Inhibitory Effects and Anti-Invasive Activities of Trehalose Liposomes on the Proliferation of Lung Carcinoma Cells

Keiji Kuwabara, Hideaki Ichihara and Yoko Matsumoto

Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan

Corresponding author: Yoko Matsumoto, Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; Tel: +81 96 326 3965; Fax: +81 96 323 1331; E-mail: matumoto@life.sojo-u.ac.jp

Received date: January 16, 2017; Accepted date: January 20, 2017; Published date: January 25, 2017

Abstract

Inhibitory effects and anti-invasive activities of trehalose liposomes (DMTreC14) composed of L-α-dimyristoylphosphatidylcholine and α-D-glycopyranosyl-α-D-glucopyranoside monomyrystate (TreC14) on the proliferation of human non-small cell lung carcinoma (A549) cells were examined in vitro. DMTreC14 with a hydrodynamic diameter less than 100 nm, were preserved for 4 weeks. The inhibitory effects of DMTreC14 on the proliferation of A549 cells accompanied with apoptosis were obtained. Enhancement of the accumulation of DMTreC14 into A549 membranes was observed. An increase in cellular membrane fluidity of A549 cell treated with DMTreC14 was observed on the basis of fluorescence depolarization method. DMTreC14 caused apoptosis for A549 cells through the activation of caspases and mitochondrial pathway. The anti-migration effects of DMTreC14 for A549 cells were observed through the inhibition of filopodia formation. The anti-invasion effects with the reduction of MMP-14 of DMTreC14 for A549 cells were obtained.

Keywords: Trehalose liposomes; Lung carcinoma; Invasion; Apoptosis

Abbreviations DMPC: L-α-Dimyristoylphosphatidylcholine; DMTreC14: Treharose Liposomes composed of DMPC and TreC14; MMP-14: Matrix Metalloproteinase-14; NBPC: 1-Palmitoyl-2-[[7-nitro-2-1,3-benzoxadiazol-4-yl]amino][dodecanoyl]-sn-glycero-3-phosphocholine; TreC14: α-D-glycopyranosyl-α-D-glucopyranoside monomyrystate.

Introduction

Lung cancer can be roughly classified into small cell and non-small cell lung cancer (NSCLC), which is the greater part of lung cancer. Molecular targeted therapeutics for NSCLC have been developed such as bevacizumab [1] and gefitinib [2]. However, there have been severe side effects in those therapies [3,4]. Therefore, novel treatment methods with no side effects are required to improve quality of life for patients.

Sugars play many roles in the life of the animals. To maintain life, the cells need a carbohydrate chain in adhesion, intercellular molecular recognition and transmission of the information between living cells. In the trehalose of disaccharides, specific binding on liposome of the trehalose with a high hydration power has been reported [5]. Protection effects for toxicity by cryopreservation of human erythrocytes have been shown [6].

Trehalose liposomes have been produced by using sonication of a mixture of phosphatidylcholine and trehalose surfactants in buffer solutions with no organic solvent [7]. Inhibitory effects of trehalose liposomes on the growth of tumor cells along with apoptosis have been reported [7-9]. Growth inhibition against colon, gastric, hepatocellular and leukemia cells has been obtained using trehalose liposomes without drugs. However, inhibitory effects and anti-invasive activities of trehalose liposomes on the growth of lung carcinoma have not yet been examined.

In this study, we investigated induction of apoptosis and invasive inhibition by DMTreC14 composed of L-α-dimyristoylphosphatidylcholine (DMPC) and α-D-glycopyranosyl-α-D-glucopyranoside monomyrystate (TreC14) for non-small cell lung carcinoma (A549) cells.

Experimental Section

Preparation of DMTreC14

DMTreC14 were prepared using sonicator (VS-N300; VELVO, Tokyo, Japan) after the mixing DMPC (purity=99%; NOF Co. Ltd., Tokyo, Japan) and TreC14 (Dojindo Ltd., Kumamoto, Japan) in 5% glucose solution at 45°C with 300 W, and then filtrated with a 0.45 μm filter [7-9].

Dynamic light scattering measurements

The diameter (d_{int}) of DMTreC14 was measured by a light scattering spectrometer (ELS-8000, Otsuka Electronics, Osaka, Japan) using He–Ne laser (633 nm) at scattering angle=90° [7-9].

