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Introduction
The zinc oxide (ZnO) is a semiconductor II-IV investigated since 

several years, that is why many physical properties of the ZnO in 
large number are already known [1-5]. Now a day, the possibility to 
increase the thins films and hetero-structures in nanoscale with high 
quality have attracted the attention of the researchers. With its wide 
band gap (Eg=3.37 eV) and its larger exciton binding energy (60 meV) 
several applications have been made such as the ultraviolet (UV)-
stimulated emission induced by the exciton-exciton scattering at 
moderate pumping intensity [6], the diluted magnetic semiconductor 
with the authors [7] which demonstrated theoretically that at room 
temperature, a ZnO matrix doped with the transitions metals such 
as V, Cr, Mn, Fe, Co, and Ni present a ferromagnetic behavior as 
well as several others applications [8-18]. Beside the experimental 
manipulation, the theoretical aspect played an important role for the 
investigation of all the excitonic parameters impossible for access with 
the experimental manipulation. That is why, the authors [8,9,19,20] 
investigated theoretically and respectively the mixed states of excitons 
and photons by using the quantum theory of a classical dielectric. 
The temperature dependent PL of the A free exciton peak energy 
measured in the case of the perpendicular polarization (E ⊥ c) by using 
the Varshni empirical equation and the theoretical reflectivity of the 
excitons A, B and C in both polarization parallel and perpendicular by 
using the Gaussian distribution as well as several others researchers. In 
this article one presents another model unless the Gaussian distribution 
used by the authors [9] to investigate the experimental reflectivity observed 
in the a-plane oriented ZnO in the polarization, parallel and perpendicular, 
entitled the inhomogeneous model [21,22] in the framework of a numerical 
investigation [23-27], to plot the exciton A, B and C. One will compare our 
results with those obtained in Lo B, Diouf AA [8,9] using other theoretical 
treatments. In Section 2, Computational Method, one will present the 
inhomogeneous model which will allow us to determine the theoretical 
reflectivity of the a-plane oriented ZnO and the results obtained are 
well discussed in the section 3.

Computational Method
To model the optical properties, one used the inhomogeneous 

model defined by:

For one oscillator: 
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Being similar to a plasma pulsation, α0, j polarizability of the exciton, 
εb the high-frequency dielectric constant of the material (outside the 
excitonic resonance), Г the spectral width, h the Planck constant, ω0 is 
the resonance frequency, N the number of particles, e0 the elementary 
charge electron, m* is the effective mass and x is the resonance energy 
of excitons.

The inhomogeneous model allows to determine the exciton energy 
E0,j, the oscillator strength Aj and the parameters for the widening of 
the excitonic ray (h/2π). Гj, it includes in general the influence of the 

Inhomogeneous Model for the Investigation of the Optical Properties of 
the A-Plane Oriented ZnO Epilayers Grown by Plasma-Assisted Molecular 
Beam Epitaxy
Diouf AA*, Lo B, Ngom BD and Beye AC
Nanoscience Laboratory, Solid Physics and Materials Science Group, Faculty of Science and Technology, Dakar Cheikh Anta Diop University, Dakar-Fann, Senegal

Abstract
Experimentally the a-plane oriented ZnO showed three types of excitons A, B and C. The theoretical investigation 

became important to get access inside all excitonic parameters impossible with experimental. Authors used recently 
the Gaussian distribution by using new parameters to fit perfectly the free excitons. In the present work, one presents 
another model entitled an inhomogeneous model by taking account another form of Gaussian function, to plot 
and interpret the excitons A, B and C by using as well the same physical parameters than the theory of the spatial 
resonance dispersion of Hopfield model. The data found with the inhomogeneous model are almost the same than 
experimental data found the authors.



Citation: Diouf AA, Lo B, Ngom BD, Beye AC (2018) Inhomogeneous Model for the Investigation of the Optical Properties of the A-Plane Oriented ZnO 
Epilayers Grown by Plasma-Assisted Molecular Beam Epitaxy. J Laser Opt Photonics 5: 186. doi: 10.4172/2469-410X.1000186

Page 2 of 4

Volume 5 • Issue 2 • 1000186
J Laser Opt Photonics, an open access journal
ISSN: 2469-410X 

that the parameters summarized in the (Table 1) are used to model the 
theoretical reflectivity of the exciton A B. In Table 2 one has the values 
used by the authors [8] to have their best fit of the free excitons. The 
method used with the inhomogeneous model allowed furthermore the 
excitons A B Figure 1b, to plot the free exciton C shown in the Figure 2b thing 

temperature and the quality of the material (homogeneity, fluctuations 
in thickness etc.).

Moreover, the modeling of the optical reflectivity, one can do an 
investigation of the thermal behavior and turbulent of the system with 
the spectral widening which is a function of the temperature “T” and 
the effective masse “m*=0.59m0” of the exciton defined by:
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T: Temperature

m0: Mass of a free electron

kB: Constant of Boltzmann.

