Influence of Lateral Walls on Peristaltic Flow of a Third Grade Fluid in a Rectangular Duct

Safia Akram1, Nadeem S2 and Anwar Hussain1
1Department of Basics Sciences, MCS, National University of Sciences and Technology, Islamabad 44000, Pakistan
2Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 Pakistan

Abstract
In the present study we have discussed the influence of lateral walls on peristaltic flow of a third grade fluid in a rectangular duct. The mathematical equations of the third grade fluid for the rectangular duct are first modeled and then simplified under the assumptions of long wave length and low Reynolds number approximation. The reduced equations are solved analytically using Homotopy perturbation method and the Eigen function expansion method. The graphical results of the present problem are also discussed to see the effects of various emerging parameters. It is observed that with an increase in third grade parameter the pressure rise, pressure gradient and number of the trapping bolus decreases.

Keywords: Peristaltic flow; Rectangular duct; Third grade fluid; Analytical solution

Introduction
Experimental and theoretical research in peristaltic flows has received increased attention during the past several decades. This is due to importance of this area in biomedical engineering and physiology. Several pertinent area of interest (where the peristaltic flows are functional) are urine transport from kidney to bladder, the movement of chyme in the gastrointestinal tract, fluids in the lymphatic vessels, bile from the gall bladder into the duodenum, the movement of spermatooza in the ductus efferent of the male reproductive tract, the movement of the ovum in the fallopian tube, circulation of blood in small blood vessels, roller and finger pumps, heart lung machine, blood pump machine and dialysis machine etc. After the pioneering work done by Latham [1], various researchers have discussed the peristaltic flows with different geometries [2-10]. Recently, Subba Reddy et al. [11] have examined the flow of a viscous fluid due to symmetric peristaltic waves propagating on the horizontal sidewalls of a rectangular duct. They pointed out that the peristaltic flow of traditional asymmetric two dimensional channels may not better approximate the motion of intrauterine fluid in a sagittal cross section of the uterus. Therefore, they consider the rectangular duct instead of two dimensional channels. Later on Mandiwalla and Archer [12] extended the idea of Subba Reddy et al. [11] and discussed the influence of slip boundary condition on peristaltic pumping in a rectangular channel. Another area of focus in fluid mechanics is the study of non-Newtonian fluids. Some important examples of non-Newtonian fluids are blood, mustard, mayonnaise, tooth paste, asphalt, lava and ice, mud slides, snow avalanches, flow of plasma, nuclear fuel slurries, flow of nuclear fuel slurries flow of liquid metals and alloys, flow of mercury amalgams and lubrications with heavy oils and greases [13-17]. The flow characteristics of non-Newtonian fluids are quite different from those of Newtonian fluids. There are many models of non-Newtonian fluids which exhibits different flow properties. However, Second and third order fluids are those which exhibits both shear thinning and shear thickening effects [18-22].

The main goal here is to present the peristaltic flow of a third grade fluid in a rectangular duct. The governing equations of third grade fluid are simplified under the assumptions of long wave length and low Reynolds number and then the resulting nonlinear equations with the corresponding boundary conditions of rectangular duct are solved analytically with the help of Homotopy perturbation method and eigen function expansion method. The expressions of pressure rise, pressure gradient and stream functions are plotted and discussed for various physical parameters of interest.

Mathematical Modelling
Let us consider the peristaltic flow of an incompressible third grade fluid in a duct of rectangular cross section having the channel width 2d and height 2a. We are considering the Cartesian coordinates system in such a way that X-axis is taken along the axial direction, Y-axis is taken along the lateral direction and Z-axis is along the vertical direction of a rectangular duct as shown in Figure 1.

