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Introduction
In spite sharing common root, Lorentzian and Riemannian 

geometries diverge very fast. For example, in Lorentzian case, due to the 
causal character of three categorie of vector fields (namely, spacelike, 
timelike and null), the induced metric on a hypersurface is a non-
degenerate metric tensor field or degenerate symmetric tensor field 
depending on whether the normal vector field is of the first two types or 
the third one. On no-degenerate hypersurfaces one can consider all the 
fundamental intrinsic and extrinsic geometric notions. In particular, a 
well defined (up to sign) of the unit orthogonal vector field is known to 
lead to a canonical splitting of the ambient tangent space into two factors: 
a tangent and an orthogonal one. Therefore by respective projections, 
one has fundamental equations such as the Gauss, the Codazzi, the 
Weingarten equations, along with the second fundamental form, shape 
operator, induced connection, etc. The case the normal vector field is 
null, the hypersurface is called null (or lightlike). Null hypersurfaces 
are then exclusive objects from Lorentzian manifolds, and have not 
Riemannian counterpart, making them interesting by their own from 
a geometric point of view, but also they are key objects for modern 
physics (quantum gravity effects). The geometry of null submanifolds 
is different and rather difficult since (contrary to the non-degenerate 
conterpart) the normal vector bundle intersects (non trivially) with the 
tangent bundle. Thus, one can not find natural projector (and hence 
there is no preferred induced connection such as Levi-Civita) to define 
induced geometric objects as usual. This degenerancy of the induced 
metric makes impossible to study them as part of standard submanifold 
theory, forcing to develop specific techniques and tools. For the most 
part, these tools are specific to a given problem, or sometimes with 
auxiliary non-canonical choices on which, unfortunately, depends the 
constructed null geometry. Indeed, Duggal and Bejancu introduced a 
non-degenerate screen distribution or equivalently a null transversal 
line vector bundle as we may see below so as to get a three factors 
splitting of the ambient tangent space and derive the main induced 
geometric objects such as second fundamental forms, shape operators, 
induced connection, curvature, etc. [1]. Unfortunately, the screen 
distribution is not unique and there is no preferred one in general. 
The least we can say is that for the above approach to be complete 
and consistent, we still need to build a distinguished normaization 
to accompany it. Most of the recent works of the first named author 
are indeed devoted to this normalization problem [2-4]. Given the 
collective expertise in Riemannian geometry, the ideal situation on 
could expect is that the developed tools could bring to a full reduction of 
problems in null geometry to purely Riemannian ones. In, the present 

first named author, after fixing a pair of normalization, constructed 
an associated Riemannian metric to the “normalized null structure” 
[5,6]. These ideas have been generalized and improved where authors 
used riggings defined on neighborhood of the null hypersurface. In the 
present paper, we first consider the associated Riemannian metric as 
[5] but arising from a null rigging defined on neighborhood of the null 
hypersurface, and establish links between the null geometry and basics 
invariants of the associated Riemannian metric. Also, note that one of 
the major issues of Riemannian geometry is how to obtain topological 
or differential properties of a manifold from some known properties 
of its curvatures. For example what can be said about a complete 
Riemannian manifold when some suitable estimates are know for the 
sectional or Ricci curvature? These considerations have been on much 
scrutinity with excellent results: Myers (compactness), Klingenberg (on 
the injectivity radius), Cheeger-Gromoll (splitting theorem), Shoen-
Yau (3-manifolds that are diffeomorphic to the standard R3, Gromov’s 
estimate of the number of generators of the fundamental group and 
the Betti numbers when lower curvature bounds are given. For further 
background on this problem we refer to the excellent texts [7-11]. 
Since in the present paper we have established links between the null 
geometry and basics invariants of the associated Riemannian metric, 
it is reasonnable to expect that the geometry of the null hypersurface 
provides insight informations on its topology. This constitutes our 
second and main goal. The plan of the article is as follows. Section (2) 
sets notations and definitions on riggings (normalizations) and review 
basics properties on null hypersurfaces. The associated Riemannian 
distance structure on the rigged (or normalized) null hypersurface are 
introduced and discussed. The relashionship between the null and the 
associated Riemannian geometry is considered in section (4) where we 
proceed to a connection of the main geometric objects (invariants) of 
both side involved in our analysis. In the last sections, thanks to some 
Riemannian comparison theorems we get some topological facts on the 
null hypersurfaces from its null geometry.
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M of a Lorentzian manifold is a hypersurface which is tangent to the 
lightlike cone Cp at each point p∈M. Recall that a spacetime ( , )M g  
is a connected Lorentzian manifold which is "time-oriented", i.e a 
causal cone at each ,pT M p M∈  (the "future"causal cone) has been 
continuously chosen. Hence, null hypersurfaces in spacetimes can 
be naturally given an orientation by such a continuous distribution 
of causal cones cp. Let N be a null rigging of a null hypersurface of a 
Lorentzian manifold ( , )M g  and = ( ,Â·)g Nθ  the 1-form metrically 
equivalent to N. Then, take

= iη θ 					                    (4)

to be its restriction to M, the map :i M M→  being the inclusion map. 
The normalized null hypersurface (M,g,N) will said to be closed if θ 
is closed on M. It is easy to check that (N)=ker and that the screen 
distribution (N) is integrable whenever  is closed.

On normalized null hypersurface (M,g,N), the local Gauss and 
Weingarten type formulas are given by:

= ( , ) ,N
X XY Y B X Y N∇ ∇ + 			                   (5)

= ( ) ,N
X NN A X X Nτ∇ − + 			                (6)

*= ( , ) ,N
X XPY PY C X PY ξ∇ ∇ + 			                  (7)

*= ( ) ,N
X A X Xξξ τ ξ∇ − − 				                  (8)

for any , ( )X Y TM∈Γ , where ∇  denotes the Levi-civita connection 
on ( , ),M g ∇  denotes the connection on M induced from ∇  through 
the projection along the null rigging N, ∇* denotes the Levi-Civita 
connection on the screen distribution (N) induced from∇ through 
the projection morphism P of Γ(TM) onto Γ((N)) with respect to 
the decomposition. Now the (0,2) tensor BN and CN are the second 
fundamental forms on TM and (N) respectively, AN and Aξ

  are the 
shape operators on TM and (N) respectively and N a 1-form on TM 
defined by ( ) = ( , )N

XX g Nτ ξ∇ . For the second fundamental BNand 
CNthe following hold:

* *( , ) = ( , ), ( , ) = ( , ), ( , ) = 0. ( , ) = 0N N
N NB X Y g A X Y C X PY g A X PY g A Y N g A X Nξ ξ (9)

 , ( )X Y TM∀ ∈Γ , and

( , ) = 0, = 0.NB X Aξξ  				                 (10)

It follows from eqn. (10) that integral curves of ξ are pregeodesicin 
both M  and M as consider these integral curves to be geodesics which 
means that

( ) = 0Nτ ξ 					                  (11)

A null hypersurface M is called totally umbilical (resp. geodesic) if 
there exists a smooth function ρ on M such that at each p∈M and for all 
u,v∈TpM BN(u,v)p=(p)gp(u,v)resp BN vanishes identicallynon M). These 
are intrinsic notions on any null hypersurface in the following way. 
Note that N being a null rigging for M, a vector field  ( )N T M∈Γ  is a null 
rigging for M if and only if it is defined in an open set containing M and 
there exist a function ψ and section ζ of TM with the properties that ψ°i 
is nowhere vanishing, being i the inclusion map and 22 ( ) = 0.Aψ θ ζ ζ

 

 

Then we have for details on changes in normalizations) 
 1=N NB B

iψ   

which shows that total umbilicity and totally geodesibility are intrinsic 
properties for M [3]. The total umbilicity and the total geodesibility 
conditions for M can also be written respectively as =A Pξ ρ  and 

= 0Aξ
 . Also, the screen distribution (N) is totally umbilical (resp. 

totally geodesic) if ( , ) = ( , )NC X PY g X Yλ  for all X,Y∈Γ(TM) resp.
CN=0) which is equivalent to =NA Pλ  (resp AN=0). It is noteworthy 

