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Introduction
Eklund and Gahler [1] introduced the notion of fuzzy filter 

and by means of this notion the point-based approach to the fuzzy 
topology related to usual points has been developed. The more general 
concept for the fuzzy filter introduced by Gahler [2] and fuzzy filters 
are classified by types. Because of the specific type of the L-filter 
however the approach of Eklund and Gahler [1] is related only to the 
L-topologies which are stratified, that is, all constant L-sets are open.
The more specific fuzzy filters considered in the former papers are now 
called homogeneous. The notion of fuzzy real numbers is introduced
by Gahler and Gahler [3], as a convex, normal, compactly supported
and upper semi-continuous fuzzy subsets of the set of all real numbers
R. The set of all fuzzy real numbers is called the fuzzy real line and will
be denoted by RL, where L is complete chain.

The operation on the ordinary topological space (X,T) has been 

defined by Kasahara [4] as a mapping φ from T into 2X such that A ⊆ Aφ, 
for all A ∈ T. Abd El-Monsef et al. [5], extend Kasahara [4] operation 
to the power set P (X) of the set X Kandil et al. [6] extended Kasahars’s 
and Abd El-Monsef’s operations by introducing operation on the class 
of all fuzzy sets endowed with an fuzzy topology τ as a mapping φ: LX → 
LX such that int µ ≤ µφ for all µ ∈ LX, where µφ denotes the value of φ at 
µ. The notions of fuzzy filters and the operations on the class of all fuzzy 
sets on X endowed with an fuzzy topology τ are applied in ref. [7] to 
introduce a more general theory including all the weaker and stronger 
forms of the fuzzy topology. By means of these notions the notion 
of φ1,2-interior of the fuzzy set, φ1,2-fuzzy convergence and φ1,2-fuzzy 
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Abstract
Basic notions related to the characterized fuzzy 12

2

R and characterized fuzzy 13
2

T -spaces are introduced 

and studied. The metrizable characterized fuzzy spaces are classified by the characterized fuzzy 12
2

R  and 

the characterized fuzzy T4-spaces in our sense. The induced characterized fuzzy space is characterized by the 
characterized fuzzy 13

2

T  and characterized fuzzy 13
2

T -space if and only if the related ordinary topological space 

is 12,
2

Rϕ1 2 -space and 13,
2

Tϕ1 2 -space, respectively. Moreover, the α-level and the initial characterized spaces are 

characterized 12
2

R  and characterized 13
2

T -spaces if the related characterized fuzzy space is characterized fuzzy 

12
2

R  and characterized fuzzy 
13
2

T , respectively. The categories of all characterized fuzzy 12
2

R  and of all characterized 

fuzzy 13
2

T -spaces will be denoted by CFR-Space and CRF-Tych and they are concrete categories. These categories 

are full subcategories of the category CF-Space of all characterized fuzzy spaces, which are topological over the 
category SET of all subsets and hence all the initial and final lifts exist uniquely in CFR-Space and CRF-Tych. That 
is, all the initial and final characterized fuzzy 12

2

R  spaces and all the initial and final characterized fuzzy 13
2

T -spaces 

exist in CFR-Space and in CRF-Tych. The initial and final characterized fuzzy spaces of a characterized fuzzy 12
2

R

-space and of a characterized fuzzy 
13
2

T -space are characterized fuzzy 12
2

R  and characterized fuzzy 13
2

T -spaces, 

respectively. As special cases, the characterized fuzzy subspace, characterized fuzzy product space, characterized 
fuzzy quotient space and characterized fuzzy sum space of a characterized fuzzy 12

2

R -space and of a characterized 

fuzzy 13
2

T -space are also characterized fuzzy 12
2

R  and characterized fuzzy 
13
2

T -spaces, respectively. Finally, three 

finer characterized fuzzy 
12
2

R -spaces and three finer characterized fuzzy 13
2

T -spaces are introduced and studied.
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neighborhood filters are defined. The notion of φ1,2-interior operator 
for the fuzzy sets is also defined as a mapping φ1,2.int: LX → LX which 
fulfill (I1) to (I5). Since there is a one-to-one correspondence between 
the class of all φ1,2-open fuzzy subsets of X and these operators, then the 
class φ1,2OF (X) of all φ1,2-open fuzzy subsets of X is characterized by 
these operators. Hence, the triple (X, φ1,2.int) as will as the triple (X, φ1,2 
OF (X)) will be called the characterized fuzzy space of φ1,2-open fuzzy 
subsets. For each characterized fuzzy space (X, φ1,2.int) the mapping 
which assigns to each point x of X the φ1,2-fuzzy neighborhood filter at 
x is said to be φ1,2-fuzzy filter pre topology [7]. It can be identified itself 
with the characterized fuzzy space (X, φ1,2.int). The characterized fuzzy 
spaces are characterized by many of characterizing notions, for example 
by: φ1,2-fuzzy neighborhood filters, φ1,2-fuzzy interior of the fuzzy filters 
and by the set of all φ1,2-inner points of the fuzzy filters. Moreover, the 
notions of closeness and compactness in characterized fuzzy spaces are 
introduced and studied in ref. [8]. For an fuzzy topological space (X, τ), 
the operations on (X, τ) and on the fuzzy topological space (IL, ℑ), where 
I=[0, 1] is the closed unit interval and ℑ is the fuzzy topology defined on 
the left unit interval IL are applied to introduced and studied the notions 
of characterized fuzzy 12

2

R -spaces and characterized fuzzy 13
2

T -spaces 

or (characterized Tychonoff spaces) [9]. In this paper, Basic notions 
related to the characterized fuzzy 12

2

R  and the characterized fuzzy 

13
2

T -spaces are introduced and studied. Some of this the metrizable 

characterized fuzzy spaces, initial and final characterized fuzzy spaces 
and three finer characterized fuzzy 12

2

R -spaces are introduced and 

classified by the characterized fuzzy 12
2

R  and characterized fuzzy 13
2

T

-spaces. The metrizable characterized fuzzy space is introduce as a 
generalization of the weaker and stronger forms of the fuzzy metric 
space introduced by Gahler and Gahler [3]. For every stratified fuzzy 
topological space (X, τd) generated canonically by an fuzzy metric 
d on X, the metrizable characterized fuzzy space (X, φ1,2.intτd) is 
characterized fuzzy T4-space in sense of Abd-Allah [10] and therefore 
it is characterized fuzzy 12

2

R  and characterized fuzzy 13
2

T  L-space. 

The induced characterized fuzzy space (X, φ1,2.intω) is characterized 
fuzzy 

12
2

R and characterized fuzzy 13
2

T -space if and only if the related 

ordinary topological space (X, T) is φ1,2 13
2

T -space and φ1, 13
2

T -space, 

respectively, that is, the notions of characterized fuzzy 12
2

R -spaces 

and characterized fuzzy 13
2

T -spaces are good extension as in sense of 

Lowen [11]. Moreover, the α-level characterized space (X, φ1,2.intα) and 
the initial characterized space (X, φ1,2.inti) are characterized 12

2

R -space 

and characterized 13
2

T -space if the related characterized fuzzy space 

(X, φ1,2.intτ) is characterized fuzzy 12
2

R -space and characterized fuzzy 

13
2

T -space, respectively. We show that the finer characterized fuzzy 

space of the characterized fuzzy 12
2

R -space and of the characterized 

fuzzy 13
2

T -space is also characterized fuzzy 12
2

R and characterized fuzzy 

13
2

T -space, respectively. The categories of all characterized fuzzy 12
2

R  

and of all characterized fuzzy 
13
2

T -spaces will be denoted by CFR-

Space and CRF-Tych, respectively. We show that these categories 
are concrete categories and they are full subcategories of the category 

CF-Space of all characterized fuzzy spaces, which are topological over 
the category SET of all subsets and hence all the initial and final lifts 
exist uniquely in CFR-Space and CRF-Tych, respectively. That is, all 
the initial and final characterized fuzzy 13

2

T -spaces and all the initial 
and final characterized fuzzy 13

2

T -spaces are exist in the categories 

CFR-Space and CRF-Tych. Moreover, we show that the initial and 
final characterized fuzzy spaces of the characterized fuzzy 12

2

R -space 

and of the characterized fuzzy 
13
2

T -space are characterized fuzzy 12
2

R  

and characterized fuzzy 
13
2

T -spaces, respectively. As an special cases, 

the characterized fuzzy subspace, characterized fuzzy product space, 
characterized fuzzy quotient space and characterized fuzzy sum space 
of the characterized fuzzy 12

2

R -space and of the characterized fuzzy 

13
2

T -space are also characterized fuzzy 12
2

R  and characterized fuzzy 

13
2

T -spaces, respectively. Finally, in section 5, we introduce and study 

three finer characterized fuzzy 
12
2

R  and three finer characterized fuzzy 

13
2

T -spaces as a generalization of the weaker and stronger forms of 

the completely regular and fuzzy 
13
2

T -spaces introduced [1,12,13]. 

The relations between such new characterized fuzzy 12
2

R -spaces and 

our characterized fuzzy 13
2

T -spaces are introduced. More general the 

relations between such new characterized fuzzy 13
2

T -spaces and our 

characterized fuzzy 13
2

T -spaces are also introduced. Meany special 

cases from these finer characterized fuzzy 12
2

R -spaces and from finer 

characterized fuzzy 13
2

T -spaces are listed in Table 1.

Preliminaries

We begin by recalling some facts on fuzzy sets and fuzzy filters. 
Let L be a completely distributive complete lattice with different least 
and last elements 0 and 1, respectively. Consider L0=L\{0} and L1=L\{1}. 
Recall that the complete distributivity of L means that the distributive 
law ( ) ( )i ii I i I

α α α α
∈ ∈
∨ ∧ = ∨ ∧ . Sometimes we will assume more specially 

that L is a complete chain, that is, L is a complete lattice whose partial 
ordering is a linear one. The standard example of L is the real closed 
unit interval I=[0, 1]. For a set X, let LX be the set of all fuzzy subsets 
of X, that is, of all mappings µ: X → L. Assume that an order-reversing 
involution α 7→α′ is fixed. For each fuzzy set µ, let co µ denote the 
complement of µ defined by: (co µ) (x)=co µ(x) for all x ∈ X. For all 
x ∈ X and α ∈ L0. Supµ means the supremum of the set of values of µ. 
The fuzzy sets on X will be denoted by Greek letters as µ, η, ρ,. . . etc. 
Denote by α the constant fuzzy subset of X with value α ∈ L. The fuzzy 
singleton xα is an fuzzy set in X defined by xα(x)=α and xα(y)=0 for all 
y x≠ , α ∈ L0. The class of all fuzzy singletons in X will be denoted by 

S(X). For every xα ∈ S(X) and µ ∈ LX, we write xα ≤ µ if and only if α ≤ 
µ(x). The fuzzy set µ is said to be quasi-coincident with the fuzzy set ρ 
and written µ q ρ if and only if there exists x ∈ X such that µ(x)+ ρ(x)>1. 

If µ not quasi-coincident with the fuzzy set ρ, then we write qµ ρ . The 
fuzzy filter on X [14] is the mapping M: LX →L such that the following 
conditions are fulfilled:

(F1) ( )   α αΜ ≤ for all α ∈ L and (1)=1.
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(F2)  (µ ∧ η)= (µ) ∧  (η) for all µ, η ∈ LX.

The fuzzy filter  is said to be homogeneous [14] if ( )M α α=  
for all α ∈ L. For each x ∈ X, the mapping 

.
:   Xx L L→  defined 

by ( ) ( )
.
x µ µ x= for all µ ∈ LX is a homogeneous fuzzy filter on X. 

The homogenous fuzzy filter at the fuzzy set is defined by the same 
way as follows, for each µ ∈ LX, the mapping µ: LX → L defined by 
( )

( )
( )

0

.

x
x

σ
σ σµ

<
= ∧  for all σ ∈ LX is also homogenous fuzzy filter on 

X, called homogenous fuzzy filter at µ ∈ LX. Obviously, the relation 
between homogenous fuzzy filter µ˙ at µ ∈ LX and the homogenous 
fuzzy filter x˙ at x ∈ X is given by: 

( )
( )

( )
.