Cell culture

Human non-small cell lung carcinoma (A549) cell lines were purchased from the Riken Cell Banc (Ibaraki, Japan). A549 cells were cultured in D-MEM medium (Life Technologies, Carlsbad, CA, USA) including 10% fetal bovine serum (FBS, HyClone Laboratories Inc., UT, USA), penicillin (100 unit/ml) and streptomycin (50 μg/ml) in incubator humidified at atmosphere of 5% CO₂ and at 37°C [10,11].
**Analysis of apoptosis by DMTreC14 using flowcytometer**

Cells were seeded at a density of 1.0 × 105 cells per dish and incubated in a humidified atmosphere of 5% CO2 at 37°C for 24 h. DMTreC14 was added into each dish and the dishes were incubated. Cells were centrifuged and suspended in PBS (−) containing 1 mg/ml RNase, 0.1% Triton X-100 and 40 μg/ml propidium iodide (PI, Molecular Probes, Eugene, OR, USA) in a dark room. The percentage of apoptotic cells was analyzed using a flow cytometer (Epics XL system II, Beckman Coulter, Brea, CA, USA) [9].

**Mitochondrial membrane potential**

Depolarization method [9]. A549 cells were labeled with 200 μM DMTreC14 for 3 hours. The respective caspase-3, -8, and -9, activities were obtained, suggesting that DMTreC14 induced apoptosis of A549 cells by the activation of those caspases.

**Fusion and accumulation of DMTreC14 into the cell membrane**

The fusion and accumulation into the A549 cell membranes of DMTreC14 including a fluorescence probe (1-palmitoyl-2-[12-[(7-nitro-2-1,3-benzoazadil-4-yl)amino]-dodecanoyl]-sn-glycerol-3-phosphocholine (NB-DPC; Avanti Polar Lipids, Alabama, USA) was performed using confocal laser microscopy (TCS-SP, Leica Microsystems, Berlin, Germany) [7-9]. A549 cells (2.0 × 105 cells/ml) were incubated in a humidified incubator at 37°C and 5% CO2 for 24 h. The A549 cells were treated with DMTreC14/NBDPC ([DMPC]=0.1 mM, [TreC14]=0.259 mM, [NBDPC]=0.1 μM) for 4 h and were observed using confocal laser microscopy with a 488 nm Ar laser line (detection at 505-555 nm).

**Measurement of cellular membrane fluidity**

The membrane fluidity of A549 cells was measured using spectrophotofluorometer (F-4500; HITACHI) on the basis of the fluorescence depolarization method [9]. A549 cells were incubated with DPH (1,6-diphenyl-1,3,5-hexatriene, Nacalai Tesque, Japan). The fluorescence depolarization (P) value of DPH in cells treated with DMTreC14 was measured.

**Assessment of expression values of MMP-14 by flow cytometry**

A549 cells (1.0 × 105) were seeded in dishes and incubated for 24 h. A549 cells were treated with DMTreC14 (40 μM) for 24 h. After cells were fixed with 10% formaldehyde for 30 min, the A549 cells then were incubated with anti-MMP14 rabbit monoclonal antibody (Abcam plc, Cambridge, UK) (5 μg/ml) at room temperature for 30 min and stained Alexa Fluor 488™ Goat Anti-Mouse IgG (10 μg/ml) antibody in shaded box at 4°C for 1 h. Stained A549 cells were measured by a flow cytometer [12,16,17].

**Scratch wound assay**

The migration of A549 cells was performed by scratch wound assay [12-15]. The A549 cells (2.5 × 105 cells/ml) were treated with DMTreC14 (200 μM) for 3 hours. The wounded A549 cells were treated with or without 100 μM DMTreC14. The wounded A549 cells were photographed using a light microscope (EVOS II, Life Technologies, CA, USA). The migration areas were measured using ImageJ (Version 1.46r, National Institutes of Health, Bethesda, MD, USA).

**Mitochondrial membrane potential**

3,3-Dihexyloxacarbocyanine iodide [DiOC6(3)] (Molecular Probes, Oregon, USA) were added in A549 cells treated with DMTreC14 ([DMPC]=0.1 mM, [TreC14]=0.233 mM) to evaluate mitochondrial transmembrane potential (Δψm) [7-9]. The stained A549 cells were investigated using flow cytometry with a 15 mW 488 nm air-cooling Ar laser and FL1 sensor (505-545 nm).

**Observation of filopodia formation by fluorescence microscopy**

The formation of filopodia in the A549 cells was analyzed using confocal laser microscopy. The cells (2.0 × 104 cells/mL) were treated with 200 μM DMTreC14 for 3 hours. After fixing with 10% formaldehyde, the A549 cells were incubated with of rhodamine phalloidin (Molecular Probes) for 30 min. The stained A549 cells were observed with confocal laser microscopy [11].