Riggins and Preliminaries of Null Hypersurfaces
Let ( , )M g  be a (n+2)-dimensional Lorentzian manifold and M a 

null hypersurface in M . This means that at each p∈M, the restriction 

|pT Mp
g  is degenerate, that is there exists a non-zero vector pU T M∈  such 

that ( , ) = 0g U X  for X∈TPM. Hence, in null setting, the normal bundle 
TM ⊥  of the null hypersurface Mn+1 is a rank 1 vector subbundle of the 
tangent bundle TM, contrary to the classical theory of non-degenerate 
hypersurfaces for which the normal bundle has trivial intersection {0} 
with the tangent one plays an important role in the introduction of the 
main induced geometric objects on M. Let start with the usual tools 
involved in the study of such hypersurfaces according to Duggal [1]. 
They consist in fixing on the null hypersurface a geometric data formed 
by a lightlike section and sreen distribution. By screen distribution 
on Mn+1, we mean a complementary bundle of TM ⊥  in TM. In fact, 
there are infinitely many possibilities of choices for such a distribution 
provided the hypersurface M be paracompact, but each of them is 
canonically isomorphic to the factor vector bundle /TM TM ⊥ . For 
reasons that will become obious in few lines below, let denote such a 
distribution by S(N). We then have,

= ( ) .orthTM N TM ⊥⊕ 				                   (1)

Where orth⊕  denotes orthogonal direct sum. From ref. [1], it is 
know that for a null hypersurface equipped with aa screen distribution, 
there exists a unique rank 1 vector subbundle ( )tr TM  of T M  over 
M, such that for any non-zero section ξ of TM ⊥  on coordinate 
neighborhood  ⊂ M there exists a unique section N of tr(TM) on  
satisfying:

|( , ) = 1, ( , ) = ( , ) = 0   ( ) .g N g N N g N W W Nξ ∀ ∈Γ


 	                  (2)

Then T M  is decomposed as following:

( )= ( ) ( ) = ( ).orthTM N TM tr TM TM tr TM⊥⊕ ⊕ ⊕ 	               (3)

We call tr(TM) a (null) transversal vector bundle along M. In 
fact, from eqns. (2) and (3) one shows that, conversely, a choice of a 
transversal bundle tr(TM) determines uniquely the distribution  (N). 
A vector field N as in eqn. (2) is called a null transversal vector field 
of M. It is then noteworthy that the choice of null transversal vector 
field N along M determines both the null transversal vecto r bundle, the 
screen distribution  and a unique radical vector field, say  satisfying 
eqn. (2). Now, to continue our discussion, we need to clarify the 
concept of rigging for our null hypersurface.

Definition 2.1

Let M be a null hypersurface of a Lorentzian manifold. A rigging for 
M is a vector field L defined on some open set containing M such that 

p pL T M∉  for each p∈M.

We say that we have a null rigging in case the restriction of L to 
the null hypersurface is a null vector field. From now on we fix a null 
rigging N for M. In particular this rigging fixes a unique null vector 
field ( )TMξ ⊥∈Γ  called the rigged vector field, all of them defined 
in an open set containing M (hence globally on M) such that eqns. 
(1)-(3) hold. Whence, from now on, by a normalized (or rigged) null 
hypersurface we mean a triplet (M,g,N) where =g g  is the induced 
metric on M and N a null rigging for M. In fact, in case the ambient 
manifold M  has Lorentzian signature, at an arbitrary point p in M, a 
real null cone Cp is invarianty defined in ambient tangent space pT M  
and is tangent to M along a generator emanating from p. this generator 
is exactly the radical fiber =p pT M ⊥∆  and for each null rigging N for M 
and each p∈M we have \p p pN C∈ ∆ . Actually, a lightlike hypersurface 
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to mention that the shape operators starAξ  and AN are (N)-valued. 
The induced connection ∇ is torsion-free, but not necessarily g-metric 
unless M be totally geodesic. In fact we have for all tangent vector fields 
X,Y and Z∈TM:

( )( , ) = ( , ) ( ) ( , ) ( ).N N
X g Y Z B X Y Z B X Z Yη η∇ + 		               (12)

Let denote by R  and R the Riemann curvature tensors of ∇  and 
∇, respectively. Recall the following Gauss-Codazzi equations for all 

, , ( ), ( ) ( )X Y Z TM N tr TM TMξ ⊥∈Γ ∈ ∈Γ .

( ( , ) , ) = ( )( , ) ( )( , ) ( , ) ( )N N N N
X Yg R X Y Z B Y Z B X Z B Y Z Xξ τ∇ − ∇ +

( , ) ( ).N NB X Z Yτ− 				                   (13)

( ( , ) , ) = ( ( , ) , ) ( , ) ( , )N Ng R X Y Z PW g R X Y Z PW B X Z C Y PW+

( , ) ( , )N NB Y Z C X PW− 				               (14)

( ( , ) , ) = ( ( , ) , )g R X Y N g R X Y Nξ ξ
* *= ( , ) ( , ) 2 ( , ).N N NC Y A X C X A Y d X Yξ ξ τ− − 		             (15)

The shape operator Aξ
  is self-adjoint as the second fundamental 

form BN is symmetric. However, this is not the case for the operator AN 
as show in the following lemma.

Lemma 2.1: For all X,YTM

, , = ( ) ( ) ( ) ( ) 2 ( , )N N
N NA X Y A Y X X Y Y X d X Yτ η τ η η〈 〉 − 〈 〉 − − (16)

where (throughout) , = g〈 〉  stands for the Lorentzian metric.

Proof. Recall that η=i*θ where = ,.Nθ 〈 〉 taking the differential of θ 
and using the weingarten formula, we have for all X,Y∈ (TM)

2 ( , ) = 2 ( , ) = , ,X Yd X Y d X Y N Y N Xη θ 〈∇ 〉 − 〈∇ 〉

= , ( ) ( ) , ( ) ( ).N
N NA X Y X Y A Y YX Y Xτ η τ η−〈 〉 + + 〈 〉 −

Hence

, , = ( ) ( ) ( ) ( ).N N
N NA X Y A Y X X Y Y Xτ η τ η〈 〉 − 〈 〉 − 	            (17)

as anounced. In case the normalization is closed the (connection)1-
form τN is related to the shape operator of M as follows.

Lemma 2.2: Let (M,g,N) be a closed normalization of a null 
hypersurface M in a Lorentzian manifold such that τN()=0. Then

= ,. .N
NAτ ξ−〈 〉 					                    (18)

Proof. Assume η=i*θ closed and let X,Y be tangent vector fields 
to M. The condition . ( ) . ( ) ([ , ]) = 0X Y Y X X Yη η η− −  is equivalent 
to , = ,X YN Y N X〈∇ 〉 〈∇ . Then by the weingarten formula, we get 

, ( ) ( ) = , ( ) ( ).N
N NA X Y X Y A Y YX Y Xτ η τ η〈− 〉 + 〈− 〉 +  In this relation, take 

Y=ξ to get ( ) = , ( ) ( )N N
NX A X Xτ ξ τ ξ η−〈 〉 +  which gives the desired 

formula as τN(ξ)=0

Exemple 2.1

In the pseudo-Euclidean space 2 ( 1)n
qR q+ ≥ . The pseudo-Euclidean 

space 2 ( 1)n
qR q+ ≥  

1

=1 = 1
, = = q ni i a a

i a q
g dx dx dx dx+

+
〈 〉 − ⊗ + ⊗∑ ∑  where (x0,…

xn+1) stands for the usual rectangular coordinates of Rn+2 Consider the 
Monge hypersurface

0 1 2 0 1 1= { ,..., , = ( ,..., })n n n
qM x x R x F x x+ + +∈ 		                 (19)

Where F:Ω→R is a smooth function defined on Ω an open set of 

Rn+1. Throughout, V denote a the constant vector field 
0

∂
∂

. It is easy to 

check that such a hypersurface is null if and only if F is a solution of the 
partial differential equation

1 1
2 2

=1 =1
1 ( ) = ( ) .

q n
' '
i ax x

i a
F F

− +

+∑ ∑ 				                  (20)

