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Abstract

sensing applications.

Zhang et al. efforts on the explore of InP-based Sb-free 2-3 ym band lasers and photodetectors are introduced,
including the 2-2.5 ym band type | InGaAs MQW lasers under pseudomorphic triangle well scheme, 2.5-3.0 ym
band type | InAs MQW lasers under metamorphic strain compensated well scheme, as well as InGaAs
photodetectors of high indium contents with cut-off wavelength large than 1.7 pm. All device structures are grown
using gas source MBE method, and CW operation above room temperature have been reached for the lasers with
wavelength less than 2.5 ym. Pulse operation of 2.9 um lasers at TE temperature also have been reached The dark
current of 2.6 um InGaAs photodetectors have been decreased notably with the inserting of supperlattice electron
barriers, those types of epitaxial materials have been used to the development of FPA modules for space remote

Keywords: Semiconductor lasers; Photodetectors; InP-based; Sb-
free; Gas source MBE

Introduction

Semiconductor lasers and photodetectors in the 2-3 pm band have
many important applications in numerous areas, such as satellite
remote sensing, gas detection, night and fog penetrating vision, eye-
safe wind-detecting lidar, spectral and medical instrumentations, as
well as free-space light communications. Figure 1 shows main
applications of the short-wave infrared band in satellite remote
sensing, as well as absorptive features of water vapor and carbon
dioxide. This paper introduces our works on the lasers and
photodetectors in this band.
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Figure 1: 9 Main applications of the short-wave infrared band in
satellite remote sensing, as well as the absorptive features of water
vapor and carbon dioxide.

For semiconductor lasers, in principle antimonide type-I quantum
wells on GaSb substrate may cover the 2-3 pum band primely, the

difficulties are on the extending of the lasing wavelength even longer
and fulfill the performance demands at room temperature (RT). Efforts
have been made in previous years [1-3], and their applications are
explored [4-6]. However, antimonide containing materials are suffered
from some essential or technical problems, such as the existence of
miscibility gap and therefore the difficulties in epitaxial growth. The Sb
source in the growth is not so compatible with other sources and the
device processing is still not mature. Also, the thermal conductance of
antimonide is poor, and the price of GaSb substrate is high.
Furthermore, to reach a better confinement, in those type-I
antimonide laser structures high Al content materials are often
adopted, especially for longer wavelength. Because of the high
chemical activity of pure Al, the introducing of high Al containing
materials into laser structure are considered harmful to the reliability,
this have been confirmed in the early work of AlGaAs/GaAs lasers.
Therefore, even some successful reports of the lasers and other types of
device adopting high Al (Al > 70%) or even pure Al (such as AlAs and
AlSb) materials could be found, in this case the surface and side
protection and passivation in both growth and processing steps should
be very critical, as well as the punch through defect and pin-hole
densities. The long-term reliability data is still rare, especially for the
devices with high local power density as lasers.

Besides, the interband cascade lasers (ICL) of antimonide [7,8] and
antimonide containing inter-subband quantum cascade lasers (QCL)
[9], which works well at longer wavelength, are extending their
wavelength to short wavelength side, lasing wavelength below 3 um
have been reported [10]. For those types of lasers, the design space will
be limited when extending to shorter wavelength, as well as the
performances. The GaSb-based antimonide lasers adopting type-II
quantum wells or cascaded type-I wells may also worked in 2-3 pm
band, and CW operation at room temperature have been reported
[11-13]. For those lasers, antimonide in combination of type-II band
alignment provide a distinctive degree of freedom in design, the
tailoring of the lasing wavelength is more effective. Of course, the
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problems of antimonide, high Al containing materials and GaSb
substrate are still need to be confronted. The lattice constant of InAs is
close to that of GaSb (only 0.6% difference), so in principle InAs also
could be used as substrate for those lasers, and its price in lower than
GaSb. Lasers with well performance have been reported [14,15], but
the lower bandgap, melting point and mechanical strength of InAs is
detrimental to epitaxial growth and device processing.