0x
x

µ
µ η σ

≥
= ∧  				                  (2.1) 

for all η ∈ LX. As shown in ref. [15], µ ≤ η if and only if
. .
  µ η≤ holds 

for all µ, η ∈ LX. Let LX and LX denote to the sets of all fuzzy filters 
and of all homogeneous fuzzy filters on X, respectively. If  and  are 
fuzzy filters on the set X, then  is said to be finer than , denoted 
by  ≤ , provided  (µ) ≥  (µ) holds for all µ ∈ LX. Noting that if 
L is a complete chain then M is not finer than N, denoted by  ̸≤ , 
provided there exists µ ∈ LX such that  (µ) <  (µ) holds. As shown 
in ref. [4], if ,  and L are three fuzzy filters on a set X, then we have:

  M L N≠ ≥  implies M N≠ and M L N≥ ≠  implies M N≠ .

The coarsest fuzzy filter  on X is the fuzzy filter has the value 1 at 
1 and 0 otherwise. Suprema and infimum of sets of fuzzy filters are 
meant with respect to the finer relation. An fuzzy filter  on X is 
said to be ultra [2] fuzzy filter if it does not have a properly finer fuzzy 
filter. For each fuzzy filter  ∈ LX there exists a finer ultra fuzzy 
filter U ∈ LX such that U ̸≤ . Consider  is a non-empty set of 
fuzzy filters on X, then the supremum M A

M
∈
∨  exists [2] and given 

by ( ) ( )
M A M A

( )M Mµ µ
∈ ∈
∨ = ∧  for all Xµ L= but the infimum M A

M
∈
∧

does not exists, in general. As shown in ref. [16], the infimum M A
M

∈
∧

of  with respect to the finer relation for fuzzy filters exists if and 
only if 1 1 1( ) ... ( ) sup( ... )n n nM Mµ µ µ µ∧ ∧ ≤ ∧ ∧ holds for all finite subset 

1{ ,... }nM M of  and 1,...,
X

n Lµ µ ∈ . In this case the infimum is given by:

( )
1
1

1 1...
,...

M A
( ) ( ( ) ... ( )),

n
n

n n
M M A

M M M
µ µ µ

µ µ µ
∧ ∧ ≤∈

∈

∧ = ∨ ∧ ∧

for all µ ∈ LX. 

Fuzzy filter bases. A family (Bα)α∈L0 of non-empty subsets of LX 
is called a valued fuzzy filter base [2] if the following conditions are 
fulfilled:

(V1) µ ∈ α implies α ≤ sup µ.

(V2) For all α, β ∈ L0 with α∧β ∈ L0 and all µ ∈ α and η ∈ β there 
are γ ≥ α∧β and σ ≤ µ ∧ η such that σ ∈ γ. 

As shown in ref. [2], each valued fuzzy filter base (α)α∈L defines 
an fuzzy filter  on X by 

,
( )

B
M

η α η µ
µ α

∈ ≤
= ∨  for all µ ∈ LX. Conversely, 

each fuzzy filter  can be generated by a valued fuzzy filter base, e.g., 
by (α-pr )α∈L0 with α-pr M={µ∈LX⃒ α≤(µ)}. (α-pr )α∈L0 is a 
family of pre filters on X and it is called the large valued filter base of 
. Recall that a pre filter on X [17] is a non-empty proper subset of  
of LX such that (1) µ, η ∈ X implies µ ∧ η ∈  and (2) from µ ∈  and 
µ ≤ η it follows η ∈ .  subset  of LX is said to be superior fuzzy filter 
base [2] if the following conditions are fulfilled:

(S1) Bα ∈  for every α ∈ L.

(S2) For all µ, η ∈  there is a fuzzy set σ ∈  such that σ ≤ µ, σ ≤ η 
and sup σ=sup µ ∧ sup η.

Each superior fuzzy filter base  generated a homogeneous fuzzy 
filter  on X by 

,
( )

B
M

η η µ
µ

∈ ≤
= ∨ sup η for all Xµ L∈  and each fuzzy 

filter  can be generated by a superior fuzzy filter base, e.g., by base 
{ ) sup }M( },X XM µ L µ µ µ Mµ µ L= ∈ = = ∧ ∈  where base M will be called 

the large superior fuzzy filter base of . If X is a non-empty set and 
µ is an fuzzy subset of X, then       { | } { | }B µ L Lα α α α= ∧ ∈ ∪ ∈ is a 
superior fuzzy filter base of a homogeneous fuzzy filter on X, called 
superior principal fuzzy filter generated by µ and will be denoted by 
[µ]. In case L is a complete chain and µ is not constant we have [µ]
(η)=sup µ, when µ ≤ η and [ ]( )

( ) ( )
( )

x x
µ x

η µ
η η

<
= ∧ otherwise for all η ∈ LX. 

For each ordinary subset M of X we have that [ ]
.

 ,
x M

xχ
∈

= ∨M  where χM is 
the characteristic function of M.

Fuzzy topology 

By the fuzzy topology on a set X, we mean a subset of LX which 
is closed with respect to all supreme and all finite infimum and 

contains the constant fuzzy sets 0  and 1 [16,18]. A set X equipped 
with an fuzzy topology τ on X is called an fuzzy topological space. 
For each fuzzy topological space (X, τ), the elements of τ are called 
the open fuzzy subsets of this space. If τ1 and τ2 are fuzzy topologies 
on a set X, then τ1 is said to be finer than τ2 and τ2 is said to be 
coarser than τ1, provided τ2 ⊆ τ1 holds. For each fuzzy set µ ∈ LX, 
the strong α-cut and the weak α-cut of µ are the ordinary subsets 

( ) ( ) ( ) ( ){ | } {               |  }  S µ x X µ x and W µ x X µ xα αα α= ∈ > = ∈ ≥ of X 
respectively. For each complete chain L, the α-level topology and the 
initial topology [19] of an fuzzy topology τ on the set X are defined as 
follows:

( ) ( ) ( )   :         { } { : } ,S µ P X µ and i inf Lα α ατ τ τ τ α= ∈ ∈ = ∈ 1

respectively, where inf is the infimum with respect to the finer relation 
for topologies. On other hand if (X, T) is an ordinary topological space, 
then the induced fuzzy topology on X is given by Lowen [17] as the 
following:

( ) ( )    :    { } .XT µ L S µ T for all Lαω α= ∈ ∈ ∈ 1

The fuzzy topological space(X, τ) and also τ are said to be stratified 
provided α ∈ τ holds for all α ∈ L, that is, all constant fuzzy sets are 
open [19].

The fuzzy unit interval

The fuzzy unit interval will be denoted by IL an it is defined in [3] 
as the fuzzy subset:

{ |    1 ,}L LI x R x ∼= ∈ ≤

where I=[0, 1] is the real unit interval and ( )  0   1{   0  | }L Lx R x and x∼= ∈ = ≤R
  

is the set of all positive fuzzy real numbers. Note that, the binary 
relation ≤ is defined on RL as follows:

     ,x y x y and x yα α α α≤ ⇔ ≤ ≤1 1 2 2

for all x, y ∈ RL, where ( ) ( )             { | } { | }x inf z R x z and x sup z R x zα αα α= ∈ ≥ = ∈ ≥1 2  
for all α ∈ L0. Note that the family Ω which is defined by:

      0{ } { } { | }L L LR I I R I I Iδ
δ δ δ ∼= ∈ ∪ ∈ ∪з

is a base for an fuzzy topology ℑ on IL, where Rδ and Rδ are the fuzzy 
subsets of RL defined by ( ) ( ) ( )    ( )R x x and R xδ

α α δδ δ
α α ′

≥>
= ∨∨ =  for all x 
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∈ RL and δ ∈ R. The restrictions of Rδ and Rδ on IL are the fuzzy subsets 
Rδ IL and Rδ IL, respectively. Recall that:

( ) ( ) ( )    ,R x R y R x yδ γ δ γ+∧ ≤ + 			                 (2.2)

where, x+y is the fuzzy real number defined by 
( )( ) ( ) ( )( )

, ,
    

R
x y x y

γ ζ γ ζ ξ
ξ γ ζ

∈ + =
∧+ = ∨  for all ξ ∈ R.

Operation on fuzzy sets 

In the sequel, let a fuzzy topological space (X, τ) be fixed. By the 
operation [6] on the set X we mean the mapping φ: LX → LX such that 
int (µ) ≤ µφ holds for all µ ∈ LX, where, µφ denotes the value of φ at 
µ. The class of all operations on X will be denoted by O(L

x,τ). By the 
identity operation on O(L

X,τ), we mean the operation 1L
X: LX → LX such 

that 1L
X (µ)=µ for all µ ∈ LX. The constant operation on O(L

x,τ) is the 
operation cL

x: LX → LX defined by cL
x (µ)=1 for all µ ∈ LX. If ≤ is a partially 

order relation on O(L
X,τ) defined as follows: ( ) ( ) µ µϕ ϕ ϕ ϕ⇔≤ ≤1 2 1 2  

for all µ ∈ LX, then (O(L
X,τ), ≤) is a completely distributive lattice. The 

operation φ: LX → LX is called:

(i) Isotone if µ ≤ η implies φµ ≤ φη, for all µ, η ∈ LX. 

(ii) Weakly finite intersection preerving (wfip, for short) with 
respect to ( )  ( )  XA L if µ µη ϕ ϕ η⊆ ∧ ≤ ∧  holds, for all η ∈  and 
µ ∈ LX. 

(iii) Idempotent if ( ) ( )( ) ,µ µϕ ϕ ϕ= for all µ ∈ LX. 

The operations φ, ψ ∈ O(L
x,τ) are said to be dual if ψ(µ)=co(φ (coµ)) 

or equivalently φ(µ)=co(ψ (coµ)) for all µ ∈ LX, where coµ denotes 
the complement of µ. The dual operation of φ is denoted by φ˜. In 
the classical case of L={0, 1}, by the operation on a set X we mean the 
mapping φ: P (X) → P (X) such that int A ⊆ Aφ for all A ∈ P (X) and the 
identity operation on the class of all ordinary operations O(P (X),T) on X 
will be denoted by iP (X) and it defined by: iP (X)(A)=A for all A ∈ P (X).

The φ-open fuzzy sets

Let a fuzzy topological space (X, τ) be fixed and φ ∈ O(LX,τ). The 
fuzzy set µ: X → L is said to be φ-open fuzzy set if µ ≤ µφ holds. We will 
denote the class of all φ-open fuzzy sets on X by φ of (X). The fuzzy set 
µ is called φ-closed if its complement coµ is φ-open. The operations φ, 
ψ ∈ O(L

x,τ) are equivalent and written φ ∼ ψ if φ of (X)=ψ of (X).

The φ1,2-interior fuzzy sets

Let a fuzzy topological space (X, τ) be fixed and

φ1, φ2 ∈ O(L
x,τ). Then the φ1,2-interior of the fuzzy set µ: X → L is a 

mapping φ12.intµ: X → L defined by:

2
, ( )

.   .
OF X µ

int µ
η ϕ ϕ η

ϕ η
∈ ≤

= ∨
1

1 2 		   	               (2.3)

That is, the φ1,2.intµ is the greatest φ1-open fuzzy set η such that 
ηφ2 less than or equal to µ [19]. The fuzzy set µ is said to be φ1,2-open 
if and only if µ ≤ φ1,2.int µ. The class of all φ1,2-open fuzzy sets on X 
will be denoted by φ1,2OF (X). The complement co µ of the φ1,2-open 
fuzzy subset µ will be called φ1,2-closed, the class of all φ1,2-closed fuzzy 
subsets of X will be denoted by φ1,2CF (X). In the classical case of L={0, 
1}, the fuzzy topological space (X, τ) is up to an identification by the 
ordinary topological space (X, T) and φ1,2.int µ is the classical one. 
Hence in this case the ordinary subset A of X is φ1,2-open if A ⊆ φ1,2.
int A. The complement of a φ1,2-open subset A of X will be called φ1,2-
closed. The class of all φ1,2-open and the class of all φ1,2-closed subsets 
of X will be denoted by φ1,2O(X) and φ1,2C(X), respectively. Clearly, F is 
φ1,2-closed if and only if φ1,2.cl T F=F. 

Proposition 
For each two operations φ1, φ2 ∈ O(LX,τ) and for each µ, η∈φ1, φ2 ∈ 

LX, the mapping φ1,2.int: X → L fulfills the following axioms [7]:

(i)	 If φ2 ≥ 1L
X, then φ1,2.intµ ≤ µ.

(ii)	 φ1,2.int is isotone, i.e if µ ≤ η, then φ1,2.intµ ≤ φ1,2.intη.

, . 1  1intϕ =1 2
.