(Which we assume from now on) and that the rank one normal 
bundle TM ⊥  is spanned by the global vector field

1 1

=1 =10

= .
q n

' '
i ax x

i ai ax x

F Fξ
− +∂ ∂ ∂

− +
∂ ∂ ∂∑ ∑ 			                 (21)

Then, the vector field defined by
1 1

=1 =10

1 1= = [ ]
2 2

q n
' '
i ax x

i ai ax x x

N V F Fξ
− +∂ ∂ ∂

− + − − +
∂ ∂ ∂∑ ∑ 	                 (22)

is null rigging for the null Monge hypersurface M. For this null rigging, 
we have τN=0Indeed, let ∇  denote the Levi-Civita connection of 2n

qR +

and XΓ(TM) a tangent vector field. We have:
1 1( ) = , = ( ), = , 0.
2 2

N
X X XX N Vτ ξ ξ ξ ξ ξ〈∇ 〉 〈∇ − + 〉 〈∇ 〉 	                (23)

Now, we show that the normalization given by eqn. (22) is closed 
(and in particular, the distribution (N) is integrable). The 1-forme θ 

metrically equivalent to N is given by 1= ,.
2

Vθ ξ〈− +  and η=i*θ (i the 

inclusion map). Let X Y be two vector fields on M smoothly exetended 
in two vector fields on 2n

qR +  (we also denote these extensions by X and 
Y). We have

2 ( , ) = . , . , ,[ , ]d X Y X N Y Y N X N X Yη 〈 〉 − 〈 〉 − 〈 〉

= , ,X YN Y N X〈∇ 〉 − 〈∇ 〉

1 1= ( , ( ,
2 2

X YV Y V Xξ ξ〈∇ − + 〉 − 〈∇ − + 〉

1 1= , ,
2 2

X YY Xξ ξ〈∇ 〉 − 〈∇ 〉

1 1= ( ) , ( ) ,
2 2

N NA X X Y A Y Y Xξ ξτ ξ τ ξ〈− − 〉 − 〈 − 〉 

= 0

(as Aξ
  is symmetric and τN=0) which shows that η is closed. On 

can observe that this rigging induces a conformal screen (N) and that 
1=
2NA Aξ

 .

Riemannian Distance Associated
Let 1( , , )nM g N+  be a normalized null hypersurface, of a Lorentzian 

manifold. For p,q∈M let Ωp,q denote the space of all piecewise smooth 
curves γ:[0,1]→M with γ(0)=pand γ(1)=q The ambient manifold being 
Lorentzian, the induced metric on M has signature (0,n). In particular, 
for each t∈[0,1], we have 2 2( ( )) = 0' ' tγ η γ+   if and only if = 0'γ . We 
define the η-arc length of γ∈Ωp,qby

11 2 2 2
0

( ) = [ ( ( )) ] .' 'L t dtη γ γ η γ+∫  

From the above facts and using standard techniques as in 
Riemannian setting, and noting that a tangent vector X belongs to (N) 
if and only if η(X)=0, one gets the following lemma.

Lemma 3.1: The map dη:M× M→[0,∞] given by

,

( , ) = ( )inf
p q

d p q Lη
η

γ
γ

∈Ω

is a distance function on M.



Citation: Karimumuryango M (2017) Induced Riemannian Structures and Topology of Null Hypersurfaces in Lorentzian Manifold. J Phys Math 8: 250. 
doi: 10.4172/2090-0902.1000250

Page 4 of 10

Volume 8 • Issue 4 • 1000250J Phys Math, an open access journal
ISSN: 2090-0902

Lemma 3.2: For all X,Y,Z∈Γ(TM) we have,

( )( , ) = ( )[ ( , ) ( , )]N N
X g Y Z Y B X PZ C X PZη η∇ −

( )[ ( , ) ( , )]N NZ B X PY C X PYη+ −

2 ( ) ( ) ( ).N X Y Zτ η η+

We derive the following result on the compatibility condition.

Theorem 3.1

Let (M,g,N) be a normalized null hypersurface of a pseudo-
Riemannian manifold ( , )M g [4]. The induced connexions ∇ and the 
Levi-Civita connexion ∇ηof the associate metric gη on (M,g,N) agree if 
and only if for all

X,Z∈Γ(TM),

( , ) = ( , )
( ) = 0

N N

N

B X PY C X PY
Xτ







			                (27)

Definition 3.2

A normalized null hypersurface (M,g,N) of a pseudo-Riemannian 
manifold ( , )M g  is said to have a conformal screen if there exists a non 
vanishing smooth function ϕ on M such that =NA Aξϕ   holds [4].

This is equivalent to saying that ( , ) = ( , )N NC X PY B X Yϕ  for all 
tangent vector fields X and Y. The function ϕ is called the conformal 
factor. Theorem (3.1) asserts that the compatibility condition is fulfilled 
if and only if the normalization is screen conformal with constant 
conformal factor 1 and vanishing normalizing 1-form τN.

Remark 3.1

Observe that in ambient Lorentzian case, the Riemannian distance 
gd
η

 associted to (M,g) coincides with the metric dη as given in section 
(3), i.e = gd dη

η
. It follows the famous Hopf-Rinow theorem that the 

null hypersurface (M,g,N)is dη-complete if and only if the Riemannian 
manifold (M,gη) is complete. Also, for all x∈M,

0 2(1) = { , , = 1 ( ) } = { , ( , ) = 1},x x xX T M X X X X T M g X Xηη∈ 〈 〉 − ∈

that is 0(1) coincides the unit bundle of M with respect to the associated 
Riemannian metric gη from the normalization. It also hods that for all 
X TM∈ , ( ) = gO X Xη

⊥
 .

Relation Between the Null and Associated Riemannian 
Geometry
Connecting the covariant derivatives

Let (M,g,N) be a normalized null hypersurface of pseudo-
Riemannian manifold 

2
( , )

n
M g

+
,∇ the induced connection on M. In 

order to relate the main geometric objects of both null and associated 
non-degenerate geometry on the null hypersurface, we first need to 
relate the covariant derivatives ∇η and ∇. In this respect, we prove the 
following.

Proposition 4.1: Let (M,g,N) be a normalized null hypersurface 
with rigged vector field . Then, for all X,Y∈Γ(TM),we have

*1= [2 ( , ) ( , ) ( , )
2X X N NY Y g A X Y g A X Y g A Y Xη

ξ∇ ∇ + − −

# # .
( ) ( ) ( ) ( )] ( )( ) ( )( )N N

Y XX Y Y X X i d Y i dη ηη τ η τ ξ η η η η+ + + +   (28)

In particular for a closed normalization,

Definition 3.1

A normalized null hypersurface (M,g,N) is said to be η-complete if 
the metric espace (M,dη) is a complet space.

Notations 3.1: For x∈M we set
0 2(1) = { , , = 1 ( ) },x xX T M X X Xη∈ 〈 〉 −
0 0(1) = (1),x

x M∈


 

and for all X∈Γ(TM), we set

( ) = { , , = ( ) ( )},O X Y TM X Y X Yη η η∈ 〈 〉 −

where ,〈 〉  stands for both g  or g. Observe that, ( )Y O Xη∈  iff 
( )X O Yη∈ .

A remarkable fact is that due to the degenerancy of the induced 
metric g on the null hypersurface M, it is not possible to define the 
natural dual (musical) isomorphisms # and # batween the tangent 
vector bundle TM and its dual T*M following the usual Riemannian 
way. However, this construction is made possible by setting a rigging 
(normalization) N (we refer to ref. [5] for further details). Consider a 
normalized null hypersurface (M,g,N) and we define one form define by:

*

# #

# : ( ) ( )

= ( ,.) ( ) (.), ( ), ( ) = ( , ) ( ) ( ).