Keep away from the problems of antimonide, extending the
wavelength of mature InP-based lasers of communication band to long
side have been explored [16]. Those lasers are composed of Sb-free
ternary InGaAs, InAlAs and quaternary InGaAsP and InAlGaAs
materials lattice matched to InP substrate, and adopting type-I
quantum wells. The Al contents in the constitutive material are around
or below 50%, so no processing and reliability problems of high Al
device essentially. Besides, the thermal conductance of InP is doubled
compared to those of GaSb or InAs; it is beneficial to the laser. For a
laser structure, normally the thick layers should be lattice matched,
whereas the thickness of lattice mismatched thin layers is limited by
the critical thickness. Restricted by the bandgap of the material system,
the lasing wavelength was only extending to about 2 um at long side
based on conventional design. Similarly, the InP or GaAs based QCL,
which are also Sb-free and have made great success in mid and far
infrared band, are difficult to extend towards short wavelength side
because of limited band offset. Even if the lasing wavelength near 3 um
has been reported [17], the performance is not as good as device at
longer wavelengths.

As a compromise between antimonide and Sb-free structure, InP
based laser structure with small quantity of antimonide in the active
zone have also been explored, such as the using of AlAsSb to increase
the band offset [18,19], or adopting type-II quantum wells [20,21], in
which the waveguide or confinement layers are still Sb-free. Those
structures could adopting the strong points while overcoming weak
points, but the choices of the material system and design space are very
limited especially towards short wavelength side.

Based on above considerations, InP-based Sb-free type-I quantum
well lasers in 2-3 pm band have been developed [22]. With the increase
of the wavelength, those lasers need confront of the common problems
of PN junction interband lasers, such as the decrease of gain,
enhancement of Auger recombination, etc. Besides, the effects of large
strain in the structures need to be remitted through the optimization of
the design and processing, including the 2-2.5 yum band InGaAs MQW
lasers adopting pseudomorphic non-rectangular quantum well
scheme, and 2.5-3 um band InAs MQW lasers adopting metamorphic
strain compensated quantum well scheme.

As for the photodetectors and focal plane arrays similar situations
exist. Antimonide InAsPSb or InGaAsSb quaternaries lattice matched
to InAs or GaSb substrates could cover the 2-3 um band well, early
works on the explore of PIN type photodetectors have shown fair
results [23-25]. However, because of the problems of antimonide those
photodetectors are not well developed. Type-II antimonide superlattice
photodetectors on GaSb or InAs substrates are developing rapidly and
could also be tailored to this band, but the common problems of
antimonide still need to be confronted. GaSb or InAs substrates are all
conductive, the free-carrier absorption are unsuitable for the
development of back illuminated FPA, while remove of the substrate
totally increases the difficulties in the processing dramatically.

I1-VI MgCdTe material system with variable bandgap has excellent
optoelectronic properties and could cover wider wavelength range.
Through a long-term development, photodetectors and FPAs with
good performances have been developed in long-wave, mid-wave and
short-wave infrared bands, whereas those materials are far from robust
because of the weak Hg-Te bond, and the growth and processing steps
should be at quite low temperature, in addition to the radiation
protection and reliability problems for space applications.

Based on similar considerations, a series of InP-based Sb-free
photodetectors also have been developed by using ternary InGaAs with
higher indium contents as absorption layer, the cut-off wavelength
have been extended from above 1.7 um to 2.9 um, and the materials
have been applied to FPA applications [26]. Consequently, the effects
of large lattice mismatch between the absorption layer and substrate
need to be remitted through the optimization of the buffer material
and scheme. The dark current of the device need to be restrained by
using special structures.

Lasers

Scheme I: Pseudomorphic triangle quantum wells

For the interband quantum well lasers, increase of the lasing
wavelength means the decrease of the bandgap of well material. In the
premise of using InP as substrate and InxGal-xAs as well material, this
could be realized by increase the indium content x. For the device of
longer wavelength adequate gain should be maintained by using
sufficient well numbers, but the accumulation of the strain and
limitation of critical thickness should be solved. In the case of using
rectangular wells the indium contents and well numbers are restricted
notably. Calculation and experiments shown at the same total strain
extent the indium contents and well numbers could be increased by
using of triangle shape wells, and therefore lasing at longer
wavelengths. In MBE triangle shape wells could be realized by the
growth of short period digitally graded superlattice (chirped
superlattice) [27,28]. For reach high performance of the laser in this
scheme, the total strain contents, quantum well numbers for sufficient
gain, as well as the carrier and optical confinement at numerous
restriction conditions, should be considered synthetically, trade-oft of
the parameters and optimization of the structure and processing is
needed [29-32]. In this scheme the CW operation of the InP-based Sb-
free lasers above room temperature have been reached in 2.0-2.43 um
range [33,34], and above 10 mW CW output power could be obtained
from narrow ridge device at RT. Figure 2 shows the typical output
characteristics.