The peristaltic waves on the walls are represented as

\[Z = H(X,t) = \pm a \pm b \cos \left(\frac{2\pi}{\lambda}(X - ct)\right) \]

(1)

where \(a\) and \(b\) are the amplitudes of the waves, \(\lambda\) is the wave length, \(t\) is the velocity of propagation, \(X\) is the time and \(X\) is the direction of wave propagation. The walls parallel to XZ plane remain undisturbed and are not subject to any peristaltic wave motion. We assume that the lateral velocity is zero as there is no change in lateral direction of the duct cross section. Let \((U, 0, W)\) be the velocity for a rectangular duct. The governing equations for the flow problem are

\[\frac{\partial U}{\partial X} + \frac{\partial W}{\partial Z} = 0 \]

(2)

\[\rho \left(\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} + W \frac{\partial U}{\partial Z} \right) = - \frac{\partial P}{\partial X} + \frac{\partial}{\partial X} \left(S_{xx} \right) + \frac{\partial}{\partial Y} \left(S_{xy} \right) + \frac{\partial}{\partial Z} \left(S_{xz} \right). \]

(3)

*Corresponding author: Safia Akram, Department of Basics Sciences, MCS, National University of Sciences and Technology, Islamabad 44000, Pakistan, Tel: 009251561119; E-mail: safia_akram@yahoo.com

Received February 27, 2014; Accepted March 26, 2014; Published April 03, 2014

Copyright: © 2014 Akram S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The resulting equations after dropping the bars can be written as

\[
\begin{align*}
0 &= \frac{\partial P}{\partial Y} + \frac{\partial \theta}{\partial X} S_{xX} + \frac{\partial \theta}{\partial Y} S_{yY} + \frac{\partial \theta}{\partial Z} S_{zZ}, \\
\rho \left(\frac{\partial W}{\partial X} + U \frac{\partial W}{\partial Z} + W \frac{\partial W}{\partial Z} \right) &= -\frac{\partial P}{\partial Z} + \frac{\partial \theta}{\partial X} S_{xX} + \frac{\partial \theta}{\partial Y} S_{yY} + \frac{\partial \theta}{\partial Z} S_{zZ},
\end{align*}
\]

in which \(\rho \) is the density, \(P \) is the pressure, \(t \) is the time and \(S \) is the stress tensor for third grade fluid. The stress tensor for third grade fluid is defined as [23]

\[
S = \mu A_1 + \alpha_1 A_2 - \alpha_2 A_2 + \beta_1 \left(\text{trace} A_1^2 \right) A_1.
\]

\[
A_1 = L + L', \quad A_{n+1} = \frac{dA_n}{dt} + A_n L + L' A_n
\]

Where \(L = \text{grad} V, \quad L' = (\text{grad} V)' \), their \(\alpha_1, \alpha_2 \) and \(\beta_1 \) are material moduli.

Let us define a wave frame \((x, y)\) moving with the velocity \(c \) away from the fixed frame \((X, Y)\) by the transformation

\[
x = X - ct, \quad y = Y, \quad z = Z, \quad u = U - c, \quad w = W, \quad \rho(x, z) = P(X, Y, t).
\]

Defining the following non-dimensional quantities

\[
\begin{align*}
\tilde{z} &= \frac{x}{c}, \quad \tilde{y} = \frac{y}{c}, \quad \tilde{z} = \frac{z}{c}, \quad \tilde{u} = \frac{u}{c}, \quad \tilde{w} = \frac{w}{c}, \quad \tilde{\theta} = \frac{\theta}{c^2}, \quad \tilde{L} = \frac{L}{c^2}, \quad \tilde{A} = \frac{A}{c^2}, \quad \tilde{\beta} = \frac{\beta}{c^2},
\end{align*}
\]

\[
\begin{align*}
\tilde{S}_{xx} &= \frac{\partial \theta}{\partial \tilde{X}} S_{xX}, \quad \tilde{S}_{yy} = \frac{\partial \theta}{\partial \tilde{Y}} S_{yY}, \quad \tilde{S}_{zz} = \frac{\partial \theta}{\partial \tilde{Z}} S_{zZ}, \quad \tilde{A}_1 = \frac{\text{trace} \tilde{A}^2}{\mu}, \quad \tilde{A}_2 = \frac{\text{trace} \tilde{A}^2}{\mu}, \quad \tilde{A}_3 = \frac{\text{trace} \tilde{A}^2}{\mu}
\end{align*}
\]