Results and Discussion
Experimentally the optical characterization of the a-plane oriented 

ZnO shows three types of excitons A, B and C, according to the choice 
of the polarization, parallel or perpendicular. The energy of the three 
excitons have been found experimentally by authors [8] equal to 
EA=3.398 eV (ωA=0.516 × 1014s-1), EB=3.410 eV (ωB=0.518 × 1014) and 
Ec=3.438 eV (ωB=0.522 × 1014). Diouf et al. [9] investigated theoretically 
and found almost the same values than the experimental values than Lo 
et al [8]. by using the Gaussian distribution defined by:
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Where the coefficient α is related to the oscillator strength 
(4πNe0

2/m*), ω0 is the resonance frequency e0=e/4πε0 with “e” designated 
as the elementary charge electron R0 the reflection coefficient Ai the 
spectral area and Γi the spectral width. In the present study one built 
a program from the inhomogeneous model (1) to investigate the 
optical properties of the a-plane oriented ZnO. The results obtained 
by simulation are summarized in the Table 1 compared to the results 
found experimentally by the authors [8] (Table 2). A comparison of 
the tables shows that the inhomogeneous model Figure 1a and Figure 
2a, is more accurate than the model used by the authors [8] to plot the 
reflectivity curve of the exciton A B. Otherwise one insists on the fact 

Free Exciton Frequency (ω0) (s-1) 
Energy(eV)

Oscillator Strength (α, Spectral widening  (Г, (m.s-1) Effective mass (m*)

A 5.15E+13
(E=3.390 eV)

1.705 3.25E+12
(Г=2.14 meV)

0.59 m0

B 5.16E+13
(E=3.401 eV)

0.759 4.00E+14
(Г=26.3 meV)

0.59 m0

C 5.21E+13
(E=3.430 eV)

-2.044 2.53E+10
(Г=1.66 meV)

0.59 m0

Table 1: Values of A, B and C free exciton frequency (ω, (s-1), the spatial widening (Г), the effective mass (m*) and the Area (Ai) of the reflective curves obtained by using 
the Gaussian distribution.

Free Exciton Energy (E) (eV) Oscillator Strength (α) Spectral widening (Г) (meV) Effective mass (m*)
A 3.393 1.708 10.38 0.59 m0

B 3.403 0.77 11.479 0.59 m0

Table 2: Values of A and B free exciton Energy E(eV), Oscillator Strength (α), the spatial widening (Г) and the effective mass (m*) of the exciton obtained by using the 
Hopfield model [8].

Figure 1a: Theoretical reflectivity of exciton A and B.

Figure 1b: Theoretical reflectivity of exciton C.
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increases with the temperature otherwise the inhomogeneous widening 
depends on the quality of the material through the inhomogeneity of 
the thickness composition or stress. As well with the inhomogeneous 
widening it is taken into account through the collection of harmonics 
oscillators the energy which is distributed according to the Gaussian 
centered on the average energy E0 and the width halfway up 2 ln 4σ .

One used also the spectral widening to investigate the thermal 
behavior of a-plane oriented ZnO (Figure 4). One noted that from 8 K 
to 300 K the thermal profile of the sample of ZnO augments with the 
enhancement of the temperature. One can explain this phenomenon 
from the relation (4), by the fact that the temperature is an increase 
function of the spectral widening. Reason why the authors [8] during 
their experiments used a cryostat to control the temperature. Unless 
the others models [28-31] which are limited on the investigation of 
the c-plane oriented ZnO. But the inhomogeneous model moreover 
c-plane oriented ZnO allowed to investigate the structure of the a-plane 
oriented ZnO and one plotted in the same time the excitons A B and C 
something that one did not find in the literature with the others models 
unless the model presented recently by the authors [32-34].

found by Diouf [9]. One can explain the phenomenon but the fact that 
the reflectivity curves are composed by several Gaussian shapes thus 
with the inhomogeneous model according to the Gaussian distribution 
it was easy to find the reflectivity curves by playing in the value of the 
oscillator strength for more accurate. As well a comparison between 
the authors [8] with the Hopfield model and the inhomogeneous 
model show important difference summarized in the tables unless 
the simple Gaussian model (5, used by the authors [9]. One noted 
that in the range of energy between 3.375 eV and 3.425 eV which 
represents the reflectivity pic energy range all the models are accurate 
with the experimental reflectivity curves. But from 3.275 eV to 3.375 
eV representing the range of transparency zone one observed that the 
inhomogeneous model used plots the whole reflectivity curve obtained 
experimentally by the authors [8]. One can explain this result by the fact 
that the inhomogeneous model takes accounts the optical properties 
when the frequencies (ω, are lower than the resonance frequency (ω0, 
exactly like the simple Gaussian distribution used by authors [9]. The 
parameters used to plot the free exciton C are summarized in Table 
1. The inhomogeneous model can determine separately the both types 
of widening (Figure 3). The homogeneous widening which depends of 
the temperature noted Г represents the interaction exciton-photon it 

Figure 2a: Experimental reflectivity of exciton A and B.

Figure 2b: Experimental reflectivity of exciton C.

Figure 3a: Set of reflectivity curves of exciton A and B.

Figure 3b: Set of reflectivity curves of exciton C.
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Conclusion
In this paper one presented another model entitled inhomogeneous 

model which can be used for the optical characterization. One found 
the same theoretical reflectivity curves of the free excitons A, B and C 
in comparison with the experimental results found by Lo et al. by using 
the same parameters than the authors [8]. Otherwise, one compared the 
inhomogeneous model with the simple Gaussian distribution used by 
authors [9], one has the same results the only difference is the spectral 
area used in the Gaussian distribution [9]. One investigated as well, the 
thermal profile of the a-plane oriented ZnO using the spectral widening 
of the inhomogeneous model. All these results allowed us to present 
two mathematics models which can be used for the characterization of 
the nonlinear optical properties with a specific simulation code before 
getting the experimental results.
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