If φ2 ≥ 1LX is isotone and φ1 is with respect to φ1O (X), then 
, , ,( ).   . . .int µ intµ intϕ η ϕ ϕ η∧ = ∧1 2 1 2 1 2

If φ2 is isotone and idempotent operation, then 
( ), , ,.   . .intµ int intµϕ ϕ ϕ≤1 2 1 2 1 2 .

( ), , ,.  .( )    .i i ii I i I
int µ intµ for all µ OF Xϕ ϕ ϕ

∈ ∈
∨ ∨= ∈1 2 1 2 1 2

Proposition 

Let (X, τ) be a fuzzy topological space and φ1, φ2 ∈ O(L
X,τ). Then the 

following are fulfilled:

(i)	 If φ2 ≥ 1LX, then the class φ1,2OF (X) of all φ1,2-open fuzzy sets 
on X forms an extended fuzzy topology on X [7,21].

If , 1  . 1  1XL
and intϕ ϕ≥ =2 1 2 , then the class φ1,2OF (X) of all φ1,2-

open fuzzy sets on X forms a supra fuzzy topology on X [21].

If φ2 ≥ 1LX is isotone and φ1 is with respect to φ1OF (X), then φ1,2OF 
(X) is an fuzzy pre topology on X [21].

If φ2 ≥ 1LX is isotone and idempotent operation and φ1 is with 
respect to φ1OF (X), then φ1,2OF (X) is fuzzy topology on X [16,18].

Because of Propositions 2.1 and 2.2, if the fuzzy topological 
space(X, τ) be fixed and

φ1, φ2 O(LX,τ). Then the relation between the class φ1,2OF (X) of all 
φ1,2-open fuzzy sets on X and the mapping φ1,2.int is given by:

( ), ,{ |       .  }XOF X µ L µ intµϕ ϕ= ∈ ≤1 2 1 2 		              (2.4)

and the following axioms are fulfilled:

(I1) If φ2 ≥ 1L
X, then φ1,2.intµ ≤ µ holds, for all µ ∈ LX. 

(I2) If µ ≤ η, then φ1,2.intµ ≤ φ1,2.intη for all µ, η ∈ LX. 

(I3) , .  1  1   intϕ =1 2

(I4) If  1 XL
ϕ ≥2 is isotone and φ1 is with respect to φ1OF (X), then 

φ1,2.intµ ∧ ∧ φ1,2.intη=φ1,2.int (µ ∧ η) for all µ, η ∈ LX. s

(I5) If φ2 is isotone and idempotent, then φ1,2.int (φ1,2.intµ)=φ1,2.
intµ for all µ ∈ LX. 

Characterized Fuzzy Spaces
Independently on the fuzzy topologies, the notion of φ1,2-interior 

operator for the fuzzy sets can be defined as a mapping φ1,2.int: LX → 
LX which fulfill (I1) to (I5). It is well-known that (2.3) and (2.4) give 
a one-to-one correspondence between the class of all φ1,2-open fuzzy 
sets and these operators, that is, φ1,2OF (X) can be characterized by the 
φ1,2-interior operators. In this case the triple (X, φ1,2.int) as well as the 
triple (X, φ1,2OF (X)) will be called characterized fuzzy space [7] of the 
φ1,2-open fuzzy subsets of X. The characterized fuzzy space (X, φ1,2.int) 
is said to be stratified if and only if , .   intϕ α α=1 2 for all α ∈ L. As 
shown in ref. [7], the characterized fuzzy space (X, φ1,2.int) is stratified 
if the related fuzzy topology is stratified. Moreover, the characterized 
fuzzy space (X, φ1,2.int) is said to have the weak infimum property [21], 
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provided , , ,.   .  ( .   ) Xint µ intµ int for all µ L and Lϕ α ϕ ϕ α α∧ = ∧ ∈ ∈1 2 1 2 1 2 . The 
characterized fuzzy space (X, φ1,2.int) is said to be strongly stratified 
[21], provided φ1,2.int is stratified and have the weak infimum property. 
If (X, φ1,2.int) and (X, ψ1,2.int) are two characterized fuzzy spaces, then 
(X, φ1,2.int) is said to be finer than (X, ψ1,2.int) and denoted by φ1,2.
int ≤ ψ1,2.int, provided φ1, 2.intµ ≥ ψ1,2.intµ holds for all µ ∈ LX. If τ is 
a fuzzy topology on the set X and φ1, φ2 ∈ O(LX,τ), then by the initial 
characterized space of (X, τ) we mean the characterized spaces (X, 
(φ1,2O(X))α) and (X, i(φ1,2O(X))), respectively where (φ1,2O(X))α and 
i(φ1,2O(X)) are defined as follows:

( )( ) ( ) ( ) ( )( ) ( )( ), , , ;         { | } {  .} | O X S µ P X µ OF X and i O X OF X L
αα αϕ ϕ ϕ ϕ α= ∈ ∈ = ∩ ∈1 2 1 2 1 2 1 2 1

Sometimes we denoted to the α-level characterized space and the 
initial characterized space of (X, τ) by ( ) ( ), ,,  .   ,  . ,iX int and X intαϕ ϕ1 2 1 2  
respectively. If T is an ordinary topology on a set X and 

( ( ),),  ,P X TOϕ ϕ ∈1 2 then by the induced characterized fuzzy space on 
X we mean the characterized fuzzy space ( )( )( ),,   X OF Xω ϕ1 2 which is 
defined by:

( )( ) ( ), ,   {   .| }XOF X µ L S µ O X for all Lαω ϕ ϕ α= ∈ ∈ ∈1 2 1 2 1

Sometimes we denoted to the induced characterized fuzzy space for 
the ordinary topological space (X, T) by ( ),,  . .X intωϕ1 2

If    1 ,Lint and Xτϕ ϕ= =1 2 then the class ( )( ),  OF Xϕ1 2 of all φ1,2-
open fuzzy of X coincide with τ which is defined in [22,23] and hence 
the characterized fuzzy space ( ),,  .X intϕ1 2 coincide with the fuzzy 
topological space (X, τ).

φ1,2-fuzzy neighborhood filters

An important notion in the characterized fuzzy space (X, φ1,2.int) 
is that of the φ1,2-fuzzy neighborhood filter at the points and at the 
ordinary subsets of this space. Let (X, τ) be a fuzzy topological space 
and ( , )

,  .XL
O

τ
ϕ ϕ ∈1 2  As follows by (I1) to (I5) for each x ∈ X, the 

mapping 1,2 ( ) : XN x L Lϕ → which is defined by:

( )( ) ( )( ), ,   .  N x µ int µ xϕ ϕ=1 2 1 2 			              (2.5)

for all µ ∈ LX, is a fuzzy filter on X, called φ1,2-fuzzy neighborhood filter 
at x [7]. If the related φ1,2-interior operator fulfill the axioms (I1) and 
(I2) only, then the mapping ( ),  :   XN x L Lϕ →1 2 , defined by (2.5) is 
fuzzy stack [21], called φ1,2-fuzzy neighborhood stack at x. Moreover, if 
the φ1,2-interior operator fulfill the axioms (I1), (I2) and (I4) such that in 
(I4) instead of η ∈ LX we take α¯, then the mapping ( ),  :   XN x L Lϕ →1 2
, defined by (2.5) is a fuzzy stack with the cutting property, called φ1,2-
fuzzy neighborhood stack with the cutting property at x. The φ1,2-fuzzy 
neighborhood filters fulfill the following conditions:

( ) ( ),1   ̇      N x N x holds for all x Xϕ≤ ∈1 2

( ) ( )( ) ( )( ), ,2        ,     .XN N x µ N x holds for all µ L and µϕ ϕ η η η≤ ∈ ≤1 2 1 2

, , ,( )( ( )( )) ( )( ),N N µ N µx y y yϕ ϕ ϕ=1 2 1 2 1 2 for all x X∈ and XLµ ∈ .

Clearly , ( )( )y N µyϕ1 2  is the fuzzy set , .int µϕ1 2 . The 
characterized fuzzy space ,( , .int)X ϕ1 2 is characterized as the fuzzy filter 
pre topology [7], that is, as a mapping , :    LN X F Xϕ →1 2  such that (N1) 
to (N3) are fulfilled.

φ1,2ψ1,2-Fuzzy continuity

Let now the fuzzy topological spaces (X, τ1) and (Y, τ2) are fixed, φ1, 
φ2 ∈ O(LX,τ1) and ψ1, ψ2 ∈ O(LY,τ2). The mapping f: (X, φ1,2.int) →(Y, ψ1,2.
int) is said to be φ1,2ψ1,2-fuzzy continuous if

( ) ( ), ,.    .  int µ int µψ η ϕ η≤1 2 1 2 

			                (2.6)

holds for all η ∈ LY [7]. If an order reversing involution′ of L is 
given, we have that f is a φ1,2 ψ1,2-fuzzy continuous if and only if 

( ) ( ), ,.    .  cl µ cl µϕ η ψ η≤1 2 1 2   holds for all η ∈ LY. Here φ1,2.cl and ψ1,2.
cl, mean the closure operators related to φ1,2.int and ψ1,2.int, respectively 
which are defined by φ1,2.cl µ=co (φ1,2.int coµ) for all µ ∈ LX. Obviously if 
f is φ1,2 ψ1,2-fuzzy continuous, then the inverse f−1: (Y, ψ1,2.int) → (X, φ1,2.
int) is ψ1,2φ1,2-fuzzy continuous, that is ( ) ( ), ,.   .  int h µ int h fϕ ψ− −≤1 1

1 2 1 2   
holds for all h ∈LX

By means of characterizing φ1,2-fuzzy neighborhoods 

( ) ( ), , , ,  .     . ,N x of int and N x of intϕ ψϕ ψ1 2 1 2 1 2 1 2  the φ1,2ψ1,2-fuzzy continuity 
of f can also be characterized. The mapping f: (X, φ1,2.int) → (Y, ψ1,2.int) 
is φ1,2ψ1,2-fuzzy continuous if Nψ1,2 (f(x)) ≥ FLf(Nφ1,2 (x)) holds for all x 
∈ X. Obviously, in case of L={ 0, 1 }, φ1=ψ1=int, φ2=1LX and ψ2=1LY 
the φ1,2ψ1,2-fuzzy continuity coincides with the usual fuzzy continuity.

Initial characterized fuzzy spaces

In the following let X be a set, let I be a class and for each i ∈ I, let 
(Xi, δ1,2.inti) be a characterized fuzzy space of δ1,2-open fuzzy subsets 
of Xi and fi: X → Xi is the mapping from X into Xi. By the initial φ1,2-
fuzzy interior operator of (δ1,2.inti)i∈I with respect to (fi)i∈I, we mean 
the coarsest φ1,2-fuzzy interior operator φ1,2.int on X for which all 
mappings fi: (X, φ1,2.int) → (Xi, δ1,2.inti) are φ1,2δ1,2-fuzzy continuous. 
The triple (X, φ1,2.int) is said to be initial characterized fuzzy space [7] 
of ((Xi, δ1,2.inti))i∈I with respect to (fi)i∈I. The initial φ1,2-fuzzy interior 
operator φ1,2.int: LX → LX of (δ1,2.inti)i∈I with respect to (fi)i∈I always exists 
and is given by:

( ), , ,  
.   .  

i i
i i iµ f µ i I

int µ int µ fϕ δ
≤ ∈

= ∨1 2 1 2  		              (2.7)

for all µ ∈ LX. For each i ∈ I, let , :   i
i L iN X F Xδ →1 2  is the representation 

of δ1,2.inti as an fuzzy filter pre topology. Then because of (2.5) and 
(2.7), the mapping Nφ1,2: X → FLX which is defined by:

( )( ) ( )( )( ), , ,  
 

i i

i
i iµ f µ i I

N x µ N f x µϕ δ≤ ∈
= ∨1 2 1 2



for all x ∈ X and µ ∈ LX, is the representation of the initial φ1,2-fuzzy 
interior operator of (ψ1,2.inti)i∈I with respect to (fi)i∈I as the fuzzy filter 
pre topology.

Characterized Fuzzy Subspaces
Let A be a subset of a characterized fuzzy space (X, φ1,2.int) and i: 

A,→ X is the inclusion mapping of A into X. Then the mapping φ1,2.intA: 
LA → LA defined by:

( ), ,.  .  A µ
int int µ i

η
ϕ η ϕ

≤
= ∨1 2 1 2i



for all η ∈ LA is initial φ1,2-fuzzy interior operator for φ1,2.int with respect 
to the inclusion mapping i: A,→ X. φ1,2.intA will be called induced φ1,2-
interior operator of φ1,2.int on the subset A of X. The triple (A, φ1,2.intA) 
is said to be characterized fuzzy subspace of (X, φ1,2.int) [7].