Using the above non-dimensional quantities in Equations (2) to (6), the resulting equations after dropping the bars can be written as

\[
\begin{align*}
\frac{\partial \tilde{u}}{\partial \tilde{X}} + \frac{\partial \tilde{w}}{\partial \tilde{Z}} &= 0, \\
\text{Re} \left(\frac{\partial \tilde{u}}{\partial \tilde{X}} + \frac{\partial \tilde{u}}{\partial \tilde{Z}} \right) &= -\frac{\partial P}{\partial \tilde{Z}} + \delta \tilde{S}_{xx} + \beta_1 \delta \tilde{S}_{yy} + \delta \tilde{S}_{zz}, \quad \text{Re} \left(\frac{\partial \tilde{w}}{\partial \tilde{X}} + \frac{\partial \tilde{w}}{\partial \tilde{Z}} \right) = -\frac{\partial P}{\partial \tilde{X}} + \delta \tilde{S}_{xx} + \beta_1 \delta \tilde{S}_{yy} + \delta \tilde{S}_{zz},
\end{align*}
\]

Under the assumption of long eave length \(\delta \leq 1 \) and Low Reynolds number, Equations. (8) to (11) take the form

\[
\begin{align*}
\frac{d\psi}{dx} &= \beta_1 \frac{\partial \psi}{\partial \psi} + \frac{\partial \psi}{\partial \psi} \left(2\Gamma \frac{\partial \psi}{\partial \psi} \right) + 2\Gamma \frac{\partial \psi}{\partial \psi} \left(\frac{\partial \psi}{\partial \psi} \right) + 2\Gamma \frac{\partial \psi}{\partial \psi} \left(\frac{\partial \psi}{\partial \psi} \right) + 2\beta_1 \frac{\partial \psi}{\partial \psi} \left(\frac{\partial \psi}{\partial \psi} \right) \\
&+ 2\beta_1 \frac{\partial \psi}{\partial \psi} \left(\frac{\partial \psi}{\partial \psi} \right)
\end{align*}
\]

The corresponding boundary conditions are

\[
\begin{align*}
u &= -1 \text{ at } y = \pm 1, \\
u &= -1 \text{ at } z = \pm h(x), \quad \text{Where } 0 \leq \phi \leq 1, \quad \phi = 0 \text{ for straight duct and } \phi = 1 \text{ corresponds to total occlusion.}
\end{align*}
\]

Solution of the problem

Homotopy perturbation method: The Homotopy Perturbation Method for Eq. (12) can be defined as

\[
H(v, q) = (1 - \phi) H(v) + \phi L(v) + q L(u_0) + q \left(2\Gamma \frac{\partial \psi}{\partial \psi} \left(\frac{\partial \psi}{\partial \psi} \right) + 2\Gamma \frac{\partial \psi}{\partial \psi} \left(\frac{\partial \psi}{\partial \psi} \right) \right) - \frac{dp}{dx} = 0.
\]

Or

\[
H(v, q) = L(v) + q L(u_0) + \left(2\Gamma \frac{\partial \psi}{\partial \psi} \left(\frac{\partial \psi}{\partial \psi} \right) + 2\Gamma \frac{\partial \psi}{\partial \psi} \left(\frac{\partial \psi}{\partial \psi} \right) \right) - \frac{dp}{dx} = 0
\]

For our convenience we have taken \(L = \beta_1 \frac{\partial \psi}{\partial \psi} + \frac{\partial \psi}{\partial \psi} \) as the linear operator. We define the initial guess as

\[
u_0 = -1 - h^2 \left(1 - \frac{z^2}{h^2} - \frac{1}{h^2} \right)
\]

Let us define

\[
\nu(v, q) = v_0 + q v_1 + q^2 v_2 + \ldots.
\]

Substituting Equation (17) into Equation (15) and then comparing the like powers of \(q \) one obtains the following problems with the corresponding boundary conditions.