TM TM

X X g X X Y TM X Y g X Y X Y
η

η ηη η η η

Γ → Γ

+ ∀ ∈Γ +

  (24)

Cleary, such a # is an isomorphism of Γ(TM) on to Γ(T*M) and 
can be used to generalize the usual non-degenerate theory. In the latter 
case,Γ((N)) coincides with Γ(TM), and as a consequence the 1-forme 
vanishes identically and the projection morphism P becomes the 
identity map on Γ(TM). Let #η denote the inverse of the isomorphism 
# given by eqn. (24). For X∈Γ(TM) (resp. #* )),w T M X η∈  (resp. #

w η ) is 
called the dual 1-form of X (resp. the dual vector field of w) with respect 
to the degenerate metric g. It follows from eqn. (24) that if w is a 1-form 
on M, we have for X∈Γ(TM),

#
( , ) = ( ),  , ( ).g X Y X Y X Y TMη

η ∀ ∈Γ 			                (25)

Define a (0,2)-tensor gη by 
#

( , ) = ( ),  , ( ).g X Y X Y X Y TMη
η ∀ ∈Γ  Cleary, 

gη defines a non-degenerate metric on M which plays an important 
role in defining the usual differential operators gradient, divergence, 
Laplacien with respect to degenerate metric g on null hypersurface 
[5]. It is called the associate metric to g on ( , , )M g N . Also, observe 
that innon-degenerate case, the two metrics gη and g coincide. The 
(0,2)-tenseur 1gη

− , inverse of gη is called the pseudo-inverse of g with 
respect to the rigging N. With respect to the quasi orhonormal local 
frame field 0 1{ := , ,..., , }n Nξ∂ ∂ ∂  adapter to the decomposition eqn. (2) 
and (3) the following verifications are straighforword,

( , ) = ( ),   ( ( )g X X X TMη ξ η ∀ ∈Γ Γ

( , ) = ( , )   , ( ( )).g X Y g X Y X Y Nη ∀ ∈Γ  		                (26)

In particular,

( , ) = 1gη ξ ξ

and the last equality in eqn. (26) is telling us that the restrict to (N) 
the metrics g and g coincide. We know from eqn. (12) that the induced 
metric g is not compatible with the induced connection  in general and 
this compatibility arises if and ony the null hypersurface M is totally 
geodesic in M . Let ∇η denote the Levi-Civita connection of the non-
degenerate associate metric gη on (M,g,N). We are now interested in 
characterizing the normalizations for which the Levi-Civita connection 
∇η of g agrees with the induced connection ∇ due to N, i.e ∇η=∇ For 
this we recall the following.
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*1= [2 ( , ) ( , ) ( , )
2X X N NY Y g A X Y g A X Y g A Y Xη

ξ∇ ∇ + − −

( ) ( ) ( ) ( )]N NX Y Y Xη τ η τ ξ+ +

Proof. Both connections∇ηand ∇ are torsion free. the we can write

= ( , ), , ( ),X XY Y X Y X Y TMη∇ ∇ + ∀ ∈Γ

with  is a symmetric tensor. As ∇η is gη-metric, we have

( ( , ), ) ( , ( , )) = . ( , ) ( , ) ( , )X Xg X Y Z g Y X Z X g Y Z g Y Z g Y Zη η η η η+ − ∇ − ∇ 

= ( )( , ).X g Y Zη∇

Then using this and Lemma (3.2), we have

( ( , ), ) ( , ( , )) = ( )[ ( , ) ( , )]N Ng X Y Z g Y X Z Y B X PZ C X PZη η η+ − 

( )[ ( , ) ( , )]N NZ B X PY C X PYη+ −

2 ( ) ( ) ( ).N X Y Zτ η η+

By circular permutation we get similar expression for 
( ( , ), ) ( ( , ), )g Y Z X g Y X Zη η+  , and ( ( , ), ) ( ( , ), )g Z X Y g Z Y Xη η+  . 

Summing the first two expressions minus the last one leads to

2 ( ( , ), ) = ( )[ ( , ) ( , )]N Ng X Y Z X g A Z Y g A Y Zη η ηη −

( )[ ( , ) ( , )]N NY g A Z X g A X Zη ηη+ −
*( )[2 ( , )) ( , ) ( , )N NZ g A Y X g A X Y g A Y Xη ξ η ηη+ − −

2[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )].N N NY X Z X Y Z Z X Yτ η η τ η η τ η η+ + −         (29)

Now using eqn. (26) and (16), we get
# #

2 ( ( , ), ) = 2 [ ( )( ) ( )( ) , ].Y Xg X Y Z g X i d Y i d Zη η
η η η η η η+

*[2 ( , )) ( ) ( ) ( ) ( )N Ng g A X Y X Y Y Xη η ξ η τ η τ+ + +

( , ) ( , ) , ].N Ng A X Y g A Y X Zη η ξ− − 			              (30)

It follows the non-degenerancy of gηthat
*1( , ) = (2 ( , )) ( ) ( ) ( ) (

2
N NX Y g A X Y X Y Y Xη ξ η τ η τ+ +

( , ) ( , ))N Ng A X Y g A Y Xη η ξ− −

# #
( )( ) ( )( ) ,Y XX i d Y i dη ηη η η η+ + 			                (31)

which, using the fact that the operators Aξ
  and AN are (N)-

valued and | ( )| ( )
= NN

g gη   gives the desired formulas. with 
1( , ) = [ . ( ) . ( ) ([ , ]) ]
2

d X Y X Y Y X X Yη η η η− − .

Remark 4.1

From above proposition (4.1), it follows that if the screen distribution 
is integrable (which is equivalent to the symmetry of CNon  (N)×  (N) 
we have for all X,Y∈ (N)

= [ ( , ) ( , )] .N N
X XY Y B X Y C X Yη ξ∇ ∇ + − 		              (32)

Throughout, the normalization wil be assumed closed. Beyond its 
technical aspect this assumption guarentee integrability of thee screen 
distribution  (N).

Some curvature relations

In this section we relate various curvature tensors of the null 
geometry of (M,g,N) to those of the associated non-degenerate metric 
gη on M. Let R and R denote the Riemann curvature tensors of ∇ηand ∇ 
respectively. Using proposition (4.1) we prove the following.

Proposition 4.2: Let (M,g,N) be a closed normalized null 
hypersurface with rigged vector field ξ. Then, for all X,Y,ZΓ(TM), the 
following hold.

( , ) ( , )
1 1( , ) = ( , ) { } { (( )( ), ) ( )( ) ( )
2 2

N
X Z Y Z Y N YR X Y Z R X Y Z A Y A X g A Z X Z Xη

ξ ξφ φ η τ+ − − ∇ + ∇ 

( )[( )( ) ( , ) ( , )] 2 ( )( ), )N
Y N N N XX Z g A Y A Z g A Y A Z g A Y Zξ η η ξη τ+ ∇ − + − ∇ 

( )[ ( , ) ( , ) ( , )] ( )( ), )N
N N X NZ g A X A Y g A X A Y d X Y g A Y Zξ ξη τ− − + + ∇ 

(( )( ), ) ( )[ ( , ) ( , ) ( )( )]N
X N N N N Xg A Z Y Y g A X A Z g A X A Z Zξη τ+ ∇ + − + ∇

( )( ) ( ) 2 (( )( ), ) ( )( ), ) ( , ) ( )}N N
X Y Y NZ Y g A X Z g A X Z d X Y Zξη τ η τ ξ− ∇ + ∇ − ∇ +

Proposition 4.3: Let (M,g,N) be a closed normalized null 
hypersurface with rigged vector field ξ. Then, for all , , ( )X Y W TM∈Γ  and 
U TM ⊥∈  we have,

( ( , ) , ) = ( ( , ) , )g R X Y Z PW g R X Y Z PWη
η

( , ) ( , )
1{ ( , ) ( , )}
2

N N
X Z Y ZB Y W B X Wφ φ+ − 		               (33)

( ( , ) , ) = ( ( , ) , )g R X Y Z U g R X Y U PZη
η −

1[ ( , ) ( , ) ( , ) ( , )]
2

N N
N Ng A U Y B X Z g A U X B Y Z− −

1[ ( ) ( , ) ( ) ( , )] ( ),
2

N N N NX B Y Z Y B X Z Uτ τ η− − 		             (34)

Where φ(X, Z) is given by:

( , ) = 2 ( , ) ( , ) ( , )N
X Z N NB X Z g A X Z g A Z Xφ − −

( ) ( ) ( ) ( ).N NX Z Z Xτ η τ η+ + 			                 (35)

Proof. The Riemann curvature tensor field Rη  of type (1.3) is 
defined by

[ , ]( , ) = [ , ] .X Y X YR X Y Z Z Zη η η η∇ ∇ −∇ 			                (36)

Then eqns. (37) and (38) consist on repeated applications of (30) 
in Proposition (4.1).