Scheme II: Metamorphic virtual substrate strain
compensated quantum wells

For longer lasing wavelength the pseudomorphic triangle well
scheme will also be limited, in this case the whole laser structure could
be constructed above a virtual substrate to release the large strain
problem, the virtual substrate is also grown on InP substrate but with
lattice constant large than those of InP.

By using this scheme, the photoluminescence (PL) of wavelength
large than 3 um have been observed at RT for quantum wells grown on
InP substrate [35], RT-PL of 2.9 um also have been seen at similar
structure grown on GaAs substrate [36], confirmed the validity of the
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scheme. Based on this scheme, whole structure of the laser were
designed and grown, in which separate confinement hetero-structure
and strain compensated active zone are adopted to keep requisite gain
for lasing at quite weak confinement on such long wavelengths. The
laser reached 2.7 um CW lasing at 110 K [37-39], and 2.9 pm pulse
lasing at 230 K, but with lower power, and RT-CW operation of the
laser have not been reached yet. Figure 3 shows the typical output
characteristics.
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Figure 2: CW Output and I-V characteristics of the InP-based
antimony-free  lasers at  different temperatures  under
pseudomorphic triangle quantum well scheme, the inset shows its
lasing spectrum at RT.
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Figure 3: CW Output and I-V characteristics of the InP-based
antimony-free lasers at different temperatures under metamorphic
virtual substrate strain compensation quantum well scheme, the
inset shows its lasing spectrum at RT.

Photodetectors

The contents involved in the research of InP based 2-3 um band
photodetectors including the selection of absorption and buffer layer
materials, buffer schemes, grading of hetero-interfaces, suppression of
dark current, etc. Considering the particular features of gas source
MBE, a series of explore has been taken [40-46]. An optimized
structure with high indium InxGal-xAs absorption layer, linear or step
plus linear graded buffer layer, digitally graded superlattice hetero-
interfaces and superlattice electron barriers [47] for dark current
suppression has been developed. Figure 4 shows the typical

characteristics of the photodetectors of 500 pm diameter, its 50% cut-
off wavelength at RT is about 2.6 um. For the development of FPAs, the
material and processing related parameters affect the uniformity of the
device also have been investigated [48,49], as well as related material
and device features [50-52].
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Figure 4: Dark current characteristics of the high indium content
InGaAs photodetector at different temperatures (¢ = 500 pm), the
inset shows its response spectrum at room temperature (50% cutoff
at ~ 2.6 um).
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Figure 5: R&D trends of the InP-based antimony-free lasers in 2-3
um band, the ceiling heights of the pseudomorphic and
metamorphic schemes are supposed to be at about 2.5 um and 3.0
um respectively.

Applications

The R&D of the lasers and photodetectors are target on actual
applications. As for the lasers below 2.5 um, RT-CW operation has
been reached with moderate power. Based on those devices battery-
driven miniaturized laser modules have been developed, which have
been used for the characterization of the photodetector materials and
devices favorably, as well as some other utilities. As for the
photodetectors, by using of gas source grown epitaxial wafers with
optimized structure, FPA chips, devices and modules have been
developed by Shanghai Institute of Technical Physics target on space
applications, such as meteorology and ocean, resource and
circumstance, lunar exploration, manned spaceflight, etc.
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Conclusion

In conclusion, Figure 5 shows the R&D trends of the InP-based
antimony-free lasers in 2-3 um band. It could be seen that, 2.43 um
RT-CW operation of the laser have been reached using pseudomorphic
scheme, whereas 2.9 pm operation of the laser only have been reached
at thermoelectric cooling temperature using metamorphic scheme. The
ceiling heights of the pseudomorphic and metamorphic schemes are
supposed to be at about 2.5 pm and 3.0 pm respectively.

The cutoff wavelength of the high indium content InGaAs
photodetector have been extended to 2.9 pum [46], but for longer
wavelength the performance degradation of the device is fast than
expected. As an overall consideration the RT cutoff wavelength of
2.5-2.6 pum are favorable for applications.
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