Characterized Fuzzy Product Spaces
Assume that (Xi, δ1,2.inti) is a characterized fuzzy space for each i I, 

where I is any class. Let X be the cartesian product iXπ  of the family 
(Xi)i∈I and πi: X → Xi the related projections. The i∈I, mapping φ1,2.int: 
LX → LX, defined by:

( ), , ,  
.   .

i i
i i iµ µ i I

int µ int µ
π

ϕ δ π
≤ ∈

= ∨1 2 1 2




for all µ ∈ LX, will be called φ1,2-fuzzy product of the δ1,2L-interior 
operators δ1,2.inti. The triple (X, φ1,2.int) is said to be characterized fuzzy 
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product space [7] of the characterized fuzzy spaces (Xi, δ1,2.inti). The 
φ1,2.int will be denoted by , . ii I

intπ δ
∈ 1 2 and it is initial φ1,2-fuzzy interior 

operator of (δ1,2.inti)i∈I with respect to the family (πi)i∈I of projections. 
The characterized fuzzy product space (X, φ1,2.int) also will be denoted 
by ,( , ).i ii I

X intπ δ
∈ 1 2

Final characterized fuzzy spaces

It is well-known (cf. e.g., [11,24]) that in the topological category 
all final lifts uniquely exist and hence also all final structures exist. They 
are dually defined. In case of the category CF-Space of all characterized 
fuzzy spaces the final structures can easily be given, as is shown in the 
following:

Let I be a class and for each i ∈ I, let (Xi, δ1,2.inti) be an characterized 
fuzzy space and fi: Xi → X is the mapping of Xi into a set X. The final φ1,2-
fuzzy interior operator of (δ1,2.inti)i∈I with respect to (fi)i∈I is the finest 
φ1,2.int on X for which all mappings fi: (Xi, δ1,2.inti) → (X, φ1,2.int) are 
δ1,2φ1,2-fuzzy continuous [7]. Hence, the triple (X, φ1,2.int) is the final 
characterized fuzzy space of ((Xi, δ1,2.inti))i∈I with respect to (f)i∈I. The 
final φ1,2L-interior operator φ1,2.int: LX→ LX of (δ1,2.inti)i∈I with respect to 
(fi)i∈I exists and is given by 

( )( )
1, ,
{ } ,  

.   . ( ( )) ) (
i i

i
x f x i

i
I

iint µ x int µ µ xf xϕ δ
−∈ ∈
∧ ∧=1 2 1 2 

for all x ∈ X and µ ∈ LX. 

Characterized Fuzzy Quotient Spaces
Let (X, φ1,2.int) be a characterized fuzzy space and f: X→A is an 

surjective mapping. Then the mapping φ1,2.intf: L
A → LA, defined by:

( )( )
1, ,
{ } 

.   ( )( ).
i ix f a

iint µ int µa f xϕ ϕ
−∈

= ∧1 2 1 2 

for all a ∈ A and µ ∈ LA, is final φ1,2-fuzzy interior operator of φ1,2.int 
with respect to f which is not idempotent. Then the φ1,2.intf will be 
called quotient φ1,2-fuzzy interior operator and the triple (A, φ1,2.intf) is 
said to be characterized fuzzy quotient space [7].

Note that in this case φ1,2.int is idempotent, φ1,2.intf need not be. 
Even in the classical case of L={0, 1}, φ1=int and φ2=1LX we have the 
following: If φ1,2.int is up to an identification the usual topology, then 
φ1,2.intf is a pre topology which need not be idempotent. An example is 
given [25] (p. 234).

Characterized Fuzzy Sum Spaces
Assume that (Xi, δ1,2.inti) is a characterized fuzzy space for each i 

∈, where I is any class. Let X be the disjoint union { }(  )ii I
X i

∈
∪ × of the 

family (Xi)i∈I and for each i ∈ I, let φ1,2.int: LX → LX, defined by:ei: Xi → X 
be the canonical injection from Xi into X given by ei(xi)=(xi, i). Then the 
mapping φ1,2.int: LX → LX, defined by: 

( )( ) ( )( ), ,.  ,    . i iint µ a i int µ e aϕ δ=1 2 1 2 

for all i ∈ I, of a ∈ Xi and µ ∈ LX, is said to be final φ1,2-fuzzy interior 
operator with respect to (ei)i∈I. 

(δ1,2.inti)i∈I φ1,2.int will be called sum φ1,2-fuzzy interior operator will 
be denoted by ∑ δ1,2.inti. The pair (X, φ1,2.int) is said to be characterized 

fuzzy sum space [7] and it will be denoted also by ,( , .int ).ii
i I

X δ
∈
∑ 1 2

Characterized Fuzzy T1 And Fuzzy Φ1,2T1-Spaces
The notions of characterized fuzzy Ts and of characterized 

fuzzy Rk-spaces are investigated and studied [9,10,26,27] for all 
1 10,  1,  2,  2 ,  3,  3 ,  4
2 2

{ }s∈  and 10,  1,  2,  
2

{ 2 }k ∈ . These characterized 

spaces depend only on the usual points and the operation defined on 
the class of all fuzzy subsets of X endowed with an fuzzy topology τ. 
Let the fuzzy topological space(X, τ) be fixed and φ1, φ2 ∈ O(LX,τ) then 
the characterized fuzzy space all fuzzy subsets of X endowed with an 
fuzzy topology τ. Let the fuzzy topological space (X, τ) be fixed and 
φ1, φ2 ∈ O(L

X,τ) then the characterized fuzzy space all fuzzy subsets of X 
endowed with an fuzzy topology τ. Let the fuzzy topological space (X, 
τ) be fixed and φ1, φ2 ∈ O(LX,τ) then the characterized fuzzy space (X, 
φ1,2.int) is said to be characterized fuzzy T1-space if for all x, y ∈ X such 
that (X, φ1,2.int) is said to be characterized fuzzy T1-space if for all x, y ∈ 
X such that  x y≠  there exist μ, η ∈ LX and α, β ∈ L0 such that μ(x) < 
α ≤ (φ1,2.intμ)(y) and η(y) < β ≤ (φ1,2.intη)(x) are hold. The related fuzzy 
topological space(X, τ) is said to be fuzzy φ1,2-T1 if for all x, y ∈ X such 
that  x y≠ , we have x˙ ̸≤ Nφ1,2(y) and y˙ ̸≤ Nφ1,2(x).

Proposition 

Let (X, T) be an ordinary topological space and φ1, φ2 ∈ ∈ O(P(X),T) 
such that φ2 ≥ iP(X) is isotone and idempotent. Then (X, T) is φ1,2T1-space 
if and only if the induced characterized fuzzy space (X, φ1, 2.intω) is 
characterized fuzzy T1 [27].

Proposition 

Let (X, τ) be an fuzzy φ1,2-T1 space and φ1, φ2 ∈ O(LX,t) such that φ2 
is isotone and idempotent. Then the α-level characterized space (X, φ1,2.
intα) and the initial characterized space (X, φ1,2.inti) are T1-spaces [27].

Proposition 

Let X be a set, let I be a class and for each i ∈ I, let the characterized 
fuzzy space (Xi, δ1,2.inti) is characterized fuzzy T1 and fi: X → Xi be 
an injective mapping for some i ∈ I. Then the initial characterized 
fuzzy space (X, φ1,2.int) of ((Xi, δ1,2.inti))i∈I with respect to (fi)i∈I is also 
characterized fuzzy T1-space [10].

Proposition 

Let X be a set, let I be a class and for each i ∈ I, let the characterized 
fuzzy space (Xi, δ1,2.inti) is characterized fuzzy T1 and fi: Xi → X be an 
surjective mapping for some i ∈ I. Then the final characterized fuzzy 
space (X, φ1,2.int) of ((Xi, δ1,2.inti))i∈I with respect to (fi)i∈I (X, φ1,2.int) is 
characterized fuzzy T1-space [27]. 

Proposition

Let the characterized fuzzy space (X, φ1,2.int) is characterized 
fuzzy T1 and δ1,2.int is finer than φ1,2.int. Then the characterized 
fuzzy space (X, δ1,2.int) is also fuzzy T1 [27].

Characterized Fuzzy 12
2

R and Characterized Fuzzy R3-
Spaces

Let a fuzzy topological space(X, τ) be fixed and φ1, φ2 ∈ O(LX,τ). Then 
the characterized fuzzy space (X, φ1,2.int) is said to be characterized 
fuzzy 12

2

R  [9] (resp. fuzzy R3-space [10] if for all x ∈ X, F ∈ φ1,2C(X) 

such that x ̸ F (resp. F1, F2 ∈ φ1,2C(X) such that F1 ∩ F2=∅), there exists 
an φ1,2ψ1,2-fuzzy continuous mapping ( ), ,( : ,  .  ), .Lf X int I intϕ ψ ℑ→1 2 1 2  
such that 

( ),

{ | }  :  0  : ,

,   .

{ }
LR

µ R and L L

F F C X F F

δα δ α α α

ϕ

= ∧ > ∈ ∪ ∈

∈ ∩ =∅1 2 1 2 1 2



for all y ∈ F (resp. the infimum) φ1,2 (F1) ∧ φ1,2 (F2) does not exist).

Proposition 2.8 [9] Let (X, τ) be a fuzzy topological space, φ1, φ2 ∈ 
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O(X,τ) and Ω is a subbase for the characterized fuzzy space (X, φ1,2.intτ). 
Then, (X, φ1,2.intτ) is characterized fuzzy R2 12-space if and only if for all 
F ∈ Ω′ and x ∈ X such that x ∈/F, there exists a φ1,2ψ1,2-fuzzy continuous 
mapping ( ), ,( : ,  .  ), .Lf X int I intϕ ψ ℑ→1 2 1 2  fuzzy 13

2

T and characterized 

fuzzy T4-spaces such that f(x) = 1 ( ) 0and f y =  for all y ∈ F.

Characterized 
Let a fuzzy topological space(X, τ) be fixed and φ1, φ2 ∈ O(L

X,τ). Then 
the characterized fuzzy space (X, φ1,2.int) is said to be characterized 
fuzzy 12

2

R  or characterized Tychonoff fuzzy space [9] (resp. fuzzy 

T4-space [10] if and only if it is characterized fuzzy 12
2

R (resp. 

characterized fuzzy R3) and characterized fuzzy T1-space. The related 
fuzzy topological space(X, τ) is said to be fuzzy φ1,2- 13

2

T  (resp. fuzzy 

φ1,2-T4) if and only if it is fuzzy φ1,2- 12
2

R  (resp. fuzzy φ1,2-R3) and fuzzy 
φ1,2-T1 space.

Proposition 

Every characterized fuzzy T4-space is characterized fuzzy 13
2

T
-space [9].

Metrizable Characterized Fuzzy Spaces and 
Characterized 13

2

T -Spaces
By the fuzzy metric on the set X [6], we mean that the mapping d: X 

× X:→ R⋆
L such that the following conditions are fulfilled:

(1)	 d(x, y)=0∼ if and only if x=y.

(2)	 d(x, y)=d(y, x) for all x, y ∈ X.

(3)	 d(x, y) ≤ d(x, z)+ d(z, y) holds for all x, y, z ∈ X.

Where 0∼ denotes the fuzzy number which has value 1 at 0 and 0 
otherwise. The set X equipped with an fuzzy metric on X will be called 
fuzzy metric space. Each fuzzy metric on a set X generated canonically 
a stratified fuzzy topology τd which has the set B={ξ ◦ dx: ξ ∈ µ and x ∈ 
X} as a base, where dx: X → R⋆

L is the mapping defied by: dx(y)=d(x, y) 
and

  :  0  :{ ,| } { }
LR

µ R and L Lδα δ α α α= ∧ > ∈ ∪ ∈

Where α  has the domain is LR


 and |
LR

Rδ
  is the restriction 

of Rδ on LR


. Now, consider φ1, φ2 ∈ O(LX,τd), then as shown in ref. 
[20], the characterized fuzzy space (X, φ1,2.intτd) is stratified. The 
stratified characterized fuzzy space (X, φ1,2.intτd) is said to be metrizable 
characterized fuzzy space.

In the following proposition we shall prove that every metrizable 
characterized fuzzy space is characterized fuzzy T4-space in sense of 
Abd-Allah [10].