Remark 4.2

Note that by lemma (2.2), for a closed and conformal normalization 
(with factor ϕ we have = 0Nτ  and ( , ) = 2(1 ) ( , ).NX Z B X Zφ ϕ−  Then 
eqns. (37) and (38) take the forms

( ( , ) , ) = ( ( , ) , )g R X Y Z PW g R X Y Z PWη
η

(1 )[ ( , ) ( , )N NB X Z B Y Wϕ+ −

( , ) ( , )]N NB Y Z B X W− 				                 (37)

( ( , ) , ) = ( ( , ) , ).g R X Y Z U g R X Y U Zη
η − 		               (38)

In the following we let Ricη and Ric denote the Ricci curvature of ∇η 
and ∇ respectively. Recall that ( , ) =  ( , ) , ,Ric X Y trace Z R Z X Y X Y TMη η ∀ ∈ . 
this is a symmetric (0,2)-tensor on TM. unfortunately, the corresponding 
quantity Ric(X,Y) obtained from ∇ is no longer symmetric in general, 
due to the fact that the induced Riemann curvature R on the normalized 
null hypersurface (M,g,N) fails to have the usual algebraic curvature 
symmetries in general. Precisely, the induced Ricci tensor Ric is 
given by

( , ) = ( , ) ( , ) ( ( , ) ) ( , ),N
N NRic X Y Ric X Y B X Y trA R Y X g A X A Yξθ ξ+ − − 

where ( , )Ric X Y  denotes the Ricci curvature of the ambient 
manifold. We define the (0,2)-symmetrized Ricci tensor Ric0 on the 
null hypersurface by

0 1( , ) = [ ( , ) ( , )]
2

Ric X Y Ric X Y Ric Y X+
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for all X,YTM.

Theorem 4.1

Let (M,g,N) be a closed normalized null hypersurface with rigged 
vector field ξ and τN(ξ)=0 in a ( 2)ân +  pseudo-Riemannian manifold. 
Then,

* *( , ) = ( , ) [ , , ( ) ( ) ]N
NRic X Y Ric X Y A X Y A X Y X Y trAη

ξ ξτ η− 〈 〉 − 〈 〉 +
*( )( ), ( )( ),NA X Y A X Yξ ξ ξ+〈 ∇ 〉 − 〈 ∇ 〉

( )( ) ( ) ( )( ).N N
XX Y Yξτ η τ+ ∇ − ∇ 			               (39)

Proof. Let p∈M and 0 1( := , , , )nE E Eξ   be a quasiorthonormal basis 
for (TpM,gp) with Span 1( , , ) = ( )n pE E N  . When dealing with indices, 
we adopt the following conventions: , , , {1, , }, , , {0, , }i j k n nα β γ∈ ∈   , 
and , , , {0, , 1}a b n∈ +  . Then we have:

=0
( , ) = ( , ) , ).

n

Ric X Y g R E X Y Eη αα η
η α α

α
∑ 	                              (40)

Thus from eqn. (37) and (38), we get,

( , ) = ( ( , ) , ) ( ( , ) , )
n

i i
i

R ic X Y g R X Y g R E X Y Eη η η
η ηξ ξ +∑

* * * * *= ( , ) ( , ) ( , ) ( , )Ric X Y g A X A Y g A X Y g A X Y trAξ ξ ξ ξ ξ+ − −

* 1( , ) [ ( , ) ( , ) ( ) ( )
2

N
N N Ng A X A Y g A X Y g A Y X X Yξ τ η− + + −

*( ) ( ) ] ( ( , ) , ) ( ( , ) , ).N Y X trA g R X Y g R X Y Nξτ η ξ ξ ξ− − −

* *( , ) = ( , ) [ , , ]NR ic X Y Ric X Y A X Y A X Y trAη
ξ ξ− 〈 〉 − 〈 〉

* *( ) ( ) ,( )( ) ( )( )N N
XX Y trA X A Y Yξ ξ ξτ η τ− + 〈 ∇ 〉 − ∇

*( )( ), 2 ( , ) ( ) ( ) ( ).N N
NA X Y d X Y A X Yξ ξτ ξ η τ η−〈 ∇ 〉 + +

Where

=1
( , ) = ( ( , ) , ) ( ( , ) , ),

n

i i i
i

Ric X Y g R E X Y E g R X Y Nε ξ+∑                   (41)

is induced Ricci tensor curvature on a null hypersurface. But 
* *, ( )( ) = ( )( ),X A Y A X Yξ ξ ξ ξ〈 ∇ 〉 〈 ∇ 〉  and 2 ( , ) = ( )( ) ( )( )N N N

Xd X Xξτ ξ τ τ ξ∇ − ∇  and 
*( )( ) = ( )N N

X A Xξτ ξ τ∇ . Also * * *( ( , ) , ) = ( , ) ( , ( )( ))g R X Y g A X A Y g X A Yξ ξ ξ ξξ ξ − ∇  and

( ( , ) , ) = ( )( ) )( ),N
X Ng R X Y N Y A X Yξξ τ∇ + 〈∇ 〉

*2 ( , ) ( ) , .N
Nd X Y A A X Yξτ ξ η− − 〈 〉

By substituting previous terms in the above expression of Ricη(X,Y) 
we get the desired formula.

Corollary 4.1

Let (M,g,N) be a closed normalized null hypersurface with rigged 
vector field ξ an τN(ξ)=0. in a ( 2)ân +  pseudo-Riemannian manifold 
with constant curvature k. Then

* *( , ) = , , ,N NRic X Y nk X Y A X Y trA A X A Yη
ξ ξ〈 〉 + 〈 〉 − 〈 〉

* * *[ , , ( ) ( ) ] ( )( ),N
NA X Y A X Y X Y trA A X Yξ ξ ξ ξτ η− 〈 〉 − 〈 〉 + + 〈 ∇ 〉

( )( ), ( )( ) ( ) ( )( ).N N
N XA X Y X Y Yξ ξτ η τ−〈 ∇ 〉 + ∇ − ∇ 	               (42)

Theorem 4.2

Let (M,g,N) be a closed normalized null hypersurface with rigged 
vector fieldξ and (0,2)-symmetrized Ricci tensor Ric0 on null hypersurface 
and τN(ξ)=0 in a ( 2)ân +  pseudo-Riemannian manifold. Then

0 * *( , ) = ( , ) [ , , ( ) ( ) ]N
NRic X Y Ric X Y A X Y A X Y X Y trAη

ξ ξτ η− 〈 〉 − 〈 〉 +
*( )( ), ( )( ),NA X Y A X Yξ ξ ξ+〈 ∇ 〉 − 〈 ∇ 〉

( )( ) ( ) ( )( ).N N
XX Y Yξτ η τ+ ∇ − ∇ 			                 (43)

Corollary 4.2

Let (M,g,N) be a closed normalized of a null hypersurface with rigged 
vector field and τN(ξ)=0 and (0,2)-symmetrized Ricci tensor Ric0 on null 
hypersurface in a ( 2)ân +  pseudo-Riemannian manifold with constant 
curvature k. Then,

* * *1( , ) = , , [ , ,
2N N NRic X Y nk X Y A X Y trA A X A Y A Y A Xη

ξ ξ ξ〈 〉 + 〈 〉 − 〈 〉 + 〈 〉

( )( ), ( )( ) ( ) ( )( ).N N
N XA X Y X Y Yξ ξτ η τ−〈 ∇ 〉 + ∇ − ∇

( )( ), ( )( ) ( ) ( )( ).N N
N XA X Y X Y Yξ ξτ η τ−〈 ∇ 〉 + ∇ − ∇ 	               (44)