**Results**

**Physical properties of DMTreC14**

We examined the morphology of DMTreC14 on the basis of dynamic light scattering measurements. DMTreC14 with a hydrodynamic diameter less than 100 nm was kept for 4 weeks. In contrast, DMPC liposomes were unstable and precipitated at 14 days after the preparation.

**Induction of apoptosis of DMTre for A549 cells**

We evaluated the apoptotic DNA rate of A549 cells treated with DMTreC14 using flow cytometry. Results are shown in Figure 1A. Apoptotic DNA rate increased after the treatment with DMTreC14 as the dose of DMTreC14 increased. The apoptotic DNA rate reached a high apoptotic rate (95%). The data indicated that DMTreC14 induction of apoptosis for A549 cells. Suppression effects of DMTreC14 on the proliferation of A549 cells was investigated using WST-8 assay by the methods described previously [7-9]. DMTreC14 dose-dependently suppressed the proliferation of A549 cells, and showed 40 μM of 50% inhibitory concentration (IC50) for A549 cells. In contrast, DMPC liposomes showed no inhibition (IC50=450 μM). To investigate the pathways of apoptosis caused by DMTreC14 for A549 cells, we examined activation of caspases in A549 cells treated with DMTreC14 on the basis flow cytometric analysis as shown in Figure 1B. Enhanced activities of caspase-3, -8 and -9 were obtained, suggesting that DMTreC14 induced apoptosis of A549 cells by the activation of those caspases.
caspases. Next, we examined the mitochondrial pathway in apoptosis induced by DMTreC14 for A549 cells. The results are shown in Figure 1C. The decreased mitochondrial transmembrane potential of A549 cells after the treatment with DMTreC14 was obtained.

**Figure 1:** The induction of apoptosis for A549 cells induced by DMTreC14. (A) Induction of apoptosis toward A549 cells treated with DMTreC14. (B) Caspase activation for A549 cells treated with DMTreC14. (C) Decrease in mitochondrial transmembrane potential of A549 cells treated with DMTreC14.

**Fusion and accumulation of DMTreC14 into A549 cells**

The fusion and accumulation of DMTreC14 for A549 cells was examined on the basis of a confocal laser microscope. The results are shown in Figure 2A. Increased accumulation of DMTreC14 including NBDPC as a fluorescence probe was observed, although no accumulation of DMPC was obtained.

We examined membrane fluidity of A549 cells on the basis of the fluorescence polarization (P) analysis. The results are shown in Figure 2B. The P value decreased in A549 cells treated with DMTre, indicating the increase of membrane fluidity of A549 cells.

**Figure 2:** (A) Accumulation of DMTreC14 (DMTre/NBDPC) including fluorescence probe in the plasma membranes of A549 cells. (B) Membrane fluidity in membrane of A549 cells treated with DMTreC14.

**Suppression on migration of A549 cells by DNTreC14**

We investigated the anti-invasion effects of DMTreC14 associated with suppression of cell motility. The anti-migration effects of DMTreC14 on the migration capability of cells was analyzed on the basis of a scratch wound assay [12-15]. The results are shown in Figure 3A. Inhibitory effects of DMTreC14 on the migration of A549 compared with control cells were obtained. The anti-migration effects of DMTreC14 were investigated at low concentrations (40 μM) without affecting growth-inhibition under IC50 values (40 μM). The treatment with DMTreC14 markedly inhibited migration of A549 cells as compared with control cells.

By the way, filopodia formation on the surface of tumor cells plays an important role in the invasion and migration into the surrounding tissue [18-20]. Accordingly, the suppression effects of DMTreC14 on the filopodia formation of A549 cells were observed by confocal laser microscopy. Results are shown in Figure 3B. Few filopodia on the surface of A549 cells treated with DMTreC14 (40 μM) for 3 h was observed, although many filopodia in the control and DMPC were obtained.
Inhibit the invasion of A549 cells in vitro.

Inhibitory DMTreC14 decreased as compared with the control and DMPC. DMTreC14 was observed.

inhibition of MMP-14 in A549 cells

expression rate of membrane type 1 metalloprotease (MMP-14) in A549 cells treated with DMTreC14 on the basis of immunostaining by

invasion process such as activation of pro-MMP2 and pericellular proteolysis. To clarify effects of DMTreC14 on invasion, we examined expression rate of MMP-14 in A549 cells treated with DMTreC14 on the basis of immunostaining by a flow cytometer. The results are shown in Figure 4. The relative expression rate of MMP-14 in A549 cells after the treatment with DMTreC14 decreased as compared with the control and DMPC. The inhibition of MMP-14 in A549 cells after the treatment with DMTreC14 was observed. These results suggest that DMTreC14 should inhibit the invasion of A549 cells in vitro.