Proposition 

Let (X, τd) be an stratified fuzzy topological space generated 
canonically by an fuzzy metric d on X and φ1, φ2 ∈ O(LX,τd), then the 
metrizable characterized fuzzy space (X, φ1,2.intτd) is characterized 
fuzzy T4-space.

Proof: Let ( ),,  F F C Xϕ∈1 2 1 2  such that  .F F∩ =∅1 2  Then for all 

x ∈ F1 and y ∈ F2, we get ( ),  0 ,d x y ∼≠  that is, there exists δ>0 such 

that d(x, y)(2δ)>0 and therefore 

( )( ) ( )( )'

,   ( , )  1,|
LR

R d x y d x y
α δ

δ α
≥

= ∨ <
2

2


holds. Consider | d  and = | d ,
L L

x yR R
R Rηµ =  

   then 

( ) ( )( ) ( )
'

   0| | ( ) ( 1) 0RL x RLµ x R d x Rδ δ

α δ
α∼ ∼

≥

 
= = = ∨ = 

 
  for all 

( )( ) ( )( )1 | | (( 0 ) ( ))  0 1yRL RLx F and y R d y Rδ δ

α δ
η α∼ ∼

≥
∈ = = ∨= = 

for all 2y F∈ . Hence, μ and η are φ1,2-fuzzy neighborhoods 
in (X, φ1,2.intτd) at all x ∈ F1 and all y ∈ F2, respectively, 
this means 

1 2
1,2 1,2( )( ) ( )( ) 1.

x F x F
N x N yϕ ϕµ η

∈ ∈
∧ ∧ ∧ =  Because of 

the symmetry and triangle inequality of d and (2.2), we get 

( )( ) ( )( ) ( )( ),  ,   |   1| ,  | 
L L L

R R RR d x z R d y z R d x yδ δ δ∧ ≤ <2
    and therefore 

( ) ( ) ( )  1( ) | |  
L L

R x R yµ z R d z R d zδ δη
 

∧ = ∧ < 
 
 
  



 
 holds for all z ∈ X, 

that is, sup (µ ∧ η)<1. Hence, the infimum Nφ1,2 (F1) ∧ Nφ1,2 (F2) does 
exists and therefore (X, φ1,2.intτd) is characterized fuzzy R3-space. Because 
of Theorem 3.1 [27], it is clear that (X, φ1,2.intτd) is characterized fuzzy T1-
space. Consequently, (X, φ1,2.intτd) is characterized fuzzy T4-space. 

Example 3.1

From Propositions 2.9 and 3.1, we get that the metrizable fuzzy 
space in sense of Gahler and Gahler [3] is an example of a metrizable 
characterized fuzzy T4-space and that is also example of a metrizable 
characterized fuzzy Tk-space for 

1 10,  1,  2,  2 ,  3,  3{ }.
2 2

k ∈

Characterized 12
2

R and characterized 13
2

T -spaces
In the following we introduce and study the concepts of 

characterized 12
2

R -space and of characterized 13
2

T -spaces in the 

classical case. Let (X, T) be an ordinary topological space and φ1, φ2 
∈ O(P (X),T). Then the characterized space (X, φ1,2.intT) is said to be 
characterized 12

2

R -space if for all x ∈ X, F ∈ φ1,2C(X) such that x ̸F, 

there exists an φ1,2ψ1,2 continuous mapping f: (X, φ1,2.intT) → (I, ψ1,2.
intTI) such that f(x)=1 and f(y)=0 for all y ∈ F, where ψ1,2.intI is the usual 
ψ1,2-interior operator on the closed unit interval I and ψ1, ψ2 ∈ O(P (I),TI). 
Moreover, the ordinary characterized space (X, φ1,2.intT) is said to be 
characterized 

13
2

T -space or classical characterized-Tychonoff space if 

and only if it is characterized T1-space and characterized 12
2

R -space.

Proposition 

Let (X, T) be an ordinary topological space and φ1, φ2 ∈ O(P (X),T) 
such that φ2 ≥ iP (X) is isotone and idempotent. Then, (X, φ1,2.intT) is 
characterized 12

2

R -space if and only if the induced characterized fuzzy 

space (X, φ1,2.intω) is characterized fuzzy 12
2

R -space.

Proof: Let (X, φ1,2.intT) is characterized 12
2

R -space, 

( )( )( )'

,  x X and F O Xω ϕ∈ ∈ 1 2
 such that x ̸F. Then, there exists 

φ1,2δ1,2-continuous mapping g: ( ) ( ), ,,  .  ,  .
IT TX int I intϕ δ→1 2 1 2

 such that 
( ) 1 ( ) 0g x and g y= = for all   y S S Fα∈ =  and for all Lα ∈ 1 , where 

( ,( ),  
IP I TOδ δ ∈1 2 . Hence, the mapping g: ( ) ( ), (, ),  .   ,  .

ITX int I intω ωϕ δ→1 2 1 2  is 

φ1,2δ1,2-fuzzy continuous. Consider h: ( ) ,), (,  . ),  (  .
IT LI int I intωδ ψ ℑ→1 2 1 2  

is the map-ping defied by ( )   zh z = for all z ∈ I, then h is δ1,2ψ1,2-
fuzzy continuous and there-fore there exists an φ1,2ψ1,2-fuzzy 
continuous mapping ( ), , : ,  ( ). ,  .Lf h g X int I intωϕ ψ ℑ= →1 2 1 2

 such 
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that ( ) ( )  1 0f x and f y= =  for all y ∈F. Consequently, (X, φ1,2.intω) is 
characterized fuzzy 12

2

R -space. 

Conversely, let (X, φ1,2.intω) is characterized fuzzy 12
2

R -space, 

x ∈ X and F ∈ φ1,2C(X) such that  .x F∉  Then, 
( ),

.F

F

x
C X

χ
χ ϕ
∉

∈ 1 2

 

and ( )( )( ),

'
.F O Xχ ω ϕ∈ 1 2  Therefore, there exists an φ1,2ψ1,2-

fuzzy continuous mapping ( ), ,(: ,  . ,  . )Lf X int I intωϕ ψ ℑ→1 2 1 2  

such that ( )   1f x =  and ( ) 0f y =  for all y .Fχ∈  Since 

( ), , , ,. . . ,
IT Tandint int int int

αωϕ ϕ ψ ψℑ= =1 2 1 2 1 2 1 2  then there could be 

found the mapping ( ) ( ), ,,  . ,  .
IT Tf X int I intα ϕ ψ= →1 2 1 2  which is 

, ,ψ ψ1 2 1 2 -continuous with ( ) 1 ( ) 0f x and f y for all y Fα α= = ∈ . Hence, 

( ),,  . TX intϕ1 2  is characterized 12
2

R -space.

Corollary 3.1 

Let (X, T) be an ordinary topological space and φ1, φ2 ∈ O(P (X),T) 
such that φ2 ≥ iP (X) is isotone and idempotent. Then, (X, φ1,2.intT) is 
characterized 13

2

T -space if and only if the induced characterized fuzzy 

space (X, φ1,2.intω) is characterized fuzzy 13
2

T -space.

Proof: Immediate from Propositions 2.3 and 3.2. 

Proposition 3.2 and Corollary 3.1, show that the notions of 
characterized fuzzy 12

2

R and characterized fuzzy 13
2

T -spaces are good 

extension as in sense of Lowen [11].

In the following proposition for each fuzzy topological space (X, 
τ), we show that the α-level characterized space (X, φ1,2.intα) and the 
initial characterized space (X, φ1,2.inti) are characterized 12

2

R -spaces if 

the characterized fuzzy space (X, φ1,2.intτ) is characterized fuzzy 12
2

R .

Proposition 3.3 

Let (X, τ) be a fuzzy topological space and φ1, φ2 ∈ O(L
X,τ) such 

that φ2 ≥ 1L
X is isotone and idempotent. Then the α-level characterized 

space (X, φ1,2.intα) and the initial characterized space (X, φ1,2.inti) are 
characterized 12

2

R -spaces if (X, φ1,2.intτ) is characterized fuzzy 12
2

R

-space, there exists 

Proof: Consider (X, φ1,2.intτ) is characterized fuzzy 12
2

R -space, 

x ∈ X and ( )( )( ),

'
F O X

α
ϕ∈ 1 2 such that x F∉ . Then .Fx χ∉ and 

( ),F C Xχ ϕ∈ 1 2
. Because of (X, φ1,2.intτ) is characterized fuzzy 12

2

R

Space,-space, there exists an φ1,2ψ1,2-fuzzy continuous mapping f: (X, 
φ1,2.intτ) → (IL, ψ1,2.intℑ) and f(y)=0 such that ( ) 1f x =  and ( ) 0f y =  for 
all y XF∈ . Since φ1,2.in tτ= φ1,2.intα and ψ1,2.intℑ=ψ1,2.intTI, then there 
could be found the mapping fα: (X, φ1,2.intα) → (I, ψ1,2.intTI) which is 
φ1,2ψ1,2-continuous with fα(x)=1 and fα(y)=0 for all y ∈ F. Consequently, 
(X, φ1,2.intα) is characterized 12

2

R space. The second case is similarly, 

that is, if (X, φ1,2.intτ) is characterized fuzzy 12
2

R -space.

Corollary 3.2 

Let (X, τ) be a fuzzy topological space and φ1, φ2 ∈ O(LX,τ) such 

that φ2 ≥ 1LX is isotone and idempotent. Then the α-level characterized 
space (X, φ1,2.intα) and the initial characterized space (X, φ1,2.inti) are 
characterized 13

2

T -spaces if the characterized fuzzy space (X, φ1,2.intτ) 

is characterized fuzzy 13
2

T . 

Proof: Immediate from Propositions 2.4 and 3.3.

In the following it will be shown that the finer characterized fuzzy 
space of a characterized fuzzy 12

2

R -space and of a characterized fuzzy 
13
2

T -space is also characterized completely fuzzy 12
2

R -space and 

characterized fuzzy 13
2

T -space, respectively.

Proposition 

Let (X, τ) is a fuzzy topological space and φ1, φ2∈ O(LX, τ). If the 
characterized fuzzy space (X, φ1,2.intτ) is characterized fuzzy 12

2

R  and 

δ1,2.intτ is finer than φ1,2.intτ, then (X, δ1,2.intτ) is also characterized 
fuzzy and δ1,2.intτ 12

2

R -space.

Proof: Let Ω is a sub base for the characterized fuzzy space 

(X, φ1,2.intτ), x ∈ X and F ∈ Ω′ such that  x F∉ . Such that  x F∉  
Then, there is V1,. . ., Vn ∈ Ω such that x ∈ (V1 ∩.. . ∩Vn) ⊆ F′ and 
therefore  ix V ′∉ , Vi

′ ∈ Ω′ for all i ∈ {1,. . ., n}. Because of Proposition 
2.8, there exists a φ1,2ψ1,2-fuzzy continuous mappings fi: (X, φ1,2.intτ) 

→ (IL, ψ1,2.intℑ) such that ( )  1if x =  and ( )   0if y ′ =  is also fulfilled 
for all ' . . .( ).ny V V∈ ∪ ∪1 In particular this means that ( )  1if x = and 

( )   0if y =  for all y ∈ F and i ∈ {1,. . ., n}. Since δ1,2.intτ is finer than 
φ1,2.intτ, then any one of these mappings fi: X → IL gives us the required 
δ1,2ψ1,2-fuzzy continuous mappings g: (X, δ1,2.intτ) → (IL, ψ1,2.intℑ) such 

that ( )  1g x =  and ( )  0g y =  and fi(y)=0 for all y ∈ F and i ∈ {1,. . ., 
n}. Since δ1,2.intτ is finer than φ1,2.intτ, then any one of these mappings 
fi: X → IL gives us the required δ1,2ψ1,2-fuzzy for all y ∈ F. Consequently, 

(X, δ1,2.intτ) is characterized fuzzy 12
2

R Space.

Corollary 3.3 Let (X, τ) be a fuzzy topological space and φ1, φ2 ∈ 
O(LX,τ). If (X, φ1,2.intτ) is characterized fuzzy 13

2

T -space and δ1,2.intτ is 

finer than φ1,2.intτ, then (X, δ1,2.intτ) is also characterized fuzzy 13
2

T
-space.

Proof: Immediate from Propositions 2.7 and 3.4.