Theorem 4.3

Let (M,g,N) be a closed normalized null hypersurface with rigged 
vector field ξ and τN(ξ)=0 in a ( 2)ân +  pseudo-Riemannian manifold. 
Then

*( , ) = ( , ) ( ) 2 ( , ).N NRic X Ric X X trA d Xη
ξξ ξ τ τ ξ− +                    (45)

Proof. To get eqn. (45), take Y= in the (4.1). Recall that from a 
geometric point of view and in practice, one gets the scalar curvature 
by contracting with a (non-degenerate) metric the (symmetric) Ricci 
curvature. It turns out that in the null geometry setting, such a scalar 
quantity cannot be calculated by the usual way (degenerancy of the 
induced metric and the failure of symmetry in the induced Ricci 
curvature) [12]. This justify introduction of a symmetrized Ricci 
curvature tensor Ric0 and our use of the associated non-degenerate 
metric gη in calculating this scalar quantity. More precisely, the 
extrinsic scalar curvature r0on the rigged null hypersurface (M,g,N) is 
given by gη-trace of the symmetrized Ricci curvature Ric0. With respect 
to a local quasiorthonormal frame 0 1( := , , , )ne e eξ   for (M,gη) we have

00 = .r g Ricαβ
η αβ 					                   (46)

Now let rn denote the scalar curvature of the non-degenerate 
metric gη on M that is the contraction of Ricηwith respect to g. In the 
following, we state a formula relating the extrinsic scalar curvature r0 to 
the associated scalar curvature rn

Theorem 4.4

Let (M,g,N) be a closed normalized null hypersurface with rigged 
vector field ξ and τN(ξ)=0 in a pseudo-Riemannian manifold. Then

0 * *= [ ]Nr r trA trA trAη
ξ ξ− −

* #[ ( ) ( ) .g N
Ntr A tr A divξ ξ ξ τ+ ∇ − ∇ − 			                  (47)

Proof. We have

=r g Ricη αα η
η αα

in a local quasiorthonormal frame field 0 1( := , , , )ne e eξ   for ( ,M gη  
with span 1( , , ) = ( ).ne e N   But

0= [ , , ( ) ( )] ]N
NRic Ric A e e A e e e e trAη

αα αα ξ α α α α α α ξτ η− 〈 〉 − 〈 〉 + 

[ ( )( , ( )( ), ]NA e e A e eξ ξ α α ξ α α+ 〈 ∇ 〉 − 〈 ∇ 〉

[( )( ) ( ) ( )( )].N N
ee e eξ α α αα

τ η τ+ ∇ − ∇

Hence, by contracting each side with gαα
η  and taking 

into account Proposition (4.1) along with the following facts: 
# # #( )( ) = ( ) ( , ) ( , ) = ( , )e i i i e i e ii i i

e g A e e g e g eξτ η τ τ τ∇ + ∇ ∇ , ( )( ) ( ) = 0Ng e eαα
η ξ α ατ η∇ ,

 #
( )( ), = ( ) ( (

N
N Ng A e e tr nabla A gαα η

η ξ α α ξ η ξ τ〈 ∇ 〉 + ∇  and 
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( ) ( ) = 0, ( )( ), = ( ),Ng e e g nabla A e e tr Aαα αα
η α α η ξ α α ξ ξτ η 〈 〉 ∇   we get relation in 

eqn. (51).

For null hypersurface in (n+2)-dimensional ambient space form 
( )M k , it is easy to see that the extrinsic scalar curvature is given by 

0 2= ( ).N Nr n k trA trA tr A Aξ ξ+ −   Then, we have the following [1].

Corollary 4.3

Let (M,g,N) be a closed normalized null hypersurface of a (n+2)-
dimensional Lorentzian space and

τ(ξ)=0. Then
2 * 2= 2 ( ) ( )x N Nr n k trA itrA tr A A trAη

ξ ξ+ − − 

* #[ ( ) ( ) g N
Ntr A tr A divξ ξ ξ τ+ ∇ − ∇ − 			                  (48)

Suppose π is a non-degenerate plane (for gη) in TpM. The real 
number

2

( ( , ) , )
( ) =

( , ) ( , ) ( ( , ))
g R U V V U

K
g U U g V V g U V

η
η

η
η η η

π
−

		               (49)

is the sectional curvature of  (with respect to g). A similar definition 
holds if π is non-degenerate with respect to g, and we denote the 
corresponding quantity by K(π), as we know,it is easy to check that 
the right hand side of eqn. (49) does not depend on the basis of π Lep 
pMand H be a null plane of TPM direct by p pT Mξ ⊥∈ . The null sectional 
curvature of H with respect to ξpis the real number

( ( , ) , )
( ) =

( , )
p p p p p

p
p p p

g R W W
K H

g W Wξ

ξ ξ
			                 (50)

for an arbitrary non-null vector Wp in H. Obviously, this quantity is 
independent of Wp but depends in a quadratic fashion on the rigged 
vector ξp. Below, ( , ) = { , }X span Xπ ξ ξ  denotes a null plane directed by 
(the null vector) ξ and X that is ( , ) = { , }.X span Xπ ξ ξ  Now, we show 
the following.

Lemma 4.1: Let (M,g,N) be a closed normalized null hypersurface 
with rigged vector field  and τN(ξ)=0 in a Lorentzian manifold. Then for 
all p∈M and π⊂∈(N) we have:

2( ) = ( ) ( , ) ( , ) ( , )N N NK K B X Y B X X B Y Yη π π + −

( , ) ( , ) ( , ) ( , ),N N N NB X X C Y Y B X Y C X Y+ − 		                 (51)

Where X and Y are ortogonal in  (N) and π=span{X,Y}

Proof. Observe that a plane π⊂(N) is both non-degenerate with 
respect to g and g (simultaneously) or not. Now, eqn. (51) is a direct use 
of eqn. (37) in the eqn. (49), taking into account the fact without loss 
of generality, we have assumed X and Y gη-unit and orthogonal in  (N) 
(and hence also for g).

Theorem 4.5

Let (M,g,N) an (n+1)-dimensional be a closed normalized null 
hypersurface of a Lorentzian space form M(k) and τN(ξ)=0. Then for a 
non-degenerate plane = { , } , ( )pspan X Y T M p Mπ ⊂ ∈

2 2 2( , ) = [1 ( ) ( ) ] ( , )NK X Y k X Y B X Yη η η− − +

2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )N N N N N NB X Y C PX PY B Y Y C PX PX B X X B Y Y− + −

( , ) ( , ) 2 [ ( ) ( ) ( ) ( ) ] ( , )N N N N NB X X C PY PY X Y X Y B X Yη τ τ η+ + +

2 [ ( ) ( ) ( , ) ( ) ( ) ( , ) ].N N N NX X B Y Y Y Y B X Xη τ η τ− + 	 (52)

Where 0, (1)pX Y ∈ , ( ).Y O Xη∈

Proof. From 0, (1), ( )pX Y Y O Xη∈ ∈ , we infer that ( , ) = ( , ) = 1g X X g Y Yη η  
and g(X,Y)=0. It follows that 2( , ) ( , ) ( , ) = 1g X X g Y Y g X Yη η η−  and 

( , ) = ( ( , ) , )K X Y g R X Y Y Xη
η η . Here, for a vector field X, we brief Xs and 

X0 for PX and η(X)ξ respectively, where P is the morphism projection 
of TM onto (N) and then, X=X0+X5

0 0= ( , )s sK K X X Y Yη η + +
0 0 â 0= ( ( , )( ° , )s s s sg R X X Y Y Y Y X Xη

η + + + +

0 0 0 0 0= ( ( , ) , ) 2 ( ( , ) , ) 2 ( ( , ) , )s s s s s s sg R X Y Y X g R X Y Y X g R X Y Y Xη η η
η η η+ +

0 0 0( ( , ) , ) 2 ( ( , ) , ) ( ( , ) , ).s s s s s s s s sg R X Y Y X g R X Y Y X g R X Y Y Xη η η
η η η+ + +

Using eqn. (38), we get
0 0 0 Å 0 0 01( ( , ) , ) = ( ( , ) , ) [ ( , ) ( , )