Discussion

Chemotherapy with molecular targeted drug such as bevacizumab [1] and gefitinib [2] is effective for patients with NSCLC. However, many clinical studies have indicated several limitations to the application in those therapies [3,4]. Although they kill tumor cells, chemotherapy damage normal cells. Therefore, novel therapeutic agents without side-effects are desirable.

The inhibitory effects of trehalose liposomes (DMTreCn) composed of DMPC and DMTreC14 on the growth of human colon carcinoma, gastric carcinoma and lymphoma in vitro were reported [7-9]. Remarkably high inhibitory effects (IC50=40 µM) of DMTreC14 on the proliferation of A549 cells obtained. In contrast, DMPC liposomes showed no inhibition (IC50=450 µM). The thickness of the fixed aqueous layer of DMTreCn was larger than that of DMPC liposomes and increased in a dose-dependent manner [7,8]. Therefore, inhibitory effects of DMTreC14 could be related to hydration in tumor cells.

Increased accumulation of DMTreC14 including NBDPC as a fluorescence probe was observed, although no accumulation of DMPC was obtained. In addition, remarkably high accumulation into stomach, liver and colon carcinoma cell membranes of DMTreCn has been confirmed [7,8]. In contrast, accumulation in DMPC was undetected [7,8]. These results suggest that DMTreC14 could have higher suppression effects on the proliferation of A549 cells as compared with DMPC. Increased membrane fluidity of A549 cells treated with DMTreC14 was obtained on the basis of the fluorescence polarization (P) analysis. Enhanced fluidity of cell membrane in the apoptosis for tumor cells has been reported [18,19]. These results suggest that DMTreC14 fused into A549 cells and then increased fluidity of the cell membrane.

The induction of apoptosis and their pathways of apoptosis by DMTreCn have been reported for human colon carcinoma and gastric carcinoma cells [7,8]. Enhanced activities of caspase-3, -8 and -9 in A549 cells treated with DMTreC14 were obtained. The decreased mitochondrial transmembrane potential of A549 cells after the treatment with DMTreC14 was obtained. The data indicate that DMTreC14 caused apoptosis through the mitochondria pathway for A549 cells. That is, the apoptotic signal first passes through the mitochondria, caspase-9 and caspase-3, then through caspase-8 and caspase-3 after the fusion and accumulation into A549 cell membrane, and then reaches the nucleus. DMTreC14 activated caspases 3, 8, and 9 and the apoptotic signal passed through mitochondria. These results indicate that DMTreC14 induced apoptosis toward A549 cells through the activation of caspases-3, -8 and -9 and mitochondria.

Tumor cell invasion is an important early step in the process of tumor metastasis. Remarkably inhibitory effects of DMTreC14 on migration of A549 cells were obtained as compared with that on control cells. Interestingly, the anti-invasive effects of DMTreC14 were observed at low concentrations (40 µM) without affecting growth-inhibition. Actin cytoskeleton dynamics, such as lamellipodia and filopodia formation on the surface of tumor cells plays an important role in the invasion and migration into the surrounding tissue [18-22]. The treatment with DMTreC14 drastically inhibited the filopodia formation in A549 cells. These results suggest that the DMTreC14 inhibited migration of A549 cells and could be related to suppressing the filopodia formation.

MMP-14 is a transmembrane metalloprotease. MMP-14 involves invasion process such as activation of pro-MMP2 and pericellular proteolysis. The inhibition of MMP-14 in A549 cells after the treatment

Figure 3: Suppression on the migration of A549 cells by DMTreC14 on the basis of scratch wound method. (A) Blue lines indicate initial wound area; red lines indicate migrating cells. Relative migration area of 549 cells in the absence or presence of DMTreC14 for 19 h. (B) Suppression on the filopodia formation of A549 cells by DMTreC14. The cells stained with rhodamine phalloidin observed using confocal laser microscopy. Scale bars: 10 µm. Allows indicate the filopodia formation in A549 cells.

Figure 4: Relative expression rate of MMP-14 in A549 cells after the treatment with DMTreC14 (40 µM) for 24 h. Data represent the mean (n=3) ± SE *p<0.05 (vs. control and DMPC).

Table 1: Relative migration area of A549 cells

<table>
<thead>
<tr>
<th>Condition</th>
<th>Relative migration area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.98 ± 0.03</td>
</tr>
<tr>
<td>DMPC</td>
<td>0.96 ± 0.02</td>
</tr>
<tr>
<td>DMTreC14</td>
<td>0.84 ± 0.01</td>
</tr>
</tbody>
</table>

* p<0.05 (vs. control and DMPC)
References