Initial and Final Characterized Fuzzy 12
2

R  and Fuzzy 13
2

T

2-Spaces
In this section we are going to introduce and study the notion 

of initial and final characterized fuzzy 12
2

R -spaces and the notions 

of initial and final characterized fuzzy 13
2

T -spaces. The characterized 

fuzzy subspace, characterized fuzzy product space, characterized fuzzy 
quotient space and characterized fuzzy sum space are studied as special 
case from the initial and final characterized fuzzy 12

2

R and fuzzy 13
2

T

-spaces. New additional properties for the initial and final characterized 
fuzzy 12

2

R -spaces and for the initial and final characterized fuzzy 13
2

T

-spaces are given. The categories of all characterized fuzzy 12
2

R  and 

of all characterized fuzzy 12
2

R -spaces will be denoted by CFR-Space 
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and CRF-Tych, respectively. Note that the categories CFR-Space and 
CRF-Tych are concrete categories. The concrete categories CFR-Space 
and CRF-Tych are full subcategories of the category CF-Space of all 
characterized fuzzy spaces, which are topological over the category SET 
of all subsets. Hence, all the initial and final lifts exist uniquely in the 
categories CFR-Space and CRF-Tych, respectively.

This means that they also topological over the category SET. That 
is, all the initial and final characterized fuzzy 12

2

R -spaces and all the 

initial and final characterized fuzzy 13
2

T -spaces exist in CFR-Space and 
CRF-Tych, respectively.

In the following let X be a set, let I be a class and for each i ∈ I, let 
the characterized fuzzy space (Xi, δ1,2.inti) of all δ1,2-open fuzzy subsets 
of Xi is characterized fuzzy 12

2

R -space. For some i ∈ I, let fi: X → Xi 

is φ1,2δ1,2-closed injective mapping from X into Xi. Then we show in 
the following that the initial characterized fuzzy space (X,φ1,2.int) of 
((Xi, δ1,2.inti))i∈I with respect to (fi)i∈I is also characterized fuzzy 

12
2

R

-space. More general, we show under the same conditions, that the 
initial characterized fuzzy space (X, φ1,2.int) of ((Xi, δ1,2.inti))i∈I with 
respect to (fi)i∈I is characterized fuzzy 

13
2

T -space if all the characterized 

fuzzy spaces (Xi, δ1,2.inti) are characterized fuzzy 13
2

T -spaces for all i 

∈ I. Moreover, as special cases we show that the characterized fuzzy 
subspace, characterized fuzzy product space and characterized 
fuzzy filter pre topology of a characterized fuzzy 12

2

R -space and of a 

characterized fuzzy 13
2

T -space are characterized fuzzy 
12
2

R -spaces and 

characterized fuzzy 13
2

T -spaces, respectively.

Proposition

Let X be a set and I be a class. For each i ∈ I, let the characterized 
fuzzy space (Xi, δ1,2.inti) of all δ1,2-open fuzzy subsets of Xi is characterized 
fuzzy 12

2

R -space. If fi: X → Xi is an φ1,2δ1,2-closed injective mapping from 

X into Xi for some i ∈ I, then the initial characterized fuzzy space (X, 
φ1,2.int) of ((Xi, δ1,2.inti))i∈I with respect to (fi)i∈I is also characterized 
fuzzy 12

2

R -space.

Proof: Let x ∈ X and F ∈ φ1,2C(X) such that x F. Since fi: X → Xi 
is φ1,2δ1,2-closed injective for some i ∈ I, then fi(F) ∈ δ1,2C(Xi) and 
fi(x)∉fi(F). Because of (Xi, δ1,2.inti) is characterized fuzzy 12

2

R -space for 
all i ∈ I, then there

exists an δ1,2ψ1,2-fuzzy continuous mapping g: (Xi, δ1,2.inti) → (IL, 

ψ1,2.intℑ) such that ( )( )  1g fi x =  and ( )( )  0g fi x =  for all y ∈ F. 

Therefor the composition h=g fi: (X, φ1,2.int) → (IL, ψ1,2.intℑ) is φ1,2ψ1,2-

fuzzy continuous mapping such that ( ) ( )( )    ) 1h x g fi x= =

and 

( ) ( )( )    ) 0h y g fi y= = for all y  F. Consequently, (X, φ1,2.int) is 
characterized fuzzy

12
2

R -space.

Corollary 4.1 Let X be a set and I be a class. For each i ∈ I, let the 
characterized fuzzy space (Xi, δ1,2.inti) of all δ1,2-open fuzzy subsets of Xi 
is characterized fuzzy 13

2

T -space. If fi: X → Xi is an φ1,2δ1,2-closed injective 

mapping from X into Xi
 for some i ∈ I, then the initial characterized 

fuzzy space (X, φ1,2.int) ((Xi, δ1,2.inti))i∈I of with respect to (fi)i∈I is also 
characterized fuzzy 13

2

T -space.

Proof: Immediate from Propositions 2.5 and 4.1. 

Corollary 4.2 

The characterized fuzzy subspace (A, φ1,2.intA) and the characterized 
fuzzy product space 1,2( , .int )i i

i I
X ψ

∈
∏  of a characterized fuzzy 12

2

R

-space (resp. characterized fuzzy 13
2

T -space) are also characterized 

fuzzy 12
2

R -space (resp. characterized 13
2

T -space)

Proof: Follows immediately from Proposition 4.1 and Corollary 4.1. 2

As shown in ref. [7], the characterized fuzzy space (X, φ1,2.int) is 
characterized as a fuzzy filter pre topology, then we have the following 
result:

Corollary 4.3 

For each i ∈ I, let 
1,2

i
i L iX  F Xδ → is δ1,2.inti as the fuzzy filter pre 

topology is characterized fuzzy R2 fuzzy 31
2

T ). Then, the representation 

of the initial φ1,2-interior operator 
1,2 LX F Xϕ →  of the initial 

characterized fuzzy space (X, φ1,2.int) of ((Xi, δ1,2.inti))i∈I with respect to 
(fi)i∈I as a fuzzy filter pre topology which is defined by:

( )( ) ( )( )( )1,2 1,2,
    

i i

i
i iµ f µ i I

x µ f x µϕ δ≤ ∈
= ∨



 

for all x ∈ X and µ ∈ LX is also characterized fuzzy 12
2

R  (resp. 
characterized fuzzy 13

2

T ).

Now, if we consider the case of I being a singleton, then we have the 
following results as special cases from Proposition 4.1 and Corollary 4.1.

Proposition 

Let (X, τ1) and (Y, τ2) are two fuzzy topological spaces, 

21 2 ,( ),   YLO τδ δ ∈  and 
21 2 ,( ),   YLO τδ δ ∈ . If the mapping f: X → Y is an 

φ1,2δ1,2-closed injective from X into Y and (Y, δ1,2.int) is characterized 

fuzzy
12
2

R  terized fuzzy 13
2

T ) L-space, then the initial characterized 

fuzzy space (X(Y, δ1,2.int) with respect to f is also characterized fuzzy

12
2

R (resp. fuzzy 13
2

T ) L-space.

Proof: Straight forward. 

Corollary 4.4 

Let (Y, τ2) be an fuzzy topological spaces and δ1, δ2 f: X → Y is an 
φ1,2δ1,2-closed injective mapping from X into Y fuzzy δ1,2 13

2

T -space), 

then the initial fuzzy topological space (X, f−1(τ2)) of (Y, τ2) with 
respect to f is fuzzy φ1,2 12

2

R − space (resp. fuzzy φ1,2 13
2

T -space) for all 

( )1
2

1 2 ( , ),   XL f
O

τ
ϕ ϕ −∈ .

Proof: Follows immediately from Proposition 4.2. 2

In the following let X be a set and I be a class. For each i∈ I, let 
the characterized fuzzy space (Xi, δ1,2.inti) of allδ1,2-open fuzzy subsets 
of Xi is characterized fuzzy 12

2

R -space. For some i ∈ I, let fi: Xi → X 
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is surjective mapping from Xi into X and fi
−1 is φ1,2δ1,2-closed in the 

classical sense. Then as in case of the initial characterized fuzzy spaces, 
we show in the following that the final characterized fuzzy space (X, 
φ1,2.int) of ((Xi, δ1,2.inti))i∈I with respect to(fi)i∈I is also characterized 
fuzzy 12

2

R -space. More general, we show under the same conditions 

that, the final characterized fuzzy space (X, φ1,2.int) of ((Xi, δ1,2.inti))

i∈I with respect to (fi)i∈I is characterized fuzzy 13
2

T  space if each of 

the characterized fuzzy spaces (Xi, δ1,2.inti) is characterized fuzzy 
13
2

T -spaces for all i ∈ I. Moreover, as special cases we show that the 

characterized fuzzy quotient space and the characterized fuzzy sum 
space of the characterized fuzzy 12

2

R -space and of the characterized 

fuzzy 13
2

T -space are characterized fuzzy 12
2

R -spaces and characterized 

fuzzy 31
2

T -spaces, respectively. Proposition 4.3 Let X be a set and I be 

a class. For each i ∈ I, let the characterized fuzzy space (Xi, δ1,2.inti) of 
all δ1,2-open fuzzy subsets of Xi is characterized fuzzy 12

2

R -space. If fi: Xi 

→ X is an subjective δ1,2φ1,2-fuzzy open mapping from Xi into X and fi
−1 

is φ1,2δ1,2-closed for some i ∈ I, then the final characterized fuzzy space 
(X, φ1,2.int) of ((Xi, δ1,2.inti))i∈I with respect to (fi)i∈I is also characterized 
fuzzy 2 1

2

R -space.

Proof: Let x ∈ X and F ∈ φ1,2C(X) such that x F. Since fi: Xi → X 

is surjective and fi
−1 is φ1,2δ1,2-closed for some i ∈ I, then there exists 

K ∈ δ1,2C(Xi) and xi ∈ Xi for which xi=fi
−1(x) and K=fi

−1(F) such that 
xi ∉K. Because of (Xi, δ1,2.inti) is characterized fuzzy 12

2

R -space for 

all i ∈ I, then there exists an δ1,2 ψ1,2 fuzzy continuous mapping g: 

(Xi, δ1,2. inti.)→ (IL,ψ1,2.intJ) such that ( ) 1ig x = and ( ) 0g z =  for all z 

∈ K, that is, ( )( )1 1ig f x− =  and ( )( )1 0ig f s− =  for all s∈F. Therefore, 

there exists a mapping ( ) ( )1
1,2 1,2: , .int , .inti Lh = g f X Iϕ ψ−

ℑ→  such 

that ( ) 1h x =  and ( ) 0h s =  for all s∈F. Since fi is δ1,2ϕ1,2- fuzzy open, 

t h e n ( ) ( ) ( )1 1
1,2 1,2 1,2 1,2int .int .int .inti i i i i if f f fϕ µ ϕ µ µ µ− −= ≤ δ = δ  h o l d s 

for all ∈LX and i∈I, which means that ( ) ( )1
1,2 1,2: , .int , .inti i if X Xϕ ϕ− →  

is φ1,2 δ1,2-fuzzy continuous. Hence, the composition 

( ) ( )1
1,2 1,2: , .int , .inti Lh g f X Iϕ ϕ−

ℑ= →  is φ1,2ψ1,2-fuzzy continuous 
mapping and therefore the final characterized fuzzy space (X, φ1,2.int) 
is characterized fuzzy 12

2

R -space.

Corollary 4.5 

Let X be a set and I be a class. For each i ∈ I, let the characterized 
fuzzy space (Xi, δ1,2.inti) of all δ1,2-open fuzzy subsets of Xi is characterized 
fuzzy 13

2

T -space. If fi: Xi → X is an surjective δ1,2φ1,2-fuzzy open mapping 

from Xi into X and fi
−1 is φ1,2δ1,2-closed for some i ∈ I, then the final 

characterized fuzzy space (X, φ1,2.int) of ((Xi, δ1,2.inti))i∈I with respect to 
(fi)i∈I is also characterized fuzzy 13

2

T -space.

Proof: Immediate from Propositions 2.6 and 4.3. 2

Corollary 4.6 

The characterized fuzzy quotient space (A, φ1,2.intf) and the char 
characterized fuzzy 13

2

T -space) are also characterized fuzzy 12
2

R  (resp. 

characterized fuzzy 31
2

T ) L-spaces.

Proof: Follows immediately from Proposition 4.3 and Corollary 4.5. 2

Now, if we consider the case of I being a singleton, then we have the 
following results as special cases from Proposition 4.3 and Corollary 4.5.