2
s s s s s

Ng R X Y Y X g R X Y X Y g A X Y g A X Yη
η − − 

0 0 01( , ) ( , )] [ ( ) ( , )
2

s s N s s
Ng A X X g A Y Y X g A Y Yξ ξτ− − 

0 0( ) ( , )] ( )N s sY g A X Y Xξτ η− 

0 0= ( ( , ) , )s sg R X Y X Y−

0 0= ( ( , ) , )s sg R Y X X Y
2= ( ) ( ( , ) , )s sX g R Y Yη ξ ξ

2 2= [1 ( ) ] ( ) ( ( , )).sY X K Yξη η π ξ−

Similarly, we have 0 0 2 2( ( , ) , ) = [1 ( ) ] ( ) ( ( , ))s s sg R X Y Y X X Y K Xη
η ξη η π ξ− ,
0( ( , ) , ) = ( )[ ( ( , ) , ) ( ) ( , )s s s s s s N Ng R X Y Y X X g R X Y Y X B X Yη

η η ξ τ− −

( ) ( , )],N NX B Y Yτ+
0( ( , ) , ) = ( )[ ( ( , ) , ) ( ) ( , )s s s s s s N N s sg R X Y Y X Y g R X Y X Y B X Xη

η η ξ τ−  
0 0( ( , ) , ) = ( ( , ), , )s s s s s sg R X Y Y X g R X Y X Yη

η −  and
2( ( , ) , ) = ( ( , ) , ) ( , ) (( , ) ( , )s s s s s s s s N N Ng R X Y Y X g R X Y Y X B X Y B X X B Y Yη

η + −

( , ) ( , ) ( , ) ( , ).N N s s N N s sB X X C Y Y B X Y C X Y+ −

Hence
2 2 2 2( , ) = [1 ( ) ] ( ) ( ( , )) [1 ( ) ] ( ) ( ( , ))s sK X Y Y X K Y X Y K Xη ξ ξη η π ξ η η π ξ− + −

0 02 ( ( , ) , ) 2 ( ) ( ( , ) , ) 2 ( ) ( ) ( , )s s s s s N Ng R X Y X Y X g R X Y Y X Y B X Yη ξ η τ− − +

0 22 ( ) ( ) ( , ) 2 ( ( , ) , ) ( , )N N s s s NX X B Y Y g R X Y Y X B X Yη τ− + +

2 ( ) ( ) ( , ) ( ( , ) , ( , ) ( ,) )N N s s s s N NY Y B X X g R X Y Y X B X X B Y Yτ η− + −

( , ) ( , ) ( , ) ( , )N N s s N N s sB X X C Y Y B X Y C X Y+ −

Now, we recall that the ambient is Lorentzian space form 
with curvature (=k). Then, by Gauss-Codazzi equations an 
being in mind 0, (1), ( )pX Y Y O Xη∈ ∈ , it is easy to chek that 

0 0 0( ( , ) , ) = 0 ( ( , ) , ) = 0s s s s sg R X Y X Y g R X Y X Y  

0( ( ( ) , ) = ( ) ( ) ( , )S s sg R X Y Y X Y X B X Yη τ

( ( , ) , ) = { , , , ,s s s s s s s s s s s sR X Y Y X k Y Y X X X Y Y X〈 〉〈 〉 − 〈 〉〈 〉

( , ) ( , ) ( , ) ( , ).N s s N s s N s s N s sB X Y C Y X B Y Y C X X− +
2 2= [1 ( ) ( )]k X Yη η− −

( , ) ( , ) ( , ) ( , ).N N N NB X Y C PX PY B Y Y C PX PX− +

and ( ( ,.)) = 0Kξ π ξ . By substitution, we get the announced relation 
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in eqn. (56). For a totally geodesic null hypersurface, the second 
fundamental form BN vanishes identically and we get the following.

Corollary 4.4

Let (M,g,N) an (n+1)-dimensional be a closed normalized a totally 
geodesic null with rigged field ξ and τN(ξ)=0 in a Lorentzian space form 

( )M k . Then
2 2( , ) = [1 ( ) ( ) ].K X Y k X Yη η η− −

Corollary 4.5

Let (M,g,N) be a closed normalized null hypersurface with rigged field 
ξ and τN(ξ)=0 in a Lorentzian space form ( )M k  Then of a Lorentzian 
space form ( ( ), )M k g . Then

2 2 2( , ) = [1 ( ) ( ) ] ( , ) 2 ( , ) ( , )N N NK X Y k X Y B X Y B X Y C X PYη η η− − + −

( , ) ( , ) ( , ) ( , ) ( , ) ( , ).N N N N N NB Y Y C X PX B X X B Y Y B X X C Y PY+ − +   (53)

In particular, for if the screen distribution is conformal with 
conformal factor , then

2 2( , ) = [1 ( ) ( ) ]K X Y k X Yη η η− −

2(2 1)[ ( , ) ( , ) ( , ) ].N N NB X X B Y Y B X Yϕ+ − −                                    (54)

Proof. obtain relation eqn. (57) by setting τN=0 in eqn. (56). Now 
from Remark (4.2) and definition (3.2) the last claim follows.

A section N is called conformal Killing (CKV in short) or conformal 
collineation on ( , )M g  if ( )C Mρ ∞∈  for some ( )C Mρ ∞∈ . In case ρ 
vanishes identically N is called a Killing vector field and = 0NL g .

Fact 4.1: Assume N is a closed conformal collineation rigging of 
(M,g). Then, the normalizing one-form τN vanishes identicaly on M. 
Morever, the screen distribution  (N) is integrable and totally umbilical.

Proof. Let X,Y be tangent to M. We have:

2 ( , ) = 2 ( , ) = ( )( , ) = , , ,X YNg X Y g X Y L g X Y N Y X Nρ ρ 〈∇ 〉 + 〈 ∇ 〉   (55)

that is

, , ( ) ( ) ( ) ( ) = 2 ( , ).N N
N NA X Y A Y X X Y Y X g X Yτ η τ η ρ−〈 〉 − 〈 〉 + + (56)

Hence, set Y=ξ to get:

2τN(X)=0

i.e τN(X)=0, which shows that τN vanishes on M. Then we get by the 
closed assumption

0 = , ,X YN Y X N〈∇ 〉 − 〈 ∇ 〉

= ( , ) ( , )  (  = 0).N N NC X PY C Y PX asτ− +

So, for X,Y (N) we have

( , ) = ( , ),N NC X Y C Y X

that is the screen distribution is integrable. Now, return to eqn. (56) to get

( , ) ( , ) = 2 ( , ), , ( ).N NC X PY C Y PX g X Y X Y TMρ− − ∈Γ

Hence, for X,Y∈ (N),

( , ) = ( , ).NC X Y g X Yρ−

But, as

( , ) = , = ( ) = 0.N N
NC PY A PY PYξ ξ τ〈 〉 −

we deduce that

( , ) = ( , )NC X PY g X Yρ−

for all X,Y∈Γ(TM) which shows that  (N) is totally umbilical in null 
hypersurface M.