Zeroth order system

\[
L(v_1) - L(u_0) = 0
\]

First order system

\[
L(v_0) + L(u_0) + \left(2\Gamma \frac{\partial \psi}{\partial \psi} \left(\frac{\partial \psi}{\partial \psi} \right) + 2\Gamma \frac{\partial \psi}{\partial \psi} \left(\frac{\partial \psi}{\partial \psi} \right) \right) - \frac{dp}{dx} = 0
\]
\[v_0 = 0 \text{ at } y = \pm 1, \]
\[v_0 = 0 \text{ at } z = \pm h(x), \]
\[\text{Solution of Zeroth order system} \]
With the help of Equation (17) the closed form solution of Equation (19) satisfying the boundary conditions is written as
\[v_0(y, z) = -1 - h'(x) \left(1 - \frac{z^2}{h'(x)^2} \right) - \frac{1}{h'(x)^2} \left(1 - y^2 \right) \]
\[\text{Solution of first order system} \]
With the help of Equation (23), Equation (21) can be written as
\[\beta \frac{\partial^2 v_1}{\partial y^2} + \frac{\partial v_1}{\partial z} = \frac{dp}{dx} + \frac{32\Gamma}{\beta^2} y^2 - 32\Gamma z^2 \]
The solution of the above non-homogeneous partial differential equation can be expressed as
\[v_1(y, z) = \sum_{n=0}^{\infty} \frac{1}{\cosh \left(\frac{\alpha_n}{h(x)} \right)} \left(2\beta b_n + a_n \beta_n + \lambda_n h_n \right) \cos \left(\frac{\alpha_n}{h(x)} z \right) \]
\[- \frac{2\beta^2 b_{n0} + a_n \alpha_n + \beta_n h_{n0} y^2}{\alpha_n} \cos \left(\frac{\alpha_n}{h(x)} z \right) \]
Where
\[\alpha_n = (2n-1)\pi/2, \]
\[a_n = 2 \frac{dp(-1)^n}{dx} - 64\Gamma h'(x)(-1)^n + 128\Gamma h''(x)(-1)^n, \]
\[b_{n0} = -64\Gamma(-1)^n, \]
By using the property of Homotopy perturbation method the original solution can be obtained by using
\[u(y, z) = \lim_{q \to 1} (v_0 + q v_1 + \ldots) \]
Which is equivalent to
\[u(y, z) = v_0 + v_1 + \ldots \]
Finally, with the help of Equations (23) and (25), Equation (27) can be written as
\[u(y, z) = -1 - h'(x) \left(1 - \frac{z^2}{h'(x)^2} \right) - \frac{1}{h'(x)^2} \left(1 - y^2 \right) + \sum_{n=0}^{\infty} \frac{1}{\cosh \left(\frac{\alpha_n}{h(x)} \right)} \left(2\beta b_n + a_n \beta_n + \lambda_n h_n \right) \cos \left(\frac{\alpha_n}{h(x)} z \right) - \frac{2\beta^2 b_{n0} + a_n \alpha_n + \beta_n h_{n0} y^2}{\alpha_n} \cos \left(\frac{\alpha_n}{h(x)} z \right) \]
Where constants appearing in Equations (28) are defined Equation (26)
The volumetric flow rate is given by
\[q = \int_0^1 \int_0^{h(x)} u dy dz \]
Integation of Equation (31) over one wavelength yields
\[\Delta p = \int_0^1 \frac{dp}{dx} dx \]
Where \(dp/dx \) is defined in Equation (31)
It is noticed here that the limit \(\beta \to 0 \) (keeping a fixed and \(\delta \to \infty \)), the rectangular duct reduces to a two dimensional channel. It is also noticed that when \(\beta = 1 \) the rectangular duct becomes a square duct.