Proposition 4.4 Let (X, τ1) and (Y, τ2) are two fuzzy topological 
spaces, ( )2( )1 2 ,,   XL fO τϕ ϕ ∈ and 

21 2 ,( ),   YLO τδ δ ∈ . If f: Y → X is an 
subjective δ1,2φ1,2-fuzzy open mapping from X into Y and f−1 is φ1,2δ1,2-
closed, then the final characterized fuzzy space (X, φ1,2.int) of (Y, δ1,2.
int) with respect to f is characterized fuzzy 12

2

R  (resp. characterized 

fuzzy 13
2

T )L-space if (Y, δ1,2.int) is characterized fuzzy 12
2

R  (resp. 

characterized fuzzy 13
2

T ) L-spaces.

Proof: Straight forward.

Corollary 4.7 

Let (Y, τ2) be an fuzzy topological spaces and 
21 2 ,( ),   YLO τδ δ ∈ , f: Y 

→ X is an δ1,2φ1,2-fuzzy open surjective mapping from Y into X and f−1 
φ1,2δ1,2-closed, then the final fuzzy topological space(X, f(τ2)) of (Y, τ2) 

with respect to f is fuzzy φ1,2 12
2

R -space (resp. fuzzy φ1,2 13
2

T )-space 

if (Y, τ2) is fuzzy δ1,2 12
2

R -space (resp. fuzzy δ1,2 13
2

T )-space for all 

( )2( )1 2 ,,   XL fO τϕ ϕ ∈ .

Proof: Follows immediately from Proposition 4.4. 2.

Finer Characterized Fuzzy 12
2

R and Finer Characterized 
Fuzzy 13

2

T -Spaces

In this section we are going to introduce and study some finer 
characterized fuzzy 12

2

R and finer characterized fuzzy 13
2

T -paces as 

a generalization of the weaker and stronger forms of the completely 
fuzzy regular and fuzzy 13

2

T -spaces introduced [28,12,13]. The relations 

between such characterized fuzzy 12
2

R -spaces and our characterized 

fuzzy 12
2

R -spaces which presented [9] are introduced. More generally, 

the relations between such characterized fuzzy 13
2

T -spaces and our 

characterized fuzzy 13
2

T -spaces are also introduced.

Characterized fuzzy 12
2

R H and characterized fuzzy 13
2

T  H-spaces. 

In the following we introduce and study the concept of characterized 
completely fuzzy regular Hutton and characterized fuzzy 31

2

T  Hutton-

spaces as a generalization of the weaker and stronger forms of the 
completely fuzzy regular and fuzzy 13

2

T -spaces in sense of Hutton 

[28], respectively. The relation between characterized completely 
fuzzy regular Hutton-spaces and the characterized fuzzy 12

2

R -spaces 

in our sense is introduced. More generally, the relations between 
characterized fuzzy 13

2

T Hutton-spaces and the characterized fuzzy 

13
2

T -spaces in our sense is also introduced. Let (X, τ) be a fuzzy 

topological space and ( )1 2 ,,  XLO τϕ ϕ ∈ . Then the characterized fuzzy 
space (X, φ1,2.int) is said to be characterized completely fuzzy regular 
Hutton-space or (characterized fuzzy 12

2

R H-space, for short) if for an 
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µ∈φ1,2OF (X), there exists a collection(ηα)α∈L in LX and an φ1,2ψ1,2-fuzzy 
continuous mapping g: (X, φ1,2.int) → (IL, ψ1,2.intℑ) such that

L αα
µ η

∈
= ∨

and ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )
1 0

1 0
t s

y g y g y t g y g y s yαη µ+< >
≤ − = ∧ ≤ = ∨ ≤ holds 

for all y ∈ X. Then characterized fuzzy space (X, φ1,2.int) is said to be 
characterized fuzzy 13

2

T Hutton-space or (characterized fuzzy 13
2

T  

H-space, for short) if and only if it is characterized fuzzy 12
2

R H and 
characterized fuzzy 

13
2

T -spaces.

In the classical case of L={0, 1}, φ1=intτ, ψ1=intℑ,  1 and
2  1 ILψ = , the φ1,2ψ1,2-fuzzy continuity of f is up to an identification the 

usual fuzzy continuity of f. Then in this case the notions of characterized 

fuzzy 12
2

R H-spaces and of characterized fuzzy 13
2

T  H-spaces are 

coincide with the notion of fuzzy completely regular spaces and the 

notion fuzzy 13
2

T -spaces defined by Hutton [28], respectively. Another 

special choices for the operations φ1, φ2, ψ1 and ψ2 are obtained (Table 1).

In the following proposition, we show that the characterized 

fuzzy 
12
2

R -spaces which are presented [9] are more general than the 

characterized fuzzy 12
2

R H-spaces.

Proposition 5.1

Let (X, τ) be an fuzzy topological space and 1 2 ( ),,   XLO τϕ ϕ ∈ .

Then every characterized fuzzy 12
2

R  H-space (X, φ1,2.int) is 
characterized fuzzy 2 1

2

R -space.

Proof: Let (X, φ1,2.int) is characterized fuzzy 12
2

R H-space, x ∈ X and 

F ∈φ1,2C(X) such that x F∉ . Then, ( )1,2F OF Xϕ′χ ∈ ∈ and ( ) 1F x′χ =

, therefore ( )F x α′χ ≥ holds for all α ∈ L. Hence,
,F F L

xαα α′ ′∈ ∈
χ = ∨  and 

therefore for all x F ′∈ , there exists a family (xα)α∈L in LX such that 

′
∈

= ∨χF L
xαα

and ( ) ( )( ) ( )( ) ( )1 0 Fx y g y g y yα ′< − < + < χ  holds for all 

y ∈ X. In case of y ∈ F, we get 0≤g(y)(1−)≤g(y)(0+)≤0 holds for all y ∈ 
F and therefore ( ) 0g y = for all y ∈ F. In case of y=x, we get xα(x)=α  
g(x)(1−) ≤ g(x)(0+) ≤ 1 holds for all α ∈ L and this means that g(x)
(s)=1 for all s < 1 and therefore ( ) 1g y = Consequently, (X, φ1,2.int) is 
characterized fuzzy 12

2

R -space in sense [9].

Corollary 5.1 Let (X, τ) be an fuzzy topological space and 

( )1 2 ,,  XLO τϕ ϕ ∈ . Then every characterized fuzzy 13
2

T  H-space is 

characterized fuzzy 13
2

T -space.

Proof: Follows immediately from Proposition 5.1.

The following example shows that the inverse of Proposition 5.1 
and of Corollary 5.1 is not true in general.

Example 5.1. 

Let X={x, y} with x ≠ y and 1 1 1 1 1 1 1 1
2 2 2 2 2

{0,1, , , , , }x x x y x y x yτ = ∨ ∨ ∨  is an 

fuzzy topology on X. Choose φ1=intτ, φ2=clτ, ψ1=intℑ and ψ2=clℑ. Hence,

1,2 1 1 1 1 1 1 1
2 2 2 2 2

( ) {0,1, , , , , }CF X y x y x y x yϕ = ∨ ∨  and there is the only case of x 

∈ X, F={y} ∈ φ1,2C(X) such that  x∉F. Since the mapping f: (X, φ1,2.intτ) 

→ (IL, ψ1,2.intℑ) which is defined by ( ) 1f x =  and ( ) 0f y =  for all y≠x is 
φ1,2ψ1,2-fuzzy continuous, then (X, φ1,2.intτ) is characterized fuzzy 12

2

R

-space in sense [9]. Obviously, (X, φ1,2.intτ) is characterized fuzzy T1-
space, therefore (X, φ1,2.intτ) is characterized fuzzy 13

2

T -space.

On other hand, let (X, φ1,2.intτ) is characterized fuzzy 13
2

T H-space, 

then(X, φ1,2.intτ) is characterized fuzzy 12
2

R H and characterized fuzzy 

T1-space. Since 1 1,2
2

( )x OF Xτ ϕ∈ = and 1
2

1
2L

x x
α∈

 
= ∨ ∧ α 

 
then there 

exists a collection ( ) 1
2L L

L

xα αα α
α

η
∈ ∈

∈

 
= ∨ ∧  

 
such that 1

2
L

x αα
η

∈
= ∨ . 

Moreover, for an φ1,2ψ1,2-fuzzy continuous mapping f: (X, φ1,2.intτ) → 
(IL, ψ1,2.intℑ) such that ( ) 1f x = and ( ) 0f y = for all y ≠ x, we get the 
inequality

( ) ( ) ( ) ( )1
2

( 1 0) ( )z f z f z x zαη − ≤ + ≤≤

holds only when z=y, but it is not holds when z=x, because
1 1( ) 1
2 2
∧ α ≤ ≤  and this is a contradiction. Hence, (X, φ1,2.intτ) is not 

characterized fuzzy 12
2

R H-space and therefore it is not characterized 
fuzzy 13

2

T H-space.

Characterized fuzzy 12
2

R  K and characterized fuzzy 13
2

T  K-spaces. 

In the following we introduce and study the concept of characterized 
completely fuzzy regular Katasars spaces and characterized fuzzy 13

2

T

Katasars spaces as a generalization of the weaker and stronger forms 
of the completely fuzzy regular and fuzzy 13

2

T -spaces introduced by 

Katasars [13], respectively. The relation between characterized fuzzy 
completely regular Katasars spaces and the characterized fuzzy 12

2

R

-spaces in sense Abd-Allah and Khedhairi [9] is introduced. More 
generally, the relations between characterized fuzzy 13

2

T Katasars 

spaces and the characterized fuzzy 13
2

T -spaces in sense of [9] is also 
introduced.

Let (X, τ) be an fuzzy topological space and 1 2 ( ),,   XLO τϕ ϕ ∈ . Then 
the characterized fuzzy space (X, φ1,2.int) is said to be characterized 
completely fuzzy regular Katasars-space or (characterized fuzzy 12

2

R

K-space, for short) if for every x ∈ X and µ ∈ LX such that µ(x)>α, α 
∈ L0, there exists an φ1,2ψ1,2-fuzzy continuous mapping g: (X, φ1,2.int) 
→(IL, ψ1,2.intℑ) such that g(y)(0+) ≤ µ(y) and g(y)(1−)>α are holds for all 
y ∈ X and α ∈ L0. The characterized fuzzy space (X, φ1,2.int) is said to 
be characterized fuzzy 13

2

T Katasars-space or (characterized fuzzy 13
2

T

K-space, for short) if and only if it is characterized fuzzy 12
2

R K-space 
and characterized fuzzy T1-space.

In the classical case of L={ 0, 1 }, φ1=intτ, ψ1=intℑ, 2  1 ILψ = and 
2  1 ILψ = , the φ1,2ψ1,2-fuzzy continuity of f is up to an identification 

the usual fuzzy continuity of f. Then in this case the notions of 
characterized fuzzy 12

2

R  K-space and of characterized fuzzy 13
2

T

K-spaces are coincide with the notion of completely fuzzy regular 
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spaces and the notion of fuzzy 13
2

T -spaces presented by Katasars [13], 

respectively. Another special choices for the operations φ1, φ2, ψ1 and ψ2 
are obtained in Table 1. In the following proposition we show that the 
notion of characterized fuzzy 12

2

R -spaces which are presented [9] are 

more general than the characterized fuzzy 12
2

R K-spaces.

Proposition 

Let (X, τ) be an fuzzy topological space and ( )1 2 ,,  XLO τϕ ϕ ∈ . Then 
every characterized fuzzy 12

2

R  K-space (X, φ1,2.int) is characterized 
fuzzy 12

2

R space.

Proof: Let (X, φ1,2.int) is a characterized fuzzy 12
2

R  K-space, x  X and 

F ∈ φ1,2C(X) such that x ∉ F. Then, ( ) 1F x′χ =  and ( ) 1F x′χ = , therefore
( )F x α′χ ≥  holds for all α ∈ L. Because of (X, φ1,2.int) is characterized 

fuzzy 12
2

R K-space, then there exists a φ1,2ψ1,2-fuzzy continuous 

mapping g: (X, φ1,2.int) →(IL, ψ1,2.intℑ) such that ( )( )
0

( )Ft
g y t y′

>
≤∨ χ and 

( )( )
1s>
g sy α∨ > are hold for all y ∈ X and α ∈ L. In case of y ∈ F, we 

have ( )( )
0

0
t

g ty
>
∨ ≤ , that is, g(y)(t)=0 for all t>0, y ∈ F and therefore 

( ) 0g y for all y ∈ F. In case of y=x, we have ( )( )
1

|
s

g x s α
>
∨ >  holds 

for all α ∈ L, and therefore ( ) 1g x = . Hence, there exists a φ1,2ψ1,2-fuzzy 
continuous mapping g: (X, φ1,2.int) → (IL, ψ1,2.intℑ) such that ( ) 0g y =

and ( ) 0g y = for all y ∈ F. Consequently, (X, φ1,2.int) is characterized 
fuzzy 12

2

R -space in sense [9].

