepatic Sirt 1 are important to prevent chronic diseases with the 
maintenance of liver nuclear receptors and regulation of nutrient and 
xenobiotic metabolism [61,62] Foods that contain toxic xenobiotics 
[148] induce genotoxic stress with chromatin modifications that leads 
to hepatic DNA damage and NAFLD that threaten the survival of 
various obese and diabetic individuals [148,149].   	

Interest in fat consumption (low or high) may require further 
evaluation and may contain lipophillic xenobiotics. Lipophillic 
xenobiotics [150,151] such as aldrin and dieldrin may rapidly transport 
across membranes to various cells and tissues may not be processed by 
the liver. Gene-environment interactions that lead to changes in diet 
and appetite affect peripheral gene expression with the development of 
the metabolic syndrome and possibly involve the excess consumption 
of lipophillic xenobiotics found in fat (milk) that are toxic to the 
neurons in the central nervous system. Rapid xenobiotic metabolism 
is triggered by low calorie diets and poor nutrition leads to abnormal 
xenobiotic metabolism with significant affects on DNA strand breakage 
with cell apoptosis. Compounds such as reservatrol (Sirt1 activator) 
are essential to maintain the DNA repair [152-154] and are involved 
in inhibition of CYP450 enzymes required for xenobiotic metabolism 
[155,156].  

In developing countries higher environmental organic pollutants 
can enter the water supply and foods such as vegetables, rice, fruits, 
meat and dairy products. Consumption of water and food may 
release xenobiotics that may alter cellular DNA and RNA related to 
the epigenetic changes in metabolic diseases and neurodegeneration 
(Figure 5). Food monitoring for xenobiotics and xenometals has become 

Figure 4: The effects of xenobiotics on nuclear apoptosis and ER stress in 
obesity and diabetes.
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of central interest to prevent chronic diseases and acceleration of aging 
with the prevention of ingestion of toxic chemicals, xenobiotics and 
organic pollutants (88-90). In Western communities nutritional diets 
are of importance to prevent NAFLD and improve hepatic xenobiotic 
metabolism in these communities. Xenobiotics and its connections 
with various chronic diseases may involve abnormal xenobiotic 
biotransformation and their reactions such as oxidation, conjugation 
and reduction are important to its rapid metabolism and excretion 
in bile and urine. Chronic diseases such as gall bladder disease and 
hypothyroidism has increased with the metabolic syndrome and gall 
bladder removal now closely related to NAFLD [157,158]. The slow 
metabolism of xenobiotics in individuals with insulin resistance [159] 
may lead to dysfunction of the thyroid and hypothyroidism is now 
involved with the progression to obesity and diabetes [160-162].    

Anti-obese drug therapy in obese individuals may be more useful 
and successful with consumption of selected foods that are very low 
in xenobiotics, chemicals or xenometals that allowing the the liver to 
rapidly clear these toxic compounds from the periphery before entering 
the brain (Figure 5). Anti-steatotic diets and drug treatment may 
accelerate clearance of liver xenobiotics by improving insulin resistance 
and expression of CYP450 expression [102-104] in obese or diabetic 
individuals. Other behavioural factors such as stress and anxiety that 
affect the circadian rhythm that regulates xenobiotic metabolism have 
become important to various communities. Nutritional diets (plant 
versus meat) are designed to maintain the toxicological processing of 
xenobiotics with the critical role of liver xenobiotic enzymes (CYP450) 
in their metabolism. Micronutrients, minerals and vitamins such 
as nicotinamide, riboflavain, niacin, folic acid, vitamin E, vitamin 
A are essential for xenobiotic metabolism [113]. Diets that contain 
appropriate protein quality, carbohydrate and lipid (polyunsaturated) 
content are essential for xenobiotic metabolism and nutritional 
deficiency has been closely related to poor xenobiotic metabolism. 

Conclusion
In various regions in developed and underdeveloped countries the 

incidence of overweight and obesity has been closely connected to the 
diabetic epidemic. Urbanization in developing countries may possibly 
provide an explanation for the global diabetic epidemic. The obesity 
and diabetic epidemic in developing countries require urgent attention 
to maintain cellular DNA and RNA and reverse epigenetic changes 
induced by diet and xenobiotics that accelerate insulin resistance, 
cardiovascular disease and neurodegeneration. Severity of the world 
wide diabetic epidemic may be controlled by consumption of low calorie 

nutritional diets that are designed to maintain liver glucose, lipid and 
xenobiotic metabolism and prevent genotoxic stress that is associated 
with the increase in the diabetic epidemic and neurodegeneration in 
developing countries.
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