Numerical Result and Discussion

This section deals with the graphical and numerical results of the
The present problem under discussion. The expression for pressure rise and pressure gradient is calculated numerically using a mathematics software Mathematica. Figures 2-4 show the variation of pressure rise with volume flow rate Q for different values of aspect ratio β, amplitude ratio ϕ, and third grade parameter Γ. It is observed from Figure 2 that in the retrograde pumping ($\Delta p > 0, Q > 0$) region the pressure rise increases with an increase in aspect ratio β, while in the peristaltic pumping ($\Delta p > 0, Q < 0$), (free pumping $\Delta P = 0$) and copumping ($\Delta p < 0, Q < 0$) regions the behavior is quite opposite. Here pressure rise decreases with an increase in aspect ratio β. Figure 3 shows the variation of pressure rise with volume flow rate Q for different values of amplitude ratio ϕ. It is observed that the pressure rise increases with an increase in the retrograde pumping and free regions, while in the copumping region the pressure rise decreases with an increase in amplitude ratio ϕ. Figure 4 shows the variation of pressure rise with volume flow rate Q for different values of aspect ratio β. It is observed from Figure 4 that the pressure rise decreases with an increase in third grade parameter Γ in all the regions. Figures 5-8 show the variation of the pressure gradient with the space variable x for different values of aspect ratio β, amplitude ratio ϕ, volume flow rate Q and third grade parameter Γ. It is depicted that for $x \in [0, 0.2]$ and $x \in [0.8, 1]$, the pressure gradient is small i.e., the flow can easily pass without imposition of a large pressure gradient, while in the region $x \in [0.2, 0.8]$, pressure gradient increases with an increase in

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Variation of Δp with Q for different values of ϕ at $\beta=2.0$ and $\Gamma=0.02$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Variation of Δp with Q for different values Γ at $\beta=0.4$ and $\phi=0.4$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Variation of Δp with Q for different values of ϕ at $\beta=0.2$ and $\Gamma=0.04$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{Variation of Δp with Q for different values of ϕ at $\beta=0.5$, $\Gamma=0.05$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{Variation of Δp with Q for different values of ϕ at $\beta=0.5$, $\Gamma=0.05$ and $\phi=0.8$.}
\end{figure}
aspect ratio ϕ and amplitude ratio Γ decreases with an increase in volume flow rate Q and third grade parameter Γ. Figures 9-11 show the streamlines for different values of amplitude ratio ϕ, aspect ratio β, Volume flow rate Q and third grade parameter Γ. It is observed from Figures 9 and 10 that the size of the trapped bolus decreases with an increase in ϕ, β and Q, while in the middle of the channel the size of the stream lines increases with an increase in ϕ, β and Q.

It is observed from Figure 11 that the number of the trapping bolus decreases with an increase in Γ, while in the middle of the channel the stream lines increases with an increase in Γ.

Concluding Remarks

In this paper effect of lateral walls on peristaltic flow of a third grade fluid in a rectangular duct is discussed. Assumptions of long wave length and low Reynolds number approximation is used to develop the simplified mathematical equations of third grade fluid for the rectangular duct. The reduced equations are solved analytically using Homotopy perturbation method and the eigen function expansion method. The results are discussed through graphs. The main finding can be summarized as follows:

- The pressure rise increases with an increase in aspect ratio β
- The pressure rise increases with an increase in amplitude ratio ϕ and decreases with an increase in β and Q.
- The size of the trapped bolus decreases with an increase in ϕ, β and Q, while in the middle of the channel the size of the stream lines increases with an increase in ϕ, β and Q.
- The number of the trapping bolus decreases with an increase in Γ.

References

1. Latham TW (1966) Fluid motion in a peristaltic pump, Massachusetts Institute of Technology, Cambridge, USA.
2. Weinberg SL (1970) A theoretical and experimental treatment of peristaltic pumping and its relation to ureteral function, Massachusetts Institute of Technology, Massachusetts, USA.