Corollary 5.2 Let (X, τ) be an fuzzy topological space and
1 2 ( ),,   XLO τϕ ϕ ∈ . Then every characterized fuzzy 

31
2

T K-space is 

characterized fuzzy 13
2

T -space.

Proof: Follows immediately from Proposition 5.2. 

The following example shows that the inverse of Proposition 5.2 
and of Corollary 5.2 is not true in general.

Example 5.2. 

Consider the characterized fuzzy space (X, φ1,2.intτ) which is 
defined in Example 5.1, then as shown in Example 5.1, (X, φ1,2.intτ) is 
characterized fuzzy 12

2

R -space in sense [9] and characterized fuzzy T1-

space, therefore (X, φ1,2.intτ) is characterized fuzzy 13
2

T -space in sense [9].

On other hand, for any φ1,2ψ1,2-fuzzy continuous mapping f: (X, φ1,2.

intτ) → (IL, ψ1,2.intℑ) such that ( ) 1f y =  and ( ) 0f y =  for all y≠x, we shall 

consider 
1 1,2
2

. ( )OF Xx ϕ∈  with ( )1
2

1 0
2

x x = > , that is, there exists some

1
2

Lα = ∈  such that ( )1
2

x x α= . Therefore, ( ) ( )
1

( ) (1 1)
2

tf z f z
τ <
∧ >=−  

holds only when z=x and it is not fulfilled when z=y. Moreover,
( ) ( ) 10

2

( ) ( ) (0 )
s

f z f z s zx
>

= ∧+ ≤  holds only when z=y and it is not fulfilled 

when z=x. Hence, (X, φ1,2.intτ) is not characterized fuzzy 12
2

R K-space 
and therefore it is not characterized fuzzy 13

2

T K-space.

Characterized Fuzzy 12
2

R KE and Characterized Fuzzy 
13
2

T  KE-Spaces
In the following we introduce and study the concepts of 

characterized completely fuzzy regular Kandil and Shafee spaces and 
of characterized fuzzy 13

2

T  Kandil and Shafee spaces as a generalization 

of the weaker and stronger forms of the completely fuzzy regular and 

fuzzy 12
2

R -spaces presented by Kandil and Shafee [12], respectively. 

The relation between characterized completely fuzzy regular Kandil 
and Shafee spaces and the characterized fuzzy 12

2

R -spaces which are 

presented [6]. More generally, the relations between characterized 

fuzzy 13
2

T Kandil El-Shafee-spaces and the characterized fuzzy 13
2

T

-spaces in sense [9] is also introduced.

Let (X, τ) be an fuzzy topological space and ( )1 2 ,,  XLO τϕ ϕ ∈ .Then 
the characterized fuzzy space (X, φ1,2.int) is said to be characterized 
completely fuzzy regular Kandil and Shafee space or (characterized 

fuzzy 12
2

R KE-space, for short) if for every xα ∈ S(X) and µ ∈ φ1,2CF (X) 

such that x qµα , there exists an φ1,2ψ1,2-fuzzy continuous mapping f: (X, 
φ1,2.int) → (IL, ψ1,2.intℑ) such that f(y)(0+) ≤ µ′(y) and f(y)(1−) ≥ xα(y) are 
hold for all y ∈ X and α ∈ L. The characterized fuzzy space (X, φ1,2.int) 
is said to characterized quasi fuzzy T1-space or (characterized QFT1-
space, for short) if for all x, y ∈ X such that x ≠ y we have 1,2 clx q . yα βϕ  
and 1,2 cl l. x q yβϕ α for all α, β ∈ L. As easily seen that every characterized 
QFT1-space is characterized fuzzy T1-space. The characterized fuzzy 

space (X, φ1,2.int) is said to be characterized fuzzy 
13
2

T  Kandil El-Shafee-

space or (characterized fuzzy 13
2

T KE-space, for short) if and only if it is 

characterized fuzzy 13
2

T KE and characterized QFT1-spaces. Obviously, 

every characterized fuzzy 13
2

T KE-space is characterized fuzzy 13
2

T

K-space. In the classical case of L={0, 1}, φ1=intτ, ψ1=intℑ, 2  1 XLϕ = and

2  1 ILψ = , the φ1,2ψ1,2-fuzzy continuity of f is up to an identification the 

usual fuzzy continuity of f. Hence, the notions of characterized fuzzy 

12
2

R KE-spaces and of characterized fuzzy 13
2

T KE-spaces are coincide 

with the notion of completely fuzzy regular spaces and the notion fuzzy 

fuzzy 13
2

T -spaces presented by Kandil and Shafee [12], respectively. 

Another special choices for the operations φ1, φ2, ψ1 and ψ2 are obtained 
in Table 1.

In the following proposition we show that the characterized 
fuzzy 12

2

R -spaces which are presented [9] are more general than the 

characterized fuzzy 12
2

R  KE-spaces.

Proposition 5.3 

Let (X, τ) be an fuzzy topological space and ( )1 2 ,,  XLO τϕ ϕ ∈  Then 
every characterized fuzzy 12

2

R  KE-space (X, φ1,2.int) is characterized 
fuzzy 12

2

R -space.

Proof: Let (X, φ1,2.int) is a characterized fuzzy 12
2

R KE-space, x ∈ 

X and F ∈φ1,2C(X) such that x∉F. Then, ( )1,2F OF Xϕ′χ ∈  and ( ) 1,F x′ =χ  

therefore 1 Fx qχ . Because of (X, φ1,2.int) is characterized fuzzy 12
2

R KE-
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space, then there exists a φ1,2ψ1,2-fuzzy continuous mapping f: (X, φ1,2.

int) → (IL, ψ1,2.intℑ) such that ( ) ( )( ) 0 Ff y y′+ ≤ χ and ( ) ( )( ) 1 xf y y1− ≥ are 

hold for all y ∈ X. In case of y ∈ F, we have 0 ≤ f(y)(1−) ≤ f(y)(0+) ≤ 
0, that is, f(y)(s)=0 for all s>0and therefore ( ) 0f y = for all y ∈ F. In 
case of y=x, we have 1 ≤ f(x)(1−) ≤f(x)(0+) ≤ 1 holds and then f(x)
(s)=1 for all s < 1, therefore ( ) 1f x = . Hence, there exists a φ1,2ψ1,2-fuzzy 

continuous mapping f: (X, φ1,2.int) → (IL, ψ1,2.intℑ) such that ( ) 1f x = and
( ) 0f y = for all y ∈ F. Consequently, (X, φ1,2.int) is characterized fuzzy 

12
2

R -space in sense [9].

Corollary 5.3 

Let (X, τ) be an fuzzy topological space and ( )1 2 ,,  XLO τϕ ϕ ∈ . Then 
every characterized fuzzy 13

2

T KE-space is characterized fuzzy 13
2

T
-space.

Proof: Follows immediately from Proposition 5.3 and the fact that 
every characterizedQFT1-space is characterized fuzzy T1-space.

The following example shows that the inverse of Proposition 5.3 
and Corollary 5.3 are not true in general.

Example 5.3. 

Consider the characterized fuzzy space (X, φ1,2.intτ) which is 
defined in Example 5.1, then as shown in Example 5.1, (X, φ1,2.intτ) is 
characterized fuzzy 12

2

R -space in sense [9] and characterized fuzzy T1-

space, therefore (X, φ1,2.intτ) is characterized fuzzy 13
2

T -space in sense [9].

Now, choose ( )1
2

x S X∈  and ( )1 1,2
2

= x CF Xϕµ ∈  then

( )1 1 1,2
2

= x y OF Xϕ′µ ∨ ∈ such that
1
2

x qµ .Hence, for any φ1,2ψ1,2-fuzzy 

continuous mapping f: (X, φ1,2.intτ) → (IL, ψ1,2.intℑ) such that ( ) 1f x =

and ( ) 0f y = for all y≠x, we get ( ) ( ) ( )1 1
2

( ) ( )1x z f z f z t
τ<

− ∧=≤ holds for 

all z ∈ X. But ( ) ( ) ( ) ( )1 1 0
2

( ) ( )0z x y f z f z sz
σ >

 
′µ = ∨ ≥ ∧   +

 
holds only for 

z=y and it is not fulfilled for z=x. Consequently, (X, φ1,2.intτ) is not 
characterized fuzzy 12

2

R KE-space and therefore it is not characterized 
fuzzy 13

2

T KE-space.

Conclusion
In this paper, basic notions related to the characterized fuzzy 

12
2

R and the characterized fuzzy 13
2

T -spaces which are presented [9] 

are introduced and studied. These notions are named metrizable 
characterized fuzzy spaces, initial and final characterized fuzzy spaces, 
some finer characterized fuzzy 12

2

R and characterized fuzzy 13
2

T

-spaces. The metrizable characterized fuzzy space is introduced as a 
generalization of the weaker and stronger forms of the fuzzy metric 
space introduced by Gahler and Gahler [3]. For every stratified fuzzy 
topological space generated canonically by an fuzzy metric we proved 
that, the metrizable characterized fuzzy space is characterized fuzzy T4-
space in sense of Abd-Allah [10] and therefore, it is characterized fuzzy 

12
2

R and characterized fuzzy 13
2

T -space. The induced characterized 

fuzzy space is characterized fuzzy 12
2

R and characterized fuzzy 13
2

T

-space if and only if the related ordinary topological space is φ1,2 
12
2

R -space and φ1,2 13
2

T -space, respectively. Hence, the notions of 

characterized fuzzy 12
2

R and of characterized fuzzy 13
2

T are good 

extension in sense of Lowen [11]. Moreover, the α-level characterized 
space and the initial characterized space are characterized -space 

and characterized 
13
2

T -space if the related characterized fuzzy space 

is characterized fuzzy 12
2

R -space and characterized fuzzy 13
2

T -space, 

respectively. We shown that the finer characterized fuzzy space of 
a characterized fuzzy 12

2

R -space and of a characterized fuzzy 13
2

T

-space is also characterized fuzzy 12
2

R and characterized fuzzy 13
2

T

-space, respectively. The categories of all characterized fuzzy 12
2

R and 

of all characterized fuzzy 13
2

T -spaces will be denoted by CFR-Space 

and CRF-Tych and they are concrete categories. These categories are 
full subcategories of the category CF-Space of all characterized fuzzy 
spaces, which are topological over the category SET of all subsets and 
hence all the initial and final lifts exist uniquely in CFR-Space and 
CRF-Tych, respectively. That is, all the initial and final characterized 
fuzzy 12

2

R -spaces exist in CFR-Space and also all the initial and final 

characterized fuzzy 13
2

T -spaces exist in CRF-Tych. We shown that the 

initial and final characterized fuzzy spaces of a characterized fuzzy 12
2

R

-space and of characterized fuzzy 13
2

T -space are characterized fuzzy 

12
2

R and characterized fuzzy 13
2

T -spaces, respectively. As special cases, 

the characterized fuzzy subspace, characterized fuzzy product space, 
characterized fuzzy quotient space and characterized fuzzy sum space 
of a characterized fuzzy 12

2

R -space and of a characterized fuzzy 13
2

T

-space are also characterized fuzzy 12
2

R and characterized fuzzy 13
2

T

-spaces, respectively. Finally, we introduced and studied three finer 
characterized fuzzy 12

2

R and three finer characterized fuzzy 13
2

T

L-spaces as a generalization of the weaker and stronger forms of the 
completely regular and the fuzzy 13

2

T -spaces introduced [28,12,13]. 

These fuzzy spaces are named characterized fuzzy 12
2

R H, characterized 

fuzzy 12
2

R K, characterized fuzzy 12
2

R KE, characterized fuzzy 31
2

T

H, characterized fuzzy 31
2

T K and characterized fuzzy 13
2

T KE-spaces. 

The relations between characterized fuzzy 12
2

R H, characterized fuzzy 

12
2

R K, characterized fuzzy 12
2

R KE-spaces and the characterized fuzzy 

12
2

R -space which are presented [9] are introduced. More generally, the 

relations between characterized fuzzy 13
2

T H, characterized fuzzy 13
2

T K, 

characterized fuzzy 13
2

T KE-spaces and the characterized fuzzy 13
2

T -spaces 

are also introduced. Meany special cases from these finer characterized 

fuzzy 12
2

R and finer characterized fuzzy 13
2

T -spaces are listed in Table 1.  
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