Theorem 4.6

Let (M,g,N) be a null hypersurface of a Lorentzian space form 
( ( ), )M k g  with a closed and conformally Killing (but not Killing) 
normalization. Then (M,g) is totally umbilical in ( , )M g . Moreover, 
ρ being the nowhere vanishing conformal factor of N, we have for all 

0, (1)xX Y ∈ , ( )Y O Xη∈
2

2 2 2 2
2

( ( ) )( , ) = (3 2 ( )) [1 ( ) ( ) ] ( ) ( ).kK X Y k X Y X Yη
ξ ρξ ρ η η η η

ρ
−

− − − +  (57)

Proof. From the previous fact,  (N) is integrable and totally 
umbilical with umbilicity factor-ρ. So, in this case, it is a well know fact 
that the following holds (MEN14, p.110)

{ ( ) ( ) )} ( , ). = ( , ).N Nk g Y X B Y Xξ ρ ρτ ξ ρ− + + −

Hence, as τN()=0 and ρ is everywhere non zero, we get
( )( , ) = ( ) ( , ), , ( ),N kB Y X g Y X X Y TMξ ρ
ρ
−

∈Γ

that is (M,g) is totally umbilical. Now, using previous expressions 
of BNand CN eqn. (57), we get for all 0, (1)xX Y ∈ , Y∈O(X)

2 2 2 2( ) )) = [1 ( ) ( ) ] ( ) ( , )kK k X Y g X Yη
ξ ρη η

ρ
−

− − +

2( ) ( )2( )( ) ( , ) 2 ( ) ( , ) ( , )k kg X Y g X X g Y Yξ ρ ξ ρρ ρ
ρ ρ
− −

− − + −

2 2 2 2 2( ) )= [1 ( ) ( ) ] ( ) ( ) ( )kk X Y X Yξ ρη η η η
ρ
−

− − +

2 2( )2 [1 ( ) ( ) ].k X Yξ ρρ η η
ρ
−

− − −

But for all 0, (1)xX Y ∈ , Y∈O(X)
2 2( , ) = 1 ( ) , ( , ) = 1 ( )g X X X g Y Y Yη η− −

and

( , ) = ( ) ( ).g X Y X Yη η−

and which after substitution leads to the desired expression of

Kη(X,Y) 					                 (58)

Relationship between Curvature and Topology of Null 
Hypersurface

In this section, we study the null geometry of manifolds and 
link their invariants to those of the induced associated Riemannian 
metric on them through the normalization. Thereafter, we use some 
comparison theorems from Riemannian geometry to get informations 
on the underline manifold topology.

Theorem 5.1

Let (M,g,N) be a closed normalized compact null hypersurface of a 
Lorentzian manifold 

2
( , )

n
M g

+
 and τ=0

If
* *( , ) [ , , ]NRic X X A X X A X X trAξ ξ≥ 〈 〉 − 〈 〉

*( )( ), ( )( ),NA X X A X Xξ ξ ξ−〈 ∇ 〉 + 〈 ∇ 〉
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holds for all XTM, then the universal Riemannian covering of the 
associated Riemannian manifold (M,gη) is isometric to a product 
 ( , )qM g δ× ×  where δ stands for the usual eucidean metric on q 

and  ( , )M g  is a compact simply connected Riemannian manifold with 
non negative Ricci curvature.

Proof. This is a direct application of a splitting result by Cheeger 
and Gromoll on compact Riemannian manifolds with non negative 
Ricci curvature [9,10]. Indeed, the ambient manifold being Lorentzian, 
we know that M endowed with the associated metric gη is Riemannian. 
Also, conditions τ=0 eqn. (64) and the expression (47) show that the 
Ricci curvature Ricη of the Riemannian metric g satisfies Ricη  0 that is 
non negative. as the hypersurface is compact, the claim follows [11,12].

Theorem 5.2

Let (Mn+1,g, N) be a closed normalized compact null hypersurface of 
dimensional Lorentzian manifold ( , )M g  and τ=0, and

* *( , ) < [ , , ]NRic X X A X X A X X trAξ ξ〈 〉 − 〈 〉

*( )( ), ( )( ), .NA X X A X Xξ ξ ξ−〈 ∇ 〉 + 〈 ∇ 〉 		                 (59)

Then every Killing vector field on (M,gη) is identically zero and 
group of isometry is finite.

Proof. Using Theorem (4.6), the assumption eqn. (64) is equvalent 
to saying that the hypersurface M,endowed with the associated metric 
gη has a negative sectional curvature. As it is compact, we conclude 
by theorem of Bochner [13] that every Killing vector field on null 
hypersurface is identically zero.

In dimension 3, Schoen and Yau proved in that a complete non-
compact manifold with positive Ricci curvature is diffeoomorphic to 
the standard euclidean space 3. Using this and eqn. (47) lead to the 
folowing [8].

Theorem 5.3

Let (M,g,N) be a closed normalized dη-complete non-compact null 
hypersurface of 4-dimensional Lorentzian manifold ( , )M g  and τ=0 and

* *( , ) > [ , , ]NRic X X A X X A X X trAξ ξ〈 〉 − 〈 〉
*( )( ), ( )( ), .NA X X A X Xξ ξ ξ−〈 ∇ 〉 + 〈 ∇ 〉 		              (60)

Then the manifold structure of the null hypersurface (M,g,N) is 
diffeomorphic to 3.

Proof. The ambient lorentzian manifold has dimension 4, so the 
null hypersurface is 3-dimensional. The inequality ensures that the 
associted metric gη has a positive Ricci curvature. By the Shoen-Yau 
above quoted theorem [8], the claim follows.

Theorem 5.4

Let (M,g,N) be a closed dη-complete null hypersurface of a Lorentzian 
space form ( ( ), )M k g  with conformally Killing (but not Killing) 
normalization. Assume that for all 0, (1)xX Y ∈ , Y∈Oη(X) we have:

2
2 2 2 2

2

[ ( ) ] ( ) ( ) (3 2 ( ))[ ( ) ( ) 1].k X Y k X Yξ ρ η η ξ ρ η η
ρ
−

≤ − + −      (61)

Then the universal covering of the null hypersurface is 
diffeomorphic to n.

Proof. Now, (Mn+1,g,N) being dcomplete, it follows Remark 3.1 that 
the Riemannian manifold (M,gη) is complete. Also, using Theorem (4.6), 
the assumption eqn. (64) is equivalent to saying that the hypersurface 
M endowed with the associated metric g has a nonpositive sectional 

curvature. we conclude by Hadmar theorem that the universal of null 
hypersurface is diffeomorphic to n.

The authors proved, using a correspondence for isometric 
immersions into product spaces that, on a complete Riemannian 
manifold M with negative Ricci curvature, and whose scalar curvature 
is bounded above by a negative constant, the standard Euclidean 
space (Rn,Euc) cannot be isometrically immersed into the Lorentzian 
product space M×. A direct consequence of this fact is the following 
[14].

Theorem 5.5

Let (M,g,N) be a dη-complete null hypersurface of a (n+1)-dimensional 
(n≥2) Lorentzian manifold ( , )M g  with a closed normalization and τ=0. 
Assume that

* *( , ) < [ , , ]NRic X X A X X A X X trAξ ξ〈 〉 − 〈 〉 		               (62)
*( )( ), ( )( ), ,NA X X A X Xξ ξ ξ−〈 ∇ 〉 + 〈 ∇ 〉

and
* * *[ ] ( ) ( ) < ,N Nr trA trA trA tr A tr A cξ ξ ξ ξ ξ≤ − − ∇ + ∇ 	               (63)

for some positive constant c. Then the standard Euclidean space 
(n,Euc) cannot be isometrically immmersed into the Lorentzian 
product space MnL where the underline manifold M is endowed with 
the Riemannian associated metric gη.  being  with the negative 
definite metric -dt2.

Proof. The null hypersurface M being dη-complete, it follows that 
M endowed with the associated metric gη is a complete Riemannian 
manifold. Also, as τ=0 from eqns. (62) and (47) we infer that the Ricci 
curvature of the associated Riemannian metric gη is negative, and by 
eqns. (51) and (63) its scalar curvature is bounded above by the negative 
constant -c. This completes the proof.

Theorem 5.6

Let 3
( , )M g  a Lorentzian manifold and (M,g,N) be a closed 

normalized complete null hypersurface in , )M g  with
2

2 2 2 2
2

[ ( ) ] ( ) ( ) > (3 2 ( ))[ ( ) ( ) 1].k X Y k X Yξ ρ η η ξ ρ η η
ρ
−

− + −    (64)

Then no complete Riemannian surface ( , , )〈 〉∑ ∑  of constant 
curvature c>KM can be isometrically immersed into M2×

Proof. The null hypersurface M being dη -complete, it follows that 
M endowed with the associated metric gη is a complete Riemannian 
manifold. Also, as τ=0, from eqns. (62) and (47).

Conclusion
We infer that the sectional curvature of the associated Riemannian 

metric gη is negative, by using theorem José [14,15] on correspondence 
for isometric immersions into product spaces, we completes the proof 
wih the research result of Through the research establishment of links 
between the null geometry and basics invariants of the associated 
Riemannian metric is explained successfully